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Chapter 1

Introduction

1.1 Science of networks

Thanks to computational progresses and to the availability of large dataset, the “science

of networks” underwent a strong growth and development phase in the last years. In this

period, named the modern period (1998 – present), scientists demonstrated the univer-

sality of this science, and the possibility to use the same concepts, tools, and methods

in different fields of application: social networks analysis, market competition models,

control theory, physical and biological sciences, just to name a few.

Researchers found common “laws” and behaviours, for a wide range of natural and syn-

thetic networks present in different fields. They uncovered general concepts and prop-

erties intrinsic to all of these diverse networks, and divided them in a few categories:

regular, random, scale-free, and small-world networks [1].

Regular and random networks are two extremes, the first one with a purely determinis-

tic structure, the second one with a pure random structure, and between them there are

networks which share characteristics of regular graphs and random graphs: small-world

(mostly structured, partly random) and scale-free (mostly random, partly structured)

networks.

Each class has a peculiar feature:

Network model Feature

random poisson distribution

regular zero-entropy value

scale-free power law distribution

small-world high average cluster coefficient

1
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In literature other classifications of network models exist. As described in the book

“Large Scale Structure and Dynamics of Complex Networks”, of Guido Caldarelli and

Alessandro Vespignani [2], it is possible to identify two principal belonging classes for

network models: static random networks and evolving random networks.

In static random networks the number of nodes does not change and links among them

are inserted with a probabilistic law. Reference network for this class is the Erdos-Renyi

model, which is considered as the forefather of all network models, and it dates back to

1959.

Evolving random networks, grow and change in time by the addition of new vertices

and edges, therefore the network history becomes important to understand how it acts

on the final structure and on properties. Paradigm for the second class of models is

the Barabasi-Albert model, which is decisively younger than the Erdos-Renyi model.

According to Caldarelli and Vespignani, a special case of evolving random networks is

represented by more recent new models named “weighted networks”, where weights and

topology co-evolve changing the structure of networks. In these cases, where the weights

co-evolve with the network structure, their distribution follows power-laws.

Power law distribution for weights, is considered by authors a strong signature of the

dynamical nature of the process.

In this thesis we dealt with undirected weighted networks. Following the first classi-

fication (regular, random, scale-free, small-world), we can state that the implemented

networks belong to the regular and random categories. Following the Caldarelli and

Vespignani classification, we used evolution random networks, but only with an “evolu-

tion” of links, without adding new nodes (so, no growth of the network appears). This

kind of evolution concerns with weight of links and size of nodes, therefore it partially

fulfills the description of evolving random network, and of the weighted networks, as in-

troduced by Caldarelli and Vespignani, since new nodes are not inserted in the networks.

The following list includes all the types of networks investigated, two randoms and two

regulars (four structures):

Definition 1. The Erdos-Renyi random network G(N, p) (abbreviated as “ER”)

is a random graph with N vertices, where each possible edge has probability p of

existing.
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The degree distribution of the Erdos-Renyi network, is a Binomial distribution:

P (k) =

(
N

K

)
p(1− p)N−K (1.1)

where K represents the degree of a vertex, N the total number of nodes in the

network, and p is the probability to have an edge.

Definition 2. A Random k-Regular graph (abbreviated as “RERA”) is a random

graph, in which the elements of the correspondent adjacency matrix aij are chosen

randomly, but the sum over each row and each column is always the same and

it is constant, k0. A popular method to produce this graph was first proposed by

Bollobás [3] and it was called the “pairing model” (sometimes also “the configuration

model”). For a graph of N nodes and m links (Nm must be even), imagine to have

a urn with Nm balls, where balls represents the “open links” of nodes (we have m

copies for each node i) [4]. We randomly select balls from the urn, matching pairs

connecting respective nodes.

Example: consider a set of N = 4 nodes, {1, 2, 3, 4}, and m = 3 links. We will have

12 balls, and since we need of m copies of each node, we can write the set of balls

in this way: {m1
A,m1

B,m1
C ,m2

A,m2
B,m2

C ,m3
A,m3

B,m3
C ,m4

A,m4
B,m4

C}.
Now, just randomly select pairs of open links mnode

copy from the set, and connect

them.

It is a very simple algorithm but, if N is low, there could be the possibility to have

self-connections (loops), or multiple edges (two or more connections with the same

node)

Definition 3. A 2-dimensional lattice (named “grid” as well, and abbreviated as

“REG”) is a regular network in which nodes are placed at integer coordinate points,

in the 2-dimensional Euclidean space, and each node is connected to nodes which

are exactly one unit far from it. This sort of definition can be extended to the case

of n-dimensional lattice.

In this thesis we considered 2-d square lattices. Examples:

A network of N = 4 nodes, presents m = 4 links, and the coordinates for nodes are

(1, 1), (1, 2), (2, 1), (2, 2). A network of N = 9 nodes, presents 12 links, because

the corner-nodes have degree k = 2, the side-nodes have degree k = 3, and the

central-nodes have degree k = 4. In this case the coordinates are (1, 1), (1, 2),

(1, 3), (2, 1), (2, 2), (2, 3) (3, 1), (3, 2), (3, 3).
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Definition 4. A fully connected network (also called “all-to-all”, or “complete”

network, and abbreviated “FULL”) is a regular network, where each node is con-

nected to every other node. The number of links in a fully connected graph is

m = N(N − 1)/2.

Let us explain the reason [1]: the first node connects to (N − 1) nodes, the second

connects to (N − 2) nodes, and so on, until the last node. The total number of

edges is the following:

m = (N − 1) + (N − 2) + (N − 3) + ...

=

(N−1)∑
i

i = N
N − 1

2

About dynamics, two kinds of dynamical equations can describe features of evolving

random networks: master-like equations and microscopic quantity equations [2].

Master-like equations are functional equations which give information on the evolution

of some probability distribution. An example for these equations can be written using

the degree distribution:

dP (k, t)

dt
= F [{P (k, t)}k,1,∞] (1.2)

where F [{P (k, t)}k,1,∞] is a functional of all the degree probabilities.

Microscopic quantity equations are related to the evolution of some specific network

property, for istance the degree of a specific site i, as in the following equation:

dki
dt

=
∏

[ki=1,N , t] (1.3)

where
∏
[ki=1,N , t] represents the rate of change of the degree of vertex i as a function of

time t and of all the degrees of the N vertices of the network.

1.2 State of the art

We developed our work basing on the paper of Takaaki Aoki and Toshio Aoyagi "Scale-

Free Structures Emerging from Co-evolution of a Network and the Distribution of a

Diffusive Resource on it" [5], where they propose and describe a model for coevolving

network dynamics.

They assign a dynamical variable xi to each node, calling that as "resource", i.e. x is

a resource understood as a quantity of real-world networks (example: money in human
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networks), and the subscript i indicates the i− th node of the network. Starting from an

intial condition of a normal distribution for resources xi and weights of links wij , they

use the following two equations for the diffusion of resources and for a resource-driven

evolution of the link weigths:

4xi = xi(t+ 1)− xi(t) (1.4)

= F (xi(t))

Reaction

+D
∑
j∈Ni

(
wij(t)

sj(t)
xj(t)−

wji(t)

si(t)
xi(t)

)
Diffusion

(1.5)

4wij = wij(t+ 1)− wij(t) (1.6)

= ε
[
xi(t)

αxj(t)
α − wij(t)α

]
(1.7)

where:

F (xi(t)) = −κ (xi(t)− 1) (1.8)

κ = parameter for dissipation

D = parameter for diffusion

si = strength of the i-th node

ε−1 = relaxation time scale of the weigths dynamics

t = time

Ni = set of nodes connected to the i-th node

α = controls the non-linearity of the resource dependence

The definition of strength is si(t) ≡
∑

j∈Ni
wji(t) =

∑
j aijwij (where aij = element of

the Adjacency matrix), and it is important to notice that we consider a time-dependent

symmetric weigth wij(t) = wji(t) for each existing link.

To better understand the definition of strength for the i − th node we are supported

by the Figure 1.1. In this example, the node number 5 (grey) will be the i − th node,

the index j indicates the surrounding nodes (red), and the weights are the blue numbers
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1

2

3

45
0.9

0.5

1.5

Figure 1.1: This picture is an example to explain the definition of strength si.
The i− th node is represented by the grey node 5, and the blue numbers indicate the

weigths of the different links.

overlying the links. So:

si=5 =
∑
j

aijwij

= a51w51 + a52w52 + a53w53 + a54w54

= a51︸︷︷︸
=0

w51 + a52︸︷︷︸
=1

w52 + a53︸︷︷︸
=1

w53 + a54︸︷︷︸
=1

w54

= w52 + w53 + w54

= 0.9 + 0.5 + 1.5

= 2.9

In this case, the set of nodes connected to node 5 is N5 = {2, 3, 4}.
The authors studied the co-evolving dynamics over two networks, the Regular Random

Graph and the Erdos-Renyi graph, and selected two sets of parameters for their networks,

showed in Table 1.1. With those choices of parameters κ, D, ε, α (for κ = 0, α ≥ 1),

(a) Case κ = 0.05

Parameter Value
D 0.34
ε 0.01
α 1

(b) Case κ = 0

Parameter Value
D 0.02
ε 0.01
α {0.5, 1, 1.25 }

Table 1.1: Two sets of parameters chosen by the Authors T.Aoki and T.Aoyagi

they showed that the system acquires scale-free characteristics in the asymptotic state,

as showed in Table 1.2.
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α = 0.5 α = 1 α = 1.25

Table 1.2: This picture has been taken by the paper of Aoki and Aoyagi [5] and it shows
the strength distributions of Regular Random network (RERA) and the Erdos-Renyi
(ER) network, for three different cases: α = 0.5, α = 1 and α = 1.25. Basically their
results demonstrate the presence of a “scale-free structure” with a power-law distribution
in RERA and in ER for α = 1 and α = 1.25. The number of nodes and the degree
used in those simulations are: RERA → N = 512, k = 5 and ER → N = 16384,
average degree 〈k〉 = 10. The time of simulation represents the number of cycles of the
simulation in which all the algorithm is performed. This time varies from T = 5000 to
T = 10000. As the reader can notice , the intervals for the strengths si and the “PDF”
are very large, from 10−30 to 1010 for si and from 1030 to 1010 for the “PDF”. This is
due to the particular technique for plotting power-law data, in which logarithmic bins

are used to construct the histogram.

1.3 Thesis targets

In the previous section we presented the results obtained by T.Aoki and T.Aoyagi. They

showed that scale free structures with power law distributions appear for particular con-

ditions in the Regular Random network (RERA) and in the Erdos-Renyi network (ER).

From this moment on, we will describe the novel and original part of this master thesis,

and when it will be necessary, we will reference to the work of T.Aoki and T.Aoyagi.

Goals of this thesis are indicated in the following list:

1. Reproduce the Erdos Renyi network (with Montecarlo method) and the random

k-Regular network, and study the evolution of resources and edges.

2. Reproduce the fully connected network and the regular network (a 2-dimensional

lattice), and study the evolution of resources and edges.

3. If the weight of edges is lower than delta (delta = 0.01) → delete the link, and

study the evolution. Do the Distribution of degrees change?
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4. Study the propagation of strengths in an Erdos-Renyi network, starting from an

initial nucleus (differently from the normal distribution chosen by T.Aoki and

T.Aoyagi).

A computational creation of the Erdos Renyi network, with the Montecarlo method, is

described in Appendix A. The analysis of resources and edges evolution, of points 1 and

2, will be showed together to the results of task 3, in the Chapter 2 (degree distributions

and strength distributions). A study of point 4, for a system with an initial nucleus, will

be discussed in the Chapter 3.



Chapter 2

Delete links for a peculiar condition

2.1 Do the Distribution of degrees change?

As we noticed in different plots for the Erdos-Renyi network and for the Regular Random

network in Table 1.2, our values for strengths reached numbers as 10−20 or 10−30. Phys-

ically they have no sense, so we decided to set a a minimum, called δ = 0.01. Basically

our rule is:

if the weigth wij < δ, cut the link.

This deletion of links has been performed during the simulation, in the interplay of

equations 1.4 and 1.6.

It makes you wonder whether this change, affects the probability distribution of degrees

and/or the strengh distribution. An answer to the above “question”, is contained into

the next figures. They represent the results of simulations performed for each structure

of network, listed in the introduction:

1. The Erdos-Renyi random network (“ER”),

2. The 2-dimensional lattice (“REG”),

3. The Random k-Regular graph (“RERA”),

4. The fully connected network (“FULL”).

First 4 pictures, Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4, show the superposition of

probability degree distributions coming from the “original” networks and the respective

“reduced” networks. Other 4 pictures, Figure 2.5, Figure 2.6, Figure 2.7, Figure 2.8, show

9
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the comparison among strength distributions, correspondent to the “original” networks

and the respective “reduced” networks.

The adjective “original” makes reference to the computational creation of a network, and

to the simulation of equations 1.4 and 1.6 on each kind of network. Once the network

is produced, no modifies will be applied during the simulation, therefore its degree dis-

tibution and its strength distribution can be named “original”.

The adjective “reduced” means that, after the reproduction of a network, the above con-

dition for removing links is applied, during the evolution of the system (using the Aoki

and Aoyagi equations, 1.4 and 1.6).

As consequence, a network can have a modified degree distribution and/or a modified

strength distribution.

Size and parameters used for the creation of networks are the same of Aoki and Aoyagi,

for the Erdos-Renyi network (ER) and the Random k-Regular network (RERA). The

main values for each network are in the following list:

1. ER → N = 16384, and average degree 〈k〉 = 10.

2. REG → N = 3600, degree depends on node’s position, k = {2, 3, 4}

3. RERA → N = 512, and degree k = 5.

4. FULL → N = 400, and degree k = 400.

In the present thesis, we analyzed the case κ = 0 for each value of α = {0.5, 1, 1.25}, as
indicated in Table 1.1 , and every simulation has been performed with the same number

of time steps used by Aoki and Aoyagi, for networks studied by them, i.e. for the

Erdos-Renyi network (ER) and the Random k-Regular network (RERA). Please see the

Table 1.2 as reference of simulation’s times. For the other structures of networks (REG

and FULL), we used the number of time steps of Erdos-Renyi network, so t = 10000 for

α = 0.5, t = 8000 for α = 1, t = 6000 for α = 1.25.

2.2 Description of the results

In the first 4 pictures, (from Figure 2.1 to Figure 2.4), degree distributions correspondent

to the so called “original” networks are painted with blue dots, while degree distributions

for the “reduced” networks are represented by red dots. For the Erdos-Renyi network in

Figure 2.1, a superposition of degree distributions does not reveal big differences among

them, and the distribution’s peak keeps the position on k = 10 (i remember that the
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average degree is 〈k〉 = 10 ).

A different scenario appears for other kinds of networks, in Figure 2.2, Figure 2.3, and

in Figure 2.4. In all cases when α = 0.5, the degree distribution perfectly maintains its

“shape”, but a notable change turn out to be when α = 1 and α = 1.25, where the degree

distributions decrease, due to imposed condition of links deletion. It is worth mention-

ing that, among degree distributions with α = 1 and α = 1.25, the FULL network with

α = 1 (in Figure 2.4(b)), appears not modified.

Since degree distribution and strength distributions are related, changes in one of them

reflect on the other one. Comparison among strenght distributions, belonging to “origi-

nal” and “reduced” networks, are showed in Figure 2.5, Figure 2.6, Figure 2.7, Figure 2.8.

About the “original” Erdos-Renyi network (OER) with α = 1 , in Figure 2.5, we have

a power law for the strenght distribution, with slope −1.05 and strength-range between

10−30 and 105. It is similar to what obtained by Aoky and Aoyagi in Table 1.2: they got

a power law with slope of −1.04.
The correspondent “reduced” network (LER), has a power law for strenght distribution

with slope of −1.06 and strength-range between 10−2 and 106.

For OER with α = 1.25, we got a power law with slope equal to −1.09 and strength-range

between 10−25 and 105. Still in Table 1.2 it is possible to read the slope obtained by

Aoky and Aoyagi which is −1.08. The “reduced” case, LER, shows a change in the power

law distribuition: slope of −0.9 in the strength-range between 10−2 and 105, and slope

of −1.45 in the strength-range between 105 and 107. According to Milojevic in “Power

Law Distributions in Information Science: Making the Case for Logarithmic Binning”,

[6], those distribution can be called “Double power law”, which is a deviation form the

perfect power law (it a power law with two different exponents).

In Figure 2.6 we have comparison between OREG and LREG (as before, same meaning

for letters “O”, as “original”, and “L”, as “reduced” networks). For α = 0.5 no change

occur among OREG and LREG. We notice changes in cases of α = 1 and α = 1.25. In

α = 1 there is a passage from a power law for strenght distribution with slope −0.96 to a

power law distribution between 10−2 and 102 with slope −0.65, and then an exponential

behaviour with exponent b = −0.01. In agreement to Milojevic in [6], this last distribu-

tion can be considered as a “power law with an exponential cutoff”.

Instead, OREG, α = 1.25 has a power law for the strength distribution with slope −1.06,
and the correspondent LREG, α = 1.25, shows a power law distribution between 10−1

and 101 with slope 1, and in the final part an exponential behaviour with exponent

b = −0.004. Here, the shape of the strenght distribution is not well defined.
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The third structure of network here analyzed is the random k-regular graph (RERA), in

Figure 2.7. For α = 0.5 the shape of distribution is slightly different, and the distribu-

tion’s peak is shifted from ORERA to LRERA for a value of about 0.07 in strenght.

In α = 1 and α = 1.25, the passage to “reduced” LRERA is different: the strength

distributions with power law in ORERA, change “shape” in LRERA, towards values of

strenght of 103. So in LRERA we get two slopes, for both cases.

In ORERA, α = 1 the power law distribution for strengths has slope −1.01, and

the correspondent LRERA, α = 1, exhibits a power law distribution with two slopes:

slope = −0.94 between 10−1 and 103, and slope = −1.88 between 103 and 104.

In ORERA, α = 1.25 the power law distribution for strengths has slope −1.05, and

the correspondent LRERA, α = 1.25, has a power law distribution with two slopes:

slope = −0.8 between 10−1 and 103, and slope = −1.63 about between 103 and 104. As

described in the paper Milojevic, [6], it is possible to identify and call as “double power

law”, the strenght distributions obtained from LRERA, for α = 1 and α = 1.25.

Last kind of network discussed in this section is the fully connected network (FULL), ,

in Figure 2.8.

Distributions of “original” and respective “reduced” FULL networks, i.e. of OFULL and

LFULL, are quite similar for α = 0.5 and α = 1. They do not considerably change their

shape in the “passage” from OFULL to LFULL.

An important change occurs for the case of α = 1.25, where a power law for strenght

distribution in OFULL with slope −1.1 reduces drastically in LFULL. Indeed only three

links with strength si = 416484 survive.
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Figure 2.1: Superposition of the probability degree distributions of the “original”
Erdos-Renyi network (OER), and the “reduced” Erdos-Renyi network (LER), due to
the employ of our rule for the weigths. The red distribution (LER), is close enough to
the original blue distribution. There is not a big difference, although the two shapes do
not match in several areas. The peak of the distribution remains on the average value

〈k〉 = 10.
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(f) LER, α = 1.25

Figure 2.5: What happens to the strength distributions if we apply our rule over
the weights? Here we have a comparison between the “original” Erdos-Renyi network
(OER), and the “reduced” Erdos-Renyi network (LER) for three cases: α = 0.5, α = 1
and α = 1.25. We grouped all these plots in one figure for a better visual impact, to
quickly recognise the big differences in the distributions. About the OER, α = 0.5 in
Figure 2.5(a), we have no wij < δ, so there are no cuts of links and the distribution
maintains its shape. Different scenarios for OER, α = 1 in Figure 2.5(c), and OER,
α = 1.25 in Figure 2.5(e), where the distibutions change. For α = 1, a power law
distribution with slope −1.05 and strength-range between 10−30 and 105 , becomes a
power law distribuition with slope −1.06 and strength-range between 10−2 and 106.
For α = 1.25, the power law distribution with slope −1.09 and strength-range between
10−25 and 105 , becomes a power law distribuition with slope −0.9 in the strength-range
between 10−2 and 105, and with slope −1.45 in the strength-range between 105 and

107.



Chapter 2. Delete links for a peculiar condition 18

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Strength: s
i

P
D

F

PDFstr
O

REG
k
=0

a
lpha=0.5

N
=3600.dat

(a) OREG, α = 0.5

→

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Degree

P
D

F

PDFstr
L
REG

k
=0

a
lpha=0.5

N
=3600.dat

minvalue = 0.168
maxvalue = 7.023

(b) LREG, α = 0.5

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
−10

10
0

10
10

10
20

10
30

10
40

Strength: s
i

P
D

F

y(x) = a x^n
a = 8.5502
n = −0.96117
R = 0.99825  (log)

PDFstr
O

REG
k
=0

a
lpha=1

N
=3600.dat

(c) OREG, α = 1

→

10
−2

10
0

10
2

10
4

10
6

10
8

10
−2

10
0

10
2

10
4

Strength: s
i

P
D

F
y(x) = a x^n
a = 33.993
n = −0.65962
R = 0.9921 (log)

PDFstr
L
REG

k
=0

a
lpha=1

N
=3600.dat

minvalue = 0.010419
maxvalue = 525.5

Parameters of plot: 
c

v
alue = 1.5;

deltainitial = −5;

y(x) = a exp(b x)
a = 8.9584
b = −0.014878
R = 0.99976 (log)

(d) LREG, α = 1

10
−30

10
−20

10
−10

10
0

10
10

10
−10

10
0

10
10

10
20

10
30

10
40

Strength: s
i

P
D

F

y(x) = a x^n
a = 0.066009
n = −1.0635
R = 0.99674  (log)

PDFstr
O

REG
k
=0

a
lpha=1.25

N
=3600.dat

(e) OREG, α = 1.25

→

10
−2

10
0

10
2

10
4

10
6

10
8

10
−4

10
−2

10
0

10
2

10
4

Strength: s
i

P
D

F

y(x) = a x^n
a = 2
n = −1
R = 1  (log)

y(x) = a exp(b x)
a = 2.1153
b = −0.0043429
R = 0.99226  (log)

PDFstr
L
REG

k
=0

a
lpha=1.25

N
=3600

minvalue = 0.013
maxvalue = 2.1418e+03 

Parameters of plot:
c

v
alue = 1.5

deltainitial = −3

(f) LREG, α = 1.25

Figure 2.6: Here we consider the Regular not random network (REG) and the
changing of its strength distributions, in the passage to the “reduced” Regular not
random network (LREG). We have three cases as in Figure 2.5: α = 0.5, α = 1 and

α = 1.25.
Taking a look to OREG, α = 0.5 in Figure 2.6(a), and to LREG, α = 0.5 in Fig-
ure 2.6(b), we observe a similar distribution with a noteworthy peak at si = 4 in both
figures. In α = 1 and α = 1.25, the passage to “reduced” LREG is different: the
strength distributions with power law in OREG, lose their “shape” in LREG, towards
values of si = 102, showing a behaviour very close to an exponential law. Details:
OREG, α = 1 has a power law for the strength distribution with slope −0.96, and the
correspondent LREG, α = 1, exhibits a power law distribution between 10−2 and 102,
and then an exponential behaviour with exponent b = −0.01. Instead, OREG, α = 1.25
has a power law for the strength distribution with slope −1.06, and the correspondent
LREG, α = 1.25, shows a power law distribution between 10−1 and 101 with slope 1,

and in the final part an exponential behaviour with exponent b = −0.004.
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Figure 2.7: Comparison between strength distribution of the “original” Regular ran-
dom network (ORERA) and of the “reduced” Regular random network (LRERA). We

have three cases as for the other kind of networks: α = 0.5, α = 1 and α = 1.25.
Let’s consider ORERA, α = 0.5 in Figure 2.7(a), and LRERA, α = 0.5 in Figure 2.7(b):
despite what we observed for OREG, and LREG, α = 0.5 in Figure 2.6(a), and in
Figure 2.6(b), now the peak of the strength distribution moves from si = 9.94 towards
si = 10.03, and the also its shape lightly modifies, becoming tighter. In α = 1 and
α = 1.25, the passage to “reduced” LRERA is different: the strength distributions with
power law in ORERA, change “shape” in LRERA, towards values of si = 103, showing
a behaviour very close to an exponential law. So in LRERA for both cases we get two
slopes. In ORERA, α = 1 the power law distribution for strengths has slope −1.01, and
the correspondent LRERA, α = 1, exhibits a power law distribution with two slopes:

slope = −0.94 between 10−1 and 103, and slope = −1.88 between 103 and 104.
In ORERA, α = 1.25 the power law distribution for strengths has slope −1.05, and
the correspondent LRERA, α = 1.25, has a power law distribution with two slopes:
slope = −0.8 between 10−1 and 103, and slope = −1.63 about between 103 and 104.
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(f) LFULL, α = 1.25

Figure 2.8: Comparison between strength distribution of the “original” Full network
(OFULL) and of the “reduced” FULL network (LFULL). We have three cases like in

the other kind of networks: α = 0.5, α = 1 and α = 1.25.
The strength distribution of OFULL, α = 0.5 in Figure 2.8(a), is exactly identical to
the distribution of LFULL, α = 0.5 in Figure 2.8(b), and all the strength si take the
same value. The distribution of FULL, α = 1 roughly keeps the shape as well, but now
the values lie in a wider interval (about between si = 360 and si = 430). From OFULL,
α = 1 in Figure 2.8(c) to LFULL, α = 1 in Figure 2.8(d) the sharp strength distribution
moves its peak towards higher values of si, and at the same time the peak smooths out.
The last case concerns OFULL, α = 1.25, which shows a power law distribution for the
strengths, with a slope of −1.1, changes drastically shape: essentialy, the reduction of
links due to the use of the rule over the weights leaves only three links with strength

si = 416484.



Chapter 3

Propagation of strengths starting

from an initial nucleus

3.1 Studying of a small Erdos-Renyi network with an intial

nucleus

In the first chapter we considered the Erdos-Renyi (ER) network, with an intial condition

of a normal distribution for resources xi and weights wij of links.

Task of this last part of the thesis is a study on a different initial condition for the

weights in ER network. This involves the formation of a simple initial structure in the

network called "initial nucleus”: this is a triangular structure composed by three nodes

with stronger links than all the other nodes in the network.

The nuclues has been created following the criterion of minimum total degree, joining

the nodes with minimum (possible) degree.

In the original paper, Takaaki Aoki and Toshio Aoyagi studied the behavior of the co-

evolving dynamics for a regular random graph showing that the system changes status

all the time, up to time t = 14000. (please see the Figure 3.1).

In our case, imposing the new initial condition to the Erdos-Renyi (ER) network with

the following features,

α = 1 and κ = 0 .

we get a different evolution than T.Aoki and T.Aoyagi.

The system reaches a steady state after a certain time.

21
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(a) IER, α = 1

Figure 3.1: Co-evolving dynamics for a regular random graph obtained by T.Aoki
and T.Aoyagi, and showed in the “supplemental material” of the original paper [7].

Here, size N = 64 and degree k = 5, and the initial values have been generated with a
normal distribution for resources xi and links weights wij .

Other parameter values: D = 0.35, ε = 0.01, κ = 5.

We can show an example of our result for a system of 100 nodes (ER network): this is

depicted in Figure 3.2 for the time evolution of strengths and in Figure 3.3 for the time

evolution of resources (node sizes).

Figure 3.2(a) and Figure 3.3(a) are tridimensional images: the x-axis represents the

name of nodes, each one with different color, from 1 to 100, the y-axis is the time-axis,

from 0 to 14000, and the z-axis is the strength-axis and size-axis, respectively.

Nodes with the highest strength and node size, are indicated in the initial state (3 nodes

at t = 0) and in the final state (3 nodes at t = 14000).

As may be seen from both pictures

1. nodes with highest values at the first time, are different from nodes with highest

values at the last time,

2. nodes with highest values at the last time are the same for strength and node size

Regarding the node degree, we can take a look to the top fifteen degree-list, in the first

time step (t = 0) here below:

1 #1 --> degree 19, node 91

2 #2 --> degree 16, node 2
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3 #3 --> degree 16, node 93

4 #4 --> degree 15, node 33

5 #5 --> degree 15, node 37

6 #6 --> degree 15, node 40

7 #7 --> degree 15, node 61

8 #8 --> degree 14, node 14

9 #9 --> degree 14, node 20

10 #10 --> degree 14, node 25

11 #11 --> degree 14, node 46

12 #12 --> degree 14, node 71

13 #13 --> degree 13, node 23

14 #14 --> degree 13, node 28

15 #15 --> degree 13, node 67

It is a descending order list from the node with highest degree to the node with lowest

degree. The three highest value nodes in Figure 3.2 and in Figure 3.3 appear at the fifth,

seventh and fifteenth position over 100 positions (in red).

It means that there is a correlation between the initial node degree and the final features

of the ER system. Indeed we can notice that

3. three nodes with highest strength and node size (width) at the final time step, have

some of the highest initial degrees.

3.2 Strength distribution of an Erdos-Renyi with an initial

nucleus

Going further with the analysis of the ER network with an initial structure, we can show

the strength distribution with same parameters of the “original” Erdos-Renyi network

(OER) in Figure 2.5(c): κ = 0, α = 1, N = 16384 and average degree 〈k〉 = 10.

We can remember that its distribution is a power law distribution with slope −1.05 and

strength-range between 10−30 and 105.

In Figure 3.4(a), we observe very similar data for the IER strength distribution, with

slope −1.05 and strength-range between 10−30 and 105.

Essentially this distribution does not change if we introduce an intial nucleus at the early

times.

Another aspect that can be taken into account, is related to the “decomposition” of

the above strength distribution for the different degrees.

It is shown in Figure 3.5, where each picture indicates the strenght distribution for each

degree, with relative exponent n in the power law:
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(a) IER, α = 1

(b) IER, α = 1

Figure 3.2: In Figure 3.2(a) we can observe the time evolution for the strenght of
an ER network with initial nuclues (“initial” means at time t = 0) composed by 100
nodes. Each node has a different color, so it is possible to follow every behavior during

the evolution.
The time range runs from t = 0 to t = 14000.

Approximately after time t = 4000, the system reaches a steady state and every strenght
does not change anymore. At the first time step and at the last time step, highest
strenght nodes are indicated, and we can notice that they are different. Figure 3.2(b)
is a lateral 2D view: from this we can better understand the the time evolution of

strenghts.
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(a) IER, α = 1

(b) IER, α = 1

Figure 3.3: Figure 3.3(a) and Figure 3.3(a) show a similar analysis already seen in
Figure 3.2, but for a different quantity of the system: instead to examine strenghts, we

now show the time evolution for node sizes.
Here, nodes with highest size at t = 0 and at t = 14000 are different as well as in

Figure 3.2 (except one of them).
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y(x) = axn. (3.1)

From a visual analysis we can infer different features: nodes with smallest degrees (deg =

1, 2, 3) and highest degrees (deg = 21, 22), have values of strength in a small range,

respectively, between 10−35 and 10−25, and between 10−25 and 10−15.

Nodes with intermediate degrees (let say among deg = 4 and deg = 20) cover all the

spectrum of strenghts as in Figure 3.4(a), but with an increasing value of the exponent

n towards highest degrees. This behavior of exponent n is plotted in Figure 3.4(b).
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Figure 3.4: Figure 3.4(a) represents the strenght distribution for an Erdos-Renyi
network with initial nucleus (IER). IER has been created with same values and param-
eters of the “original” Erdos-Renyi (OER): → N = 16384, average degree 〈k〉 = 10,
parameter for dissipation κ = 0, and α = 1. Here the exponent for the power law
distribution of IER is n = −1.0498, and for OER is n = −1.0539 as in Figure 2.5(c).
Plot of Figure 3.4(b) indicates the “trend” of exponents n (of the power law distribution

y(x) = axn) in Figure 3.5 with degrees k.
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(b) k = 2,exp = −1.187
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(c) k = 3,exp = −1.144
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(d) k = 4,exp = −1.089
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(e) k = 5,exp = −1.62
10

−30
10

−15
10

0
10

10

10
0

10
10

10
20

10
30

Strength: s
i

P
D

F

 

 

deg= 6 
 exp =−1.077

(f) k = 6,exp = −1.077
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(g) k = 7,exp = −1.066
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(h) k = 8,exp = −1.064
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(i) k = 9,exp = −1.062
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(j) k = 10,exp = −1.055
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(k) k = 11,exp = −1.046
10

−30
10

−15
10

0
10

10

10
0

10
10

10
20

10
30

Strength: s
i

P
D

F
 

 

deg= 12 
 exp =−1.051

(l) k = 12,exp = −1.051
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(m) k = 13,exp = −1.048
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(n) k = 14,exp = −1.049
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(o) k = 15,exp = −1.042
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(r) k = 18,exp = −1.032
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(t) k = 20,exp = −1.018
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(u) k = 21,exp = −1.006
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Figure 3.5: “Decomposition” of strenght distribution for each degree, for an Erdos-
Renyi network with initial nucleus (IER). In every plot two quantities are indicated:
degree k, and exponent n of the power law distribution y(x) = axn, which fits data.



Chapter 4

Conclusions

In this master thesis we studied the co-evolution of resources and edges, using equa-

tions 1.4 and 1.6 in our simulations, for the following kinds of netwroks: an Erdos-Renyi

random network (“ER”), a 2-dimensional lattice (“REG”), a random k-Regular network

(“RERA”), a fully connected network (“FULL”).

The reproduction of the Erdos-Renyi random network using the Montecarlo methods,

which was in the task 1, turned out a good method, providing the same strength distri-

bution as that one obtained by Aoki and Aoyagi in Table 1.2.

Please see the distribution of the “original” Erdos Renyi network (OER) in Figure 2.5,

and the same distribution in Table 1.2 (for each value of α).

Goals of 1 and 2 have been achieved, with the computational reproduction of all kinds

of networks and their degree distributions and strength distributions.

Authors of "Scale-Free Structures Emerging from Co-evolution of a Network and the

Distribution of a Diffusive Resource on it" [5], showed that for the following choice of

parameters, κ = 0 and α ≥ 1, the system acquires scale-free characteristics in the asymp-

totic state, as showed in Table 1.2. With same parameters (κ = 0 and α ≥ 1) we got

power laws for the same strength distributions of Aoki and Aoyagi (ER and RERA), and

for the other two structures of networks, the 2-dimensional lattice (REG) and the fully

connected network (FULL). Please see OER, ORERA, OREG and OFULL in Figure 2.5,

Figure 2.7, Figure 2.6, Figure 2.8.

“Exception to the rule”, is the strength distribution of OFULL for α = 1, in Figure 2.8(c),

which does not present a scale-free characteristics.

Task 3 was to study the evolution of networks applying the condition for deletion of

links. As showed in Figure 2.6, Figure 2.7, Figure 2.8, the strength distributions of

29
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LREG, LRERA, and LFULL lose the scale-free property for α = 1 and α = 1.25. LER

maintains the scale invariance for α = 1, but it loses it for α = 1.25, as showed in Fig-

ure 2.5.

These new strength distributions, created with the links deletion condition, are “double

power laws” for LER with α = 1.25 (Figure 2.5(f)), and for LRERA with α = 1 and

α = 1.25 (Figure 2.7(d) and Figure 2.7(f)).

LREG with α = 1, has a strength distribution named “power law with an exponential

cutoff”(Figure 2.6(d)).

The distribution of LREG with α = 1.25, is not a well defined “power law with an expo-

nential cutoff”, but for some parts it can look like (Figure 2.6(f)).

Results of task 4 are contained in Chapter 3. Here, an Erdos Renyi (ER) network

with an initial structure has been created, with same size and parameters of the ER

network with a normal distribution for resources xi and links weights wij . So with nodes

N = 16384 and average degree 〈k〉 = 10.

Strength distribution for the ER network with initial nucleus (a power law distribution

with slope −1.05 and strength-range between 10−30 and 105) has very similar values of

the “normal distributed” ER network.

It means that the introduction of a “nucleus” at early times (so with a different initial

condition), does not affect the strength distribution of the network.

Moreover, as shown in Figure 3.5, nodes with smallest degrees (deg = 1, 2, 3) and highest

degrees (deg = 21, 22), have values of strength in a small range, respectively, between

10−35 and 10−25, and between 10−25 and 10−15.

Nodes with intermediate degrees (among deg = 4 and deg = 20) cover all the spectrum

of strenghts’ values as in Figure 3.4(a).

Moreover in the “decomposition” of strenght distribution for each degree (in Chapter 3,

Section 3.2), every exponent n of each power law, increases towards highest degrees, as

plotted in Figure 3.4(b).

A last results of task 4, is a study of the time evolution of a small Erdos Renyi net-

work with initial nucleus: N = 100 and average degree 〈k〉 = 10.

Simulations up to time step t = 14000, reveal that the system reaches a steady state.

In the original paper, Aoki and Aoyagi studied the behavior of the co-evolving dynamics

for a regular random graph showing that the system changes status all the time, up to

time t = 14000.

Other information can be collected about the time evolution of our Erdos Renyi network

with initial nucleus. Nodes with highest node size at the first time (t = 0), are different

from nodes with highest values at the last time (t = 14000).

This also applies to another quantity of the system: strength of nodes.
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Nodes with highest strength at the first time (t = 0), are different from nodes with

highest values of strength at the last time (t = 14000).

But nodes with highest values of strength and node size at the last time (t = 14000), are

the same.

It means that at the final time step, the same nodes simultaneously hold the highest

values of strength and node size.



Appendix A

Erdos-Renyi with Montecarlo

Method

In this appendix i will describe the generation of an Erdos-Renyi (ER) network, using

the Metropolis et al. algorithm [8]. Following this procedure, the final network will have

the same degree distribution of the Erdos-Renyi one, which is a Binomial distribution:

P (k) =

(
N

k

)
pk(1− p)N−k. (A.1)

In this probability distribution of degrees, k represents the degree of a vertex, N the

total number of nodes in the network, and p is the probability to have an edge.

In my simulation with C++, i applied the MC method to the Adjacency matrix A. We

can provide a sort of definition of this matrix: elements Aij indicate the presence, or not,

of an edge between a pair of nodes i and j:

Aij =

1 if there is an edge joining i, j

0 otherwise.
(A.2)

An example of a 5× 5 matrix A is:

A =



0 1 1 0 1

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

1 0 1 1 0


32
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Metropolis et al. algorithm is well described in a book of Raul Toral and Pere Colet,

Stochastic numerical methods: A master’s course [9], and for my simulation i focused

my attention on the chapter 4, Dynamical methods, especially on the section 4.5, entitled

Metropolis et al. algorithm.

I also found interesting a review paper of D.J.C. Mackay, Introduction to Monte Carlo

Methods [10].

Metropolis sampler belongs to the category of the Markov chain Monte Carlo (MCMC)

methods [10], and it samples from a target probability distribution P (k), using a Markov

chain. The Metropolis sampler creates a Markov chain that produces a sequence of states

k(t) at iteration t. Samples from the chain, (after ’burnin’), reflect samples from the target

distribution.

In our case we will see an application of the Metropolis sampler to a discrete distribution,

where a Binomial random variable will take integer values x̂ = k(t), k(t) = 0, 1, 2, 3, ...

with probability given in A.1.

A typical structure of the Metropolis sampler is the following:

1. Set t = 1

2. Generate a random initial state k(t)

3. Repeat

t = t+ 1

Generate a proposal k′ from g(k′|k(t−1))

Calculate the acceptance probability

α = min
(
1, P (k′)

P (k(t−1))

)
Generate a random number u from the Uniform distribution (0, 1)

If u < α accept the proposal and set k(t) = k′, else set k(t) = k(t−1)

4. Until t = T (T is the max number of iterations)

This was the general algorithm, but let me show the modified algorithm for our case:

1. Set t = 1

2. Generate a random initial state k(t)

3. Repeat

t = t+ 1

Pick random i and j for Aij
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Generate a proposal: Aij = 1→ Aij = 0 (or Aij = 0→ Aij = 1) correspond-

ing to k′ from g(k′|k(t−1))

Calculate the acceptance probability

α = min
(
1, P (k′)

P (k(t−1))

)
Generate a random number u from the Uniform distribution (0, 1)

If u < α accept the proposal and set Aij = 0 (or Aij = 1) and k(t) = k′, else

set Aij = 1 (or Aij = 0) and k(t) = k(t−1)

4. Until t = T (T is the max number of iterations)

To be more clear i would like to write explicitly the proposal:

g(k′|k(t−1)) =



1/2, k′ = k(t−1) + 1

Aij = 0→ Aij = 1

1/2, k′ = k(t−1) − 1

Aij = 1→ Aij = 0

(A.3)

What does this proposal mean?

If a random number u is u > 1/2 then our proposal is to pass from Aij = 0 to Aij = 1, i.e.

adding an edge between i and j, and it corresponds to make the proposal k′ = k(t−1)+1.

In the other case u < 1/2, i eliminate an edge passing from Aij = 1 to Aij = 0 and here

k′ = k(t−1) − 1.

Now i will show the core of the algorithm with my code of C++:

1 // How to construct an ER random network with Montecarlo Method

2 // P_k = coeffbin(N k) * (p)^k * (1-p)^(N-k)

3
4 // Some parameters:

5 double u_1;

6 double u_2;

7 int k;

8 int kinitial;

9 int k1;

10 int kmax = 8;

11 int time = 0;

12 int MCsteps = 190000;

13 double alfa;

14 int minunmezzo;

15 int maggunmezzo;

16
17 // Some used values for Monte Carlo Steps:

18 // MCsteps = 7500 for N = 900 (kmax =3)

19 // MCsteps = 18000 for N = 1600 (kmax =8)

20 // MCsteps = 190000 for N = 16384 (kmax =8)

21
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22 // Creation of the Adjacency Matrix "A" for an ER random network:

23 if ( ERtype == "MC" )

24 {

25 totalnumberoflinks = 0;

26 do {

27 k = gsl_rng_uniform_int (r6,kmax);

28 } while ( k < (kmax - 2) );

29 kinitial = k;

30
31 do {

32 // Pick at random a pair of sites of the network:

33 // i randomly select "i" and "j" of A[i][j]

34 RandIndex1 = gsl_rng_uniform_int (r2 ,numberOfNodes);

35 do {

36 RandIndex2 = gsl_rng_uniform_int (r3 ,numberOfNodes);

37 } while ( RandIndex1 == RandIndex2 );

38
39 // Monte Carlo Method

40 u_1 = gsl_rng_uniform (r4);

41 if (( double) gsl_rng_uniform (r4) > (0.5) )

42 {

43 maggunmezzo ++;

44 // Acceptance Ratio alpha

45 double num = (( double) (( numberOfNodes -k)*p) );

46 double den = ( (double) (k+1)*(1-p) );

47 alfa = ( (( double) num ) / ( (double) den ) );

48 u_2 = gsl_rng_uniform (r5);

49 if (( double) num > den )

50 {

51 k = k1;

52 A[RandIndex1 ][ RandIndex2] = 1;

53 A[RandIndex2 ][ RandIndex1] = 1;

54 totalnumberoflinks = totalnumberoflinks + 2;

55 }

56
57 else if (( double) gsl_rng_uniform (r5) < alfa )

58 {

59 k = k1;

60 A[RandIndex1 ][ RandIndex2] = 1;

61 A[RandIndex2 ][ RandIndex1] = 1;

62 totalnumberoflinks = totalnumberoflinks + 2;

63 }

64 }

65
66 else

67 {

68 minunmezzo ++;

69 // Acceptance Ratio alpha

70 double num = (( double) (k)*(1-p) );

71 double den = ( (double) (numberOfNodes -k+1)*(p) );

72 alfa = ( ( (double) num ) / ( (double) den ) );

73 if (( double) num > den )

74 {

75 k = k1;

76 A[RandIndex1 ][ RandIndex2] = 0;
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77 A[RandIndex2 ][ RandIndex1] = 0;

78 }

79
80 else if (( double) gsl_rng_uniform (r5) < alfa )

81 {

82 k = k1;

83 A[RandIndex1 ][ RandIndex2] = 0;

84 A[RandIndex2 ][ RandIndex1] = 0;

85 }

86 }

87 time = time + 1;

88 } while ( time != MCsteps );

89 }

In the last part of this section i will provide some mathematical details about the accep-

tance probability α = min
(
1, P (k′)

P (k(t−1))

)
, expliciting the fraction P (k′)

P (k(t−1) . In the book of

Raul Toral and Pere Colet [9], this ratio is called q(k′|k(t−1)). As i wrote above in the

proposal probability A.3 we have two cases and i will deal with them separately. In order

to simplify the mathematical notation i remove the index (t − 1) in k(t−1) only here in

these two ’derivations’:

First case: k′ = k + 1

q(k′|k) = P (k′)

P (k)

=
P (k + 1)

P (k)

=

(
N
k+1

)
pk+1(1− p)N−k−1(

N
k

)
pk(1− p)N−k

=

N !
(k+1)!(N−k−1)!

N !
k!(N−k)!

pk+1(1− p)N−k−1

pk(1− p)N−1−k

=
k!(N − k)!

(k + 1)!(N − k − 1)!

(
p

1− p

)
=

(
N − k
k + 1

)(
p

1− p

)
(A.4)
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Second case: k′ = k − 1

q(k′|k) = P (k′)

P (k)

=
P (k − 1)

P (k)

=

(
N
k−1
)
pk−1(1− p)N−k+1(

N
k

)
pk(1− p)N−k

=

N !
(k−1)!(N−k+1)!

N !
k!(N−k)!

pk−1(1− p)N−k+1

pk(1− p)N−k

=
k(N − k)!

(N − k)!(N − k + 1)

(
1− p
p

)
=

(
k

N − k + 1

)(
1− p
p

)
(A.5)
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