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ABSTRACT 

Understanding the factors determining genetic diversity and structure in peripheral 

populations is a long-standing goal of evolutionary biogeography, yet little empirical 

information is available for tropical species. In this study, we combine information from 

nuclear microsatellite markers and niche modelling to analyze the factors structuring 

genetic variation across the southernmost populations of the tropical oak Quercus 

segoviensis. First, we tested the hypothesis that genetic variability decreases with 

population isolation and increases with local habitat suitability and stability since the 

Last Glacial Maximum (LGM). Second, we employed a recently developed multiple 

matrix regression with randomization (MMRR) approach to study the factors associated 

with genetic divergence among the studied populations and test the relative contribution 

of environmental and geographic isolation to contemporary patterns of genetic 

differentiation. We found that genetic diversity was negatively correlated with average 

genetic differentiation with other populations, indicating that isolation and limited gene 

flow have contributed to erode genetic variability in some populations. Considering the 

relatively small size of the study area (<120 km), analyses of genetic structure indicate a 

remarkable inter-population genetic differentiation. Environmental dissimilarity and 

differences in current and past climatic niche suitability and their additive effects were 

not associated with genetic differentiation after controlling for geographic distance, 

indicating that local climate does not contribute to explain spatial patterns of genetic 

structure. Overall, our data indicate that geographic isolation, but not current or past 

climate, is the main factor determining contemporary patterns of genetic diversity and 

structure within the southernmost peripheral populations of this tropical oak. 
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INTRODUCTION 

 

Peripheral populations represent the geographic limit of species natural ranges and have 

been the focus of a considerable amount of research due to their ecological and 

evolutionary singularity (Hoffmann & Blows 1994; Sexton et al. 2009). These 

populations are generally located in fragmented and sub-optimal habitats, which has 

been often associated with their low population densities and fitness in comparison with 

central populations (Hoffmann & Blows 1994; Brown et al. 1995; Sexton et al. 2011; 

Castilla et al. 2012). The relative importance of inter-population gene flow and local 

adaptation processes are the most relevant factors determining the evolutionary, 

ecological and demographic trajectories of peripheral populations (Hampe & Petit 2005; 

Sexton et al. 2011). Some marginal populations persist thanks to recurrent immigration 

and gene flow from core populations (i.e. source-sink metapopulation dynamics), which 

can increase their effective population sizes and ensure their long-term viability 

(Hoffmann & Blows 1994; e.g. Buschbom et al. 2011; Hampe et al. 2013). In contrast, 

other peripheral populations have evolved local adaptations to the idiosyncratic 

environmental conditions prevailing at the species’ range edges (e.g. Hoffmann & 

Blows 1994; Hampe & Bairlein 2000; Mägi et al. 2011; Sexton et al. 2011). These two 

scenarios lead to very different outcomes from a conservation point of view (Eckert et 

al. 2008; Guo 2012). Marginal populations that have evolved unique adaptations often 

sustain an important portion of the species evolutionary potential and may be better 

adapted than central populations to face some future environmental changes, making 

them of great conservation concern (Eckert et al. 2008). If marginal populations show 

no evidence of local adaptation and only constitute anecdotic remnants around species 
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range edges, they can be then considered of limited conservation interest due to their 

lack of evolutionary significance (Moritz 2002; Eckert et al. 2008; Guo 2012).  

From a genetic point of view, marginal populations are generally characterized 

by a high degree of genetic differentiation among them and impoverished within-

population genetic diversity in comparison with those located at the core of the species 

range (Eckert et al. 2008; Guo 2012; Lira-Noriega & Manthey 2014; Yannic et al. 

2014). These patterns of genetic diversity and structure can arise from disrupted gene 

flow and severe genetic drift due to small population sizes and geographic isolation 

(isolation by distance, IBD; Wright 1943), be consequence of reduced realized gene 

flow due to selection against non-locally adapted genotypes (isolation by ecology, IBE; 

sensu Shafer et al. 2013; Wang et al. 2013; Sexton et al. 2014) or result from a 

combination of both processes. Disentangling the relative role of environment and 

geography on shaping contemporary patterns of genetic variation can help to discern 

local adaptation processes from a simple scenario of spatial isolation (Wang 2013; 

Wang et al. 2013), which can have important implications for the conservation marginal 

populations and understanding their evolutionary and demographic dynamics (Eckert et 

al. 2008). Peripheral populations have been mostly studied in temperate regions in 

which refugia, post-glacial colonization routes and spatial patterns of genetic variability 

have been already described for many species (Hewitt 2000; Hampe & Petit 2005). 

However, very little information is still available for tropical species that show highly 

stable distribution ranges and have less predictable spatial patterns of genetic variability 

than those found for species from temperate regions (Eckert et al. 2008; Guo 2012; see 

Miller et al. 2010 for an exception).  

In this study, we analyze patterns of genetic diversity and structure across the 

southernmost populations of the tropical oak Quercus segoviensis Liebm. 1854 
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(Fagaceae). This species distributes from southern Mexico to Nicaragua and its 

peripheral southernmost populations on which we focus this study are not likely to have 

experienced major range changes due to the climatic stability characterizing this region 

(Poelchau & Hamrick 2013). This, together with the high potential for gene flow via 

long-distance pollen dispersal in oaks (e.g. Buschbom et al. 2011; Ortego et al. 2014), 

makes Q. segoviensis an interesting case study to analyze the role of environment and 

population isolation on structuring genetic variation. For this purpose, we combine 

information from nuclear microsatellite markers and climatic niche modelling. We use 

niche modelling to identify climatically suitable habitats for this species and then 

project the present-day niche envelope to the climatic conditions present during the Last 

Glacial Maximum (LGM; ca. 21000 years BP). This information was used to generate 

habitat suitability maps in both time periods and study the role of present and past 

climate on observed patterns of genetic diversity and structure. First, we assessed which 

factors contribute to explain the levels of genetic diversity observed in the studied 

peripheral populations. We expect genetic diversity (i) to be lower in more isolated 

populations with reduced gene flow with other populations (Ortego et al. 2012; Wang et 

al. 2011) and (ii) to increase with habitat suitability and stability since the Last Glacial 

Maximum (LGM) (Carnaval et al. 2009; Yannic et al. 2014). Second, we employed a 

novel multiple matrix regression approach (Wang 2013) to study the factors structuring 

genetic variation among the studied populations of Quercus segoviensis and test (iii) the 

relative contribution of environmental and geographic isolation to contemporary 

patterns of genetic differentiation (Wang 2013; Wang et al. 2013; Shafer & Wolf 2013; 

Sexton et al. 2014).  

 

MATERIAL AND METHODS 
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Study species and sampling 

 

Quercus segoviensis Liebm. 1854 (Fagaceae), is a diploid, wind-pollinated, monoecious 

and semi-deciduous tropical oak. It is distributed in southern Mexico, Honduras, El 

Salvador and northern Nicaragua, mostly in the slopes of interior valleys at elevations 

ranging from of 650 m to 1800 m above sea level (http://www.tropicos.org). In 2010, 

we sampled 112 adult trees from 11 localities located in Nicaragua, the southernmost 

portion of the species range (Table 1; Fig. 1). We aimed to sample 20 adult individuals 

per population, but very few remnant trees were available in most localities probably 

due to low population densities at the limits of the species range in combination with 

extensive land clearing for agriculture in the region. Spatial coordinates of each 

individual were registered using a Global Positioning System (GPS) and leaf samples 

were stored frozen (-20º C) until needed for genetic analyses.  

 

Ecological niche modelling 

 

We used ecological niche modelling (ENM) to predict the geographic distribution of 

climatically suitable habitats for Q. segoviensis within our study area and analyze 

whether climatic stability and current and past climatic conditions are responsible for 

observed patterns of genetic diversity and structure. We modelled the current climate-

based distribution of Q. segoviensis using a maximum entropy algorithm, MAXENT 3.3.3 

(Phillips et al. 2006; Phillips & Dudik 2008). MAXENT calculates probability 

distributions based on incomplete information and does not require absence data, 

making it appropriate for modelling species distributions based on presence-only 
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records (Elith et al. 2006; Phillips et al. 2006). The MAXENT approach has proven to be 

very effective for bioclimatic modelling and performs better with presence-only data 

than most other available methods (Elith et al. 2006). Species occurrence data were 

obtained from sampling points as well as from herbarium records available at the Global 

Biodiversity Information Facility (http://www.gbif.org/). Prior to modelling, all 

herbarium records were mapped and examined to identify and exclude records having 

obvious georeferencing errors and misidentifications. For models, all locations falling 

within the same grid cell were also removed, resulting in a final data set of 54 entries 

within our study area (Fig. 1). We selected variables from a set of 19 bioclimatic layers 

from the WorldClim dataset (version 1.4, see http://www.worldclim.org/ for variable 

descriptions) interpolated to 30-arcsec (c. 1-km) resolution (Hijmans et al. 2005). We 

assessed the correlation between these bioclimatic layers using ENMTOOLS (Warren et 

al. 2010). When two layers were highly correlated (r > 0.7) we discarded the layer with 

the highest number of correlations with other layers. We selected a final set of eight 

bioclimatic layers to construct the models: isothermality (Bio3), temperature seasonality 

(Bio4), temperature annual range (Bio7), mean temperature of driest quarter (Bio 9), 

annual precipitation (Bio12), precipitation seasonality (Bio15), precipitation of warmest 

quarter (Bio18), and precipitation of coldest quarter (Bio19). Model evaluation statistics 

were produced from 10 cross-validation replicate model runs. Overall model 

performance was evaluated using the area under the receiving operator characteristics 

curve (AUC), which ranges from 0.5 (random prediction) to 1 (maximum prediction). 

The logistic output of MAXENT consists of a grid map with each cell having an index of 

suitability between 0 and 1. Low values indicate conditions are unsuitable for the 

species to occur, whereas high values indicate that conditions are suitable. We used 

http://www.gbif.org/
http://www.worldclim.org/
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these estimates of habitat suitability for subsequent analyses of genetic diversity and 

structure (see below).  

We obtained the predicted distribution of Q. segoviensis at the Last Glacial 

Maximum (LGM; c. 21 000 years BP) projecting contemporary species-climate 

relationships to the LGM. We used the same eight bioclimatic layers from the 

Community Climate System Model derived from PMIP2 database and available at 

WorldClim (CCSM3, http://www.ccsm.ucar.edu/; Kiehl & Gent 2004; Otto-Bliesner et 

al. 2006; Collins et al. 2006). Current and LGM habitat suitability maps were summed 

to generate maps of climatic stability (sensu Devitt et al. 2013; Yannic et al. 2014), with 

pixel values ranging from 0 (minimum climatic suitability in both periods) to 2 

(maximum climatic suitability in both periods). Visualization of model predictions and 

all GIS calculations and analyses were performed in ARCMAP 10.0 (ESRI, Redlands, 

CA, USA). 

 

Microsatellite genotyping and basic genetic statistics 

 

We ground about 50 mg of frozen leaf tissue in tubes with a tungsten ball using a mixer 

mill and DNA extraction was performed with the CTAB protocol (Doyle & Doyle 1990). 

We used 11 polymorphic microsatellite markers previously developed for other 

Quercus species (Table S1). Approximately 5 ng of template DNA was amplified in 10-

μL reaction volumes containing 1X reaction buffer (EcoStart Reaction Buffer, Ecogen), 

2 mM MgCl2, 0.2 mM of each dNTP, 0.15 μM of each dye-labelled primer (FAM, PET, 

VIC or NED) and 0.1 U of Taq DNA EcoStart Polymerase (Ecogen). The PCR 

programme used was 9 min denaturing at 95 ºC followed by 40 cycles of 30 s at 94 ºC, 

45 s at the annealing temperature (Table S1) and 45 s at 72 ºC, ending with a 10 min 

http://www.ccsm.ucar.edu/
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final elongation stage at 72 ºC. Amplification products were electrophoresed using an 

ABI 310 Genetic Analyzer (Applied Biosystems) and genotypes were scored using 

GENEMAPPER 3.7 (Applied Biosystems). Microsatellite genotypes were tested for 

departure from Hardy-Weinberg equilibrium within each sampling population at each 

locus using an exact test (Guo & Thompson 1992) based on 900 000 Markov chain 

iterations as implemented in the program ARLEQUIN 3.1 (Excoffier et al. 2005). We also 

used ARLEQUIN 3.1 to test for linkage equilibrium between each pair of loci for each 

sampling population using a likelihood-ratio statistic, whose distribution was obtained 

by a permutation procedure (Excoffier et al. 2005). We applied sequential Bonferroni 

corrections to account for multiple comparisons (Rice 1989).  

 

Genetic diversity 

 

To make estimates of allelic richness (AR) comparable across populations with different 

sample sizes, we calculated AR values for each locality standardized to our smallest 

sample size (four individuals; Table 1). For this purpose, we used the rarefaction 

procedure implemented in the program HP-RARE (Kalinowski 2005). We analyzed 

which variables related with niche suitability contributed to explain observed patterns of 

genetic diversity. We considered four explanatory covariates in the models: 1) Average 

genetic differentiation (FST) of each population with all other populations (e.g. Wang et 

al. 2011; Ortego et al. 2012); 2) Average genetic differentiation corrected for 

geographical distance (FST-GEO), calculated from the standardized residuals of a linear 

regression of FST values against inter-population Euclidean geographical distances; 2) 

current niche suitability (NSCURRENT); 3) LGM niche suitability (NSLGM); 4) Niche 

stability (NSSTA). To analyze AR we used a General Linear Model (GLM) with a normal 
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error structure and an identity link function. The precision of AR estimates may differ 

among populations due to differences in sample sizes and we took this into account 

using a weighted least square method, where weight equals the sample size for each 

studied population. Initially, the model was constructed with all explanatory terms fitted 

and final model was selected following a backward procedure, by progressively 

eliminating non-significant variables. The significance of the remaining variables was 

tested again until no additional variable reached significance. The result is the minimal 

most adequate model for explaining the variability in the response variable, where only 

the significant explanatory variables are retained. All statistical analyses were 

performed using the R 3.0.0 package LME4 (R Development Core Team 2012). 

 

Genetic structure 

 

We investigated population genetic structure among sampling locations calculating pair-

wise FST-values and testing their significance with Fisher’s exact tests after 10 000 

permutations as implemented in ARLEQUIN 3.1 (Excoffier et al. 2005). Critical P-values 

for pair-wise tests of allelic differentiation were determined using a sequential 

Bonferroni adjustment (Rice 1989). We also analyzed the spatial genetic structure using 

the Bayesian Markov chain Monte Carlo clustering analysis implemented in the 

program STRUCTURE 2.3.3 (Pritchard et al. 2000; Falush et al. 2003; Hubisz et al. 

2009). STRUCTURE assigns individuals to K populations based on their multilocus 

genotypes. We ran STRUCTURE assuming correlated allele frequencies and admixture 

and using prior population information (Hubisz et al. 2009). We conducted ten 

independent runs for each value of K = 1-10 to estimate the “true” number of clusters 

with 200000 MCMC cycles, following a burn-in steps of 100000
 
iterations. The number 
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of populations best fitting the data set was defined both using log probabilities [Pr(X|K)] 

(Pritchard et al. 2000) and the ΔK method (Evanno et al. 2005), as implemented in 

STRUCTURE HARVESTER (Earl & vonHoldt 2012).  

 

Landscape genetic analyses 

 

We considered six potential drivers of genetic structure in Q. segoviensis: (1) the 

geographical distance; (2) differences in current niche suitability; (3) differences in 

LGM niche suitability; (4) differences in niche suitability stability; (5) environmental 

dissimilarity in the present and (6) the LGM. These six variables were tested against 

matrices of pair-wise FST values (see previous section). To generate distance matrices, 

we calculated the Euclidean distance between niche suitability and stability scores 

extracted for each population from niche suitability maps obtained from ecological 

niche models (see also the previous section “Ecological niche modelling”). 

Environmental data during the present and the LGM were obtained from the eight 

bioclimatic layers used to build the ENMs (see above). We reduced the number of 

predictor variables performing a principal components analysis (PCA) using 

STATISTICA 6.0 (Statsoft. Ltd, Sweden). Finally, we calculated the distances between 

localities plotted on the resulting three first axes, which explained a high proportion of 

the variance for both the present (84.23 %) and the LGM (83.05 %) (see Wang et al. 

2013 for a similar approach). We calculated the matrices of Euclidean geographical 

distances between populations using GEOGRAPHIC DISTANCE MATRIX GENERATOR 1.2.3 

(Ersts 2011).  

We used a Multiple Matrix Regression with Randomization (MMRR) approach 

to evaluate the factors influencing genetic structure in our study system (Wang 2013). 
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This method allows quantifying how the dependent variable (genetic distance) responds 

to multiple independent variables that can be simultaneously included into the model. 

MMRR uses standard multiple regression techniques but performs tests of significance 

using a randomized permutation procedure because of the non-independence of the data 

(Manly 1991; Smouse et al. 1986; Legendre et al. 1994). All models were initially 

constructed with all explanatory terms fitted and final models were selected following a 

backward procedure as described for analyses of genetic diversity. We used the 

“MMRR function” as implemented in R 3.0.0 (Wang 2013).  

 

RESULTS 

 

Niche modelling 

 

The predicted distribution of Q. segoviensis in the present (Fig. 2a) is consistent with its 

observed current distribution (http://www.tropicos.org). The AUC for the test data was 

on average 0.901 (S.D. = 0.025; n = 10 replicate model runs), indicating a high fit of the 

modelled and the actually observed current distribution (Fielding & Bell 1997; Phillips 

et al. 2006). The estimated distribution of Q. segoviensis during the LGM indicates that 

the species had a highly stable distribution range during the last 20 000 years (Fig. 2b, 

c). However, overall habitat suitability within the study area has slightly increased since 

the LGM, resulting in increased population connectivity in the present (Fig. 2). 

Focusing on the studied populations, we found that habitat suitability was highly 

correlated across both time periods (Pearson’s correlation: r = 0.968, P < 0.001) but it 

has significantly increased since the LGM (paired t-test: t = -5.571, P < 0.001). We also 

found strong differences in predicted habitat suitability of the studied populations: 
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southern populations were located in highly suitable areas whereas northern populations 

occupied areas with very low habitat suitability scores (Fig. 2). 

 

Microsatellite data and genetic diversity 

 

All microsatellite markers were polymorphic and observed heterozygosity at each locus 

ranged from 0.24 to 0.80, with 2-18 alleles per locus (Table 1). After applying 

sequential Bonferroni corrections to compensate for multiple statistical tests, no locus 

deviated from HWE in any of the studied populations (all P > 0.05). We only found 

evidence of genotypic linkage disequilibrium between loci PIE020-PIE258 and 

QpZAG9-QpZAG110 in populations TIS and MIR, respectively. Allelic richness (AR) 

standardized for sample size ranged from 2.25 to 2.57 alleles per locus (Table 1). Only 

average FST-GEO was retained into the final model for AR (t = -4.107, P = 0.003; Fig. 3a) 

and no other variable remained significant after it was included (all Ps > 0.4). It should 

be noted that both average FST and average FST-GEO were highly intercorrelated and after 

the exclusion from the model of the variable FST-GEO, AR was negatively associated with 

average FST (t = -2.607, P = 0.028; Fig. 3b). Quadratic terms and other interactions 

between independent variables were not significant in any analysis (P > 0.2). 

 

Genetic structure 

 

Pair-wise FST values ranged from 0.006 to 0.266, and 16 of the 55 pair-wise 

comparisons were significant after sequential Bonferroni correction (Table S2). 

Comparisons involving JAL and SRN populations showed particularly high 

differentiation (Table S2). STRUCTURE analyses and the Evanno et al. (2005) method 
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indicated an optimal value of K = 3 (Fig. S1), but most sampled populations showed a 

considerable degree of genetic admixture (Fig. 1). The first genetic cluster was mostly 

represented in the southern populations (TIS and TOM), the second genetic cluster was 

the most frequent in the eastern populations (SRN and YAL) and the probability of 

population membership to the third cluster was higher in central-northern populations 

(MIR, SJR, TEL, PAL and JAL) (Fig. 1). 

 

Landscape genetic analyses 

 

MMRR analyses showed that only Euclidean geographical distance (β = 0.582, t = 4.79, 

P = 0.025; Fig. 4) was retained into the final model (r
2
 = 0.302) and no other variable 

remained significant after it was included (all Ps > 0.2). Current habitat suitability (t = 

2.14, P = 0.17), LGM habitat suitability (t = 1.16, P = 0.390), habitat stability (t = 1.75, 

P = 0.207) or environmental dissimilarity in the present (PC1: t = 7.08, P = 0.061; PC2: 

t = 0.59, P = 0.670; PC3: t = -0.393, P = 0.807) or the LGM (PC1: t = 6.59, P = 0.075; 

PC2: t = 2.63, P = 0.120; PC3: t = 1.22, P = 0.130) were not significant when they were 

included alone into different models, indicating that the lack of correlation between 

genetic distance and these predictors was not due to interactions among independent 

variables. 

 

DISCUSSION 

 

Climate niche modelling indicates that the distribution of the southernmost populations 

of Q. segoviensis has remained highly stable at least during the last 20000 years (Fig. 

2). Despite this regional stability, niche modelling also revealed that habitat suitability 
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in the study area has slightly increased since the LGM and showed a remarkable 

geographic heterogeneity, with the four northernmost studied populations (JAL, SJR, 

TEL and PAL) having particularly low suitability scores in comparison with the 

southern localities (Fig. 2). The climatic spatial heterogeneity and long-term stability of 

this tropical region offers the ideal template for the evolution of local adaptations that 

may shape patterns of genetic variability and structure in the studied populations of Q. 

segoviensis (e.g. Ortego et al. 2012; Wang et al. 2013).  

Considering the relatively small size of the study area (<120 km), analyses on 

spatial genetic structure indicate a remarkable genetic differentiation among the 

southernmost populations of Q. segoviensis (Fig. 1; Table 1). Bayesian analyses of 

genetic structure indicate the presence of three genetic clusters and some pair-wise FST 

values were higher than those previously reported for oaks from temperate areas 

sampled at a similar or much larger spatial scale (e.g. Ramirez-Valiente et al. 2009; 

Alberto et al. 2010; Zeng et al. 2011; Ortego et al. 2012). STRUCTURE analyses also 

indicate a geographic cline of genetic structure, with the three distinct genetic clusters 

being distributed in the south, central-east, and north-west portions of the study area. 

Bayesian analyses also revealed a considerable degree of genetic admixture and several 

populations showed a high probability of population membership to different clusters 

(Fig. 1), suggesting that observed genetic differentiation is maintained in presence of 

inter-population gene flow.  

Despite we found significant spatial genetic structure (Fig. 1; Table S2) and 

important environmental heterogeneity across the study area (Fig. 2), MMRR analyses 

revealed that geographic distance is the only factor explaining observed patterns of 

genetic differentiation. The observed IBD pattern of genetic structure suggests 

equilibrium between gene flow and drift (Hutchinson & Templeton 1999), which in the 
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case of oaks is likely to be driven by long-distance pollen movement (Buschbom et al. 

2011; Ortego et al. 2014) and local seed dispersal (Grivet et al. 2006). Niche suitability 

and environmental dissimilarity summarizing the current and past climatic conditions 

experienced by the studied populations had no significant effect on genetic 

differentiation after controlling for the effects of geographic distance, indicating that 

geographic isolation (IBD; Wright 1943) but not adaptation to local climatic 

environments (i.e. IBE; Shafer et al. 2013; Wang et al. 2013; Sexton et al. 2014) is 

behind observed patterns of genetic structure. This contrasts with previous studies that 

have found an important role of environment on structuring genetic variation in oaks 

after removing the effects of geography (Sork et al. 2010; Ortego et al. 2012; Gugger et 

al. 2013). Some of these studies have compared populations distributed across a large 

geographical area, which is likely to increase the range of environmental conditions 

experienced by the different populations, attenuate the homogenising effects of gene 

flow and favour genetic divergence by local adaptation (Sork et al. 2010; Gugger et al. 

2013). However, other studies have found environmental correlates of genetic structure 

across geographically close populations, suggesting that local adaptation and 

subsequent selection against immigrant genotypes could occur at relatively small spatial 

scales even in wind pollinated species with extraordinary dispersal potential (Alberto et 

al. 2010; Ortego et al. 2012). The lack of signal of IBE analyses may be due to different 

biological reasons, including adaptation to local environments via phenotypic plasticity 

(Ramírez-Valiente et al. 2010), positive selection on immigrant genotypes from distant 

populations mediated by heterosis (Bensch et al. 2006) or consequence of long-distance 

gene flow counteracts the effects of natural selection and impedes or attenuates local 

adaptation processes (Buschbom et al. 2011). It should be noted that we cannot totally 

reject the hypothesis of IBE given that other parameters (e.g. soil characteristics, 
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nutrient availability, etc.) not considered in our study could be potentially shaping the 

patterns of genetic structure we found (e.g. Macel et al. 2007; Freeland et al. 2010). 

Finally, it must be also considered that small sample sizes in some localities (Table 1) 

may have also reduced our statistical power to detect IBE, which generally explains a 

lower proportion of variance in genetic divergence than IBD (Wang et al. 2013). 

Our data indicate that niche stability or current or past climatic suitability were 

not associated with intra-population genetic diversity, suggesting that these variables are 

not directly associated with local effective population sizes. The fact that the study area 

is climatically highly stable may explain the lack of association between genetic 

diversity and habitat stability, a pattern that has been previously reported in species 

from regions with more fluctuating climates (Carnaval et al. 2009; Yannic et al. 2014). 

However, genetic diversity was negatively correlated with average genetic 

differentiation with all other populations, indicating that isolation and limited gene flow 

have contributed to erode genetic variability in some populations (Ortego et al. 2010; 

Wang et al. 2011). This indicates that effective population sizes of the studied 

populations are not above a threshold that prevents the lost of genetic diversity and/or 

that inter-population gene flow suggested by observed patterns of admixture is not 

enough to counterbalance the effects of genetic drift. 

Overall, our data points to geographic isolation as the main factor structuring 

genetic variation within the peripheral populations of Q. segoviensis. We have found 

strong genetic subdivision within our relatively small study area, supporting the 

hypothesis of fragmentation of peripheral populations in this tropical oak species. 

Further studies analyzing the complete distribution range of this and other tropical 

species could help to further understand the demographic and evolutionary dynamics of 

peripheral populations. In these biomes species have been scarcely impacted by 
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Pleistocene glacial cycles and their geographic patterns of genetic diversity and 

structure can greatly differ from those reported at the much better studied temperate 

regions (Hewitt 2000; Eckert et al. 2008; Guo 2012). 
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SUPPORTING INFORMATION 

Additional Supporting Information may be found in the online version of this article: 

Table S1. Microsatellite loci used to genotype Quercus segoviensis: number of alleles 

(A), expected heterozygosity (HE), observed heterozygosity (HO), and annealing 

temperature (Ta, in °C) for each locus. 

 

Table S2. Pair-wise population FST-values. Values in bold are statistically significant 

after sequential Bonferroni correction (P < 0.05).  

 

Fig. S1. Results of Bayesian clustering analyses in STRUCTURE. Plots show the mean (± 

S.D.) log probability of the data (ln Pr(X|K)) over 10 runs (left axis, black dots and error 
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bars) for each value of K. The magnitude of ΔK as a function of K indicates the most 

likely number of genetic clusters (K = 3) in the STRUCTURE analyses (right axis, open 

dots) (Evanno et al. 2005).  

 

References 

 

 

Alberto, F., Niort, J., Derory, J., Lepais, O., Vitalis, R., Galop, D., Kremer, A. (2010) 

Population differentiation of sessile oak at the altitudinal front of migration in the 

French Pyrenees. Molecular Ecology, 19, 2626-2639. 

Bensch, S., Andren, H., Hansson, B., Pedersen, H.C., Sand, H., Sejberg, D., Wabakken, 

P., Akesson, M., Liberg, O. (2006) Selection for heterozygosity gives hope to a wild 

population of inbred wolves. PLOS One, 1, e72. 

Brown, J.H., Mehlman, D.W., Stevens, G.C. (1995) Spatial variation in abundance. 

Ecology, 76, 2028-2043. 

Buschbom, J., Yanbaev, Y., Degen, B. (2011) Efficient long-distance gene flow into an 

isolated relict oak stand. Journal of Heredity, 102, 464-472. 

Carnaval, A.C., Hickerson, M.J., Haddad, C.F.B., Rodrigues, M.T., Moritz, C. (2009) 

Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 

323, 785-789. 

Castilla, A.R., Alonso, C., Herrera, C.M. (2012) Genetic structure of the shrub Daphne 

laureola across the Baetic Ranges, a Mediterranean glacial refugium and 

biodiversity hotspot. Plant Biology, 14, 515-524. 

Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, 

J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., 



20 

 

McKenna, D.S., Santer, B.D., Smith, R.D. (2006) The Community Climate System 

Model version 3 (CCSM3). Journal of Climate, 19, 2122-2143. 

Devitt, T.J., Devitt, S.E.C., Hollingsworth, B.D., McGuire, J.A., Moritz, C. (2013) 

Montane refugia predict population genetic structure in the large-blotched Ensatina 

salamander. Molecular Ecology, 22, 1650-1665. 

Dow, B.D., Ashley, M.V., Howe, H.F. (1995) Characterization of highly variable 

(Ga/Ct)(N) microsatellites in the bur oak, Quercus macrocarpa. Theoretical and 

Applied Genetics, 91, 137-141. 

Doyle, J., Doyle, J. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. 

Durand, J., Bodenes, C., Chancerel, E., Frigerio, J.M., Vendramin, G., Sebastiani, F., 

Buonamici, A., Gailing, O., Koelewijn, H.P., Villani, F., Mattioni, C., Cherubini, 

M., Goicoechea, P.G., Herran, A., Ikaran, Z., Cabane, C., Ueno, S., Alberto, F., 

Dumoulin, P.Y., Guichoux, E., de Daruvar, A., Kremer, A., Plomion, C. (2010) A 

fast and cost-effective approach to develop and map EST-SSR markers: oak as a 

case study. BMC Genomics, 11, 570 

Earl, D.A. and vonHoldt, B.M. (2012) STRUCTURE HARVESTER: a website and 

program for visualizing STRUCTURE output and implementing the Evanno 

method. Conservation Genetics Resources, 4, 359-361. 

Eckert, C.G., Samis, K.E., Lougheed, S.C. (2008) Genetic variation across species' 

geographical ranges: the central-marginal hypothesis and beyond. Molecular 

Ecology, 17, 1170-1188. 

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, 

R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, 

B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., 

Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., 



21 

 

Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N.E. (2006) Novel methods 

improve prediction of species' distributions from occurrence data. Ecography, 29, 

129-151. 

Ersts, P.J. (2011) [Internet] Geographic Distance Matrix Generator (version 1.2.3). 

American Museum of Natural History, Center for Biodiversity and Conservation. 

http://biodiversityinformatics.amnh.org/open_source/gdmg. Downloaded on 18 

March 2011. 

Evanno, G., Regnaut, S., Goudet, J. (2005) Detecting the number of clusters of 

individuals using the software STRUCTURE: a simulation study. Molecular 

Ecology, 14, 2611-2620. 

Excoffier, L., Laval, G., Schneider, S. (2005) Arlequin ver. 3.0: an integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics Online, 

1, 47-50. 

Falush, D., Stephens, M., Pritchard, J.K. (2003) Inference of population structure using 

multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 

164, 1567-1587. 

Fielding, A.H. and Bell, J.F. (1997) A review of methods for the assessment of 

prediction errors in conservation presence/absence models. Environmental 

Conservation, 24, 38-49. 

Freeland, J.R., Biss, P., Conrad, K.F., Silvertown, J. (2010) Selection pressures have 

caused genome-wide population differentiation of Anthoxanthum odoratum despite 

the potential for high gene flow. Journal of Evolutionary Biology, 23, 776-782. 

Grivet, D., Deguilloux, M.F., Petit, R.J., Sork, V.L. (2006) Contrasting patterns of 

historical colonization in white oaks (Quercus spp.) in California and Europe. 

Molecular Ecology, 15, 4085-4093. 



22 

 

Gugger, P.F., Ikegami, M., Sork, V.L. (2013) Influence of late Quaternary climate 

change on present patterns of genetic variation in valley oak, Quercus lobata Nee. 

Molecular Ecology, 22, 3598-3612. 

Guo, Q.F. (2012) Incorporating latitudinal and central-marginal trends in assessing 

genetic variation across species ranges. Molecular Ecology, 21, 5396-5403. 

Guo, S.W. and Thompson, E.A. (1992) A monte-carlo method for combined 

segregation and linkage analysis. American Journal of Human Genetics, 51, 1111-

1126. 

Hampe, A. and Bairlein, F. (2000) Modified dispersal-related traits in disjunct 

populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its 

Quaternary distribution shifts? Ecography, 23, 603-613. 

Hampe, A. and Petit, R.J. (2005) Conserving biodiversity under climate change: the rear 

edge matters. Ecology Letters, 8, 461-467. 

Hampe, A., Pemonge, M.H., Petit, R.J. (2013) Efficient mitigation of founder effects 

during the establishment of a leading-edge oak population. Proceedings of the Royal 

Society B-Biological Sciences, 280, 1764. 

Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005) Very high 

resolution interpolated climate surfaces for global land areas. International Journal 

of Climatology, 25, 1965-1978. 

Hoffmann, A.A. and Blows, M.W. (1994) Species borders - Ecological and 

evolutionary perspectives. Trends in Ecology & Evolution, 9, 223-227. 

Hubisz, M.J., Falush, D., Stephens, M., Pritchard, J.K. (2009) Inferring weak population 

structure with the assistance of sample group information. Molecular Ecology 

Resources, 9, 1322-1332. 



23 

 

Hutchison, D.W. and Templeton, A.R. (1999). Correlation of pairwise genetic and 

geographic distance measures: Inferring the relative influences of gene flow and 

drift on the distribution of genetic variability. Evolution, 53, 1898-1914. 

Kalinowski, S.T. (2005) HP-RARE 1.0: a computer program for performing rarefaction 

on measures of allelic richness. Molecular Ecology Notes, 5, 187-189. 

Kampfer, S., Lexer, C., Glossl, J., Steinkellner, H. (1998) Characterization of (GA)(n) 

microsatellite loci from Quercus robur. Hereditas, 129, 183-186. 

Kiehl, J.T. and Gent, P.R. (2004) The Community Climate System Model, version 2. 

Journal of Climate, 17, 3666-3682. 

Legendre, P., Lapointe, F.J., Casgrain, P. (1994) Modeling brain evolution from 

behavior - A permutational regression approach. Evolution, 48, 1487-1499. 

Lira-Noriega, A., Manthey, J.D. (2014) Relationship of genetic diversity and niche 

centrality: A survey and analysis. Evolution, in press. 

Macel, M., Lawson, C.S., Mortimer, S.R., Smilauerova, M., Bischoff, A., Cremieux, L., 

Dolezal, J., Edwards, A.R., Lanta, V., Bezemer, T.M., van der Putten, W.H., Igual, 

J.M., Rodriguez-Barrueco, C., Muller-Scharer, H., Steinger, T. (2007) Climate vs. 

soil factors in local adaptation of two common plant species. Ecology, 88, 424-433. 

Mägi, M., Semchenko, M., Kalamees, R., Zobel, K. (2011) Limited phenotypic 

plasticity in range-edge populations: a comparison of co-occurring populations of 

two Agrimonia species with different geographical distributions. Plant Biology, 13, 

177-184. 

Manly, B.F.J. (1991) Randomization and Monte Carlo methods in biology. New York: 

Chapman & Hall. 



24 

 

Miller, M.J., Bermingham, E., Klicka, J., Escalante, P., Winker, K. (2010) Neotropical 

birds show a humped distribution of within-population genetic diversity along a 

latitudinal transect. Ecology Letters, 13, 576-586. 

Moritz, C. (2002) Strategies to protect biological diversity and the evolutionary 

processes that sustain it. Systematic Biology, 51, 238-254. 

Ortego, J., Aguirre, M.P., Cordero, P.J. (2012a) Landscape genetics of a specialized 

grasshopper inhabiting highly fragmented habitats: a role for spatial scale. Diversity 

and Distributions, 18, 481-492. 

Ortego, J., Bonal, R., Munoz, A. (2010) Genetic consequences of habitat fragmentation 

in long-lived tree species: the case of the Mediterranean holm oak (Quercus ilex, 

L.). Journal of Heredity, 101, 717-726. 

Ortego, J., Riordan, E.C., Gugger, P.F., Sork, V.L. (2012b) Influence of environmental 

heterogeneity on genetic diversity and structure in an endemic southern Californian 

oak. Molecular Ecology, 21, 3210-3223. 

Ortego, J., Bonal, R., Muñoz, A., Aparicio, J.M. (2014) Extensive pollen immigration 

and no evidence of disrupted mating patterns or reproduction in a highly fragmented 

holm oak stand. Journal of Plant Ecology, in press. 

Otto-Bliesner, B.L., Marsha, S.J., Overpeck, J.T., Miller, G.H., Hu, A.X., Mem, 

C.L.I.P. (2006) Simulating arctic climate warmth and icefield retreat in the last 

interglaciation. Science, 311, 1751-1753. 

Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006) Maximum entropy modeling of 

species geographic distributions. Ecological Modelling, 190, 231-259. 

Phillips, S.J. and Dudik, M. (2008) Modeling of species distributions with Maxent: new 

extensions and a comprehensive evaluation. Ecography, 31, 161-175. 



25 

 

Poelchau, M.F. and Hamrick, J.L. (2013) Palaeodistribution modelling does not support 

disjunct Pleistocene refugia in several Central American plant taxa. Journal of 

Biogeography, 40, 662-675. 

Pritchard, J.K., Stephens, M., Donnelly, P. (2000) Inference of population structure 

using multilocus genotype data. Genetics, 155, 945-959. 

Ramirez-Valiente, J.A., Lorenzo, Z., Soto, A., Valladares, F., Gil, L., Aranda, I. (2009) 

Elucidating the role of genetic drift and natural selection in cork oak differentiation 

regarding drought tolerance. Molecular Ecology, 18, 3803-3815. 

Ramirez-Valiente, J.A., Sanchez-Gomez, D., Aranda, I., Valladares, F. (2010) 

Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 

contrasting cork oak populations under different water availabilities. Tree 

Physiology, 30, 618-627. 

Rice, W.R. (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225. 

Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J. (2009) Evolution and ecology of 

species range limits. Annual Review of Ecology Evolution and Systematics, 40, 415-

436. 

Sexton, J.P., Strauss, S.Y., Rice, K.J. (2011) Gene flow increases fitness at the warm 

edge of a species' range. Proceedings of the National Academy of Sciences of the 

United States of America, 108, 11704-11709. 

Sexton, J.P., Hangartner, S.B., Hoffmann A.A. (2014) Genetic isolation by environment 

or distance: Which patterns of gene flow is most common? Evolution, 68, 1-15. 

Shafer, A.B.A. and Wolf, J.B.W. (2013) Widespread evidence for incipient ecological 

speciation: a meta-analysis of isolation-by-ecology. Ecology Letters, 16, 940-950. 



26 

 

Smouse, P.E., Long, J.C., Sokal, R.R. (1986) Multiple-regression and correlation 

extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 

627-632. 

Sork, V.L., Davis, F.W., Westfall, R., Flint, A., Ikegami, M., Wang, H.F., Grivet, D. 

(2010) Gene movement and genetic association with regional climate gradients in 

California valley oak (Quercus lobata Nee) in the face of climate change. Molecular 

Ecology, 19, 3806-3823. 

Steinkellner, H., Fluch, S., Turetschek, E., Lexer, C., Streiff, R., Kremer, A., Burg, K., 

Glossl, J. (1997) Identification and characterization of (GA/CT)(n)-microsatellite 

loci from Quercus petraea. Plant Molecular Biology, 33, 1093-1096. 

Wang, I.J. (2013) Examining the full effects of landscape heterogeneity on spatial 

genetic variation: A multiple matrix regression approach for quantifying geographic 

and ecological isolation. Evolution, 67, 3403-3411. 

Wang, I.J., Glor, R.E., Losos, J.B. (2013) Quantifying the roles of ecology and 

geography in spatial genetic divergence. Ecology Letters, 16, 175-182. 

Wang, I.J., Johnson, J.R., Johnson, B.B., Shaffer, H.B. (2011) Effective population size 

is strongly correlated with breeding pond size in the endangered California tiger 

salamander, Ambystoma californiense. Conservation Genetics, 12, 911-920. 

Warren, D.L., Glor, R.E., Turelli, M. (2010) ENMTools: a toolbox for comparative 

studies of environmental niche models. Ecography, 33, 607-611. 

Wright, S. (1943) Isolation by distance. Genetics, 28, 114-138. 

Yannic, G., Pellissier, L., Ortego, J., Lecomte, N., Couturier, S., Cuyler, C., Dussault, 

C., Hundermark, K.J., Irvine, R.J., Jenkins, D.A., Kolpashikov, L., Mager, K., 

Musiani, M., Parker, K.L., Roed, K.H., Sipko, T., Þórisson, S.G., Weckworth, B.V., 



27 

 

Guisan, A., Bernatchez, L., Côté, S.D. (2014) Genetic diversity in caribou linked to 

past and future climate change. Nature Climate Change, 4, 132-137. 

Zeng, Y.F., Liao, W.J., Petit, R.J., Zhang, D.Y. (2011) Geographic variation in the 

structure of oak hybrid zones provides insights into the dynamics of speciation. 

Molecular Ecology, 20, 4995-5011. 

 

 

 



28 

 

Table 1. Geographical location and genetic variability for the studied populations of 

Quercus segoviensis.  

 

Locality Code Latitude Longitude Altitude (m) N AR 

Jalapa JAL 13.93333 -86.16667 1240 4 2.25 

San Juan del Río Coco SJR 13.56667 -86.15000 950 9 2.49 

Telpaneca TEL 13.55000 -86.20000 1280 10 2.56 

Palacagüina PAL 13.51750 -86.37972 990 11 2.44 

Miraflor MIR 13.21944 -86.25000 1370 24 2.46 

Yali YAL 13.21667 -86.13333 1160 10 2.40 

San Rafael del Norte SRN 13.17722 -86.07583 1050 10 2.33 

Lago Apanas APA 13.16887 -85.92184 1000 4 2.37 

Jinotega JIN 13.08871 -85.99028 1120 5 2.32 

Cerro Tomabu TOM 13.01639 -86.29861 1200 10 2.51 

Cerro Tisey TIS 12.95222 -86.34639 1320 15 2.57 

 

N, number of sampled individuals; AR, standardized allelic richness. AR was only 

calculated for populations with five or more genotyped individuals. 
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Figure legends 

 

Fig. 1. Sampling sites of Quercus segoviensis and genetic assignment of populations 

based on the Bayesian method implemented in the program STRUCTURE considering 

three genetic clusters. The admixture proportions generated by STRUCTURE were 

represented using pie charts, with each colour indicating a different genotypic cluster. 

Pie chart size is proportional to the number of individuals sampled at each location. 

Population codes are described in Table 1.  

 

Fig. 2. (a) Distribution of Quercus segoviensis (dashed line) based on herbarium records 

(open dots) and the location of the study area in the southernmost portion of the species 

range (open square). Ecological niche modelling of Quercus segoviensis for (a) the 

present and (b) the Last Glacial Maximum (LGM; c. 21 000 years BP). The LGM 

distribution was modelled using the CCSM3 climatic model. Panel (c) shows habitat 

stability estimated from current and LGM habitat suitability maps. Bull eyes in panels 

b-d indicate sampling locations and dashed lines represent the border between Honduras 

and Nicaragua. 

 

Fig. 3. Relationship between standardized allelic richness (AR) and (a) average 

population differentiation corrected for geographical distance (FST-GEO) and (b) average 

population differentiation with all other studied populations (FST).  

 

Fig. 4. Relationship between genetic distance (FST) and Euclidean geographic distance.  
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