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Abstract Kinetic energy variance as a function of spatial scale for wind fields is commonly estimated
either using second-order structure functions (in the spatial domain) or by spectral analysis (in the fre-
quency domain). Both techniques give an order-of-magnitude estimate. More accurate estimates are given
by a statistic called spatial variance. Spatial variances have a clear interpretation and are tolerant for missing
data. They can be related to second-order structure functions, both for discrete and continuous data. Spatial
variances can also be Fourier transformed to yield a relation with spectra. The flexibility of spatial variances
is used to study various sampling strategies, and to compare them with second-order structure functions
and spectral variances. It is shown that the spectral sampling strategy is not seriously biased to calm condi-
tions for scatterometer ocean surface vector winds. When the second-order structure function behaves like
rp, its ratio with the spatial variance equals ðp11Þðp12Þ. Ocean surface winds in the tropics have p between
2/3 and 1, so one-sixth to one-fifth of the second-order structure function value is a good proxy for the
cumulative variance.

1. Introduction

The variance contained in wind fields at different scales plays a central role in various branches of geophy-
sics and meteorology, as it is directly related to the turbulent kinetic energy [e.g., Frisch, 1995 or any other
text book on turbulence]. Moreover, small-scale turbulence is parameterized in Numerical Weather Predic-
tion (NWP) models and determines the amount of subgrid mixing and constituent transport. In addition,
scale-dependent variance determines the representation error contribution to observation errors in NWP
data assimilation [e.g., Lorenc, 1986; Frehlich, 2001] and dominates the in situ observation wind error (e.g.,
from buoys, radiosondes). Spectral analysis has been applied to quantify the amount of small-scale structure
in the wind field using winds measured from aircraft [e.g., Nastrom and Gage, 1985] and derived from satel-
lite observations [e.g., Freilich and Chelton, 1986; Patoux and Brown, 2001]. Differences in variance content
between scatterometer observations and NWP model predictions have been used to estimate the represen-
tation error in triple collocation studies [Vogelzang et al., 2011]. Moreover, spectral techniques are used to
simulate turbulent fields spatially [Frehlich et al., 2001].

Spectral analysis is the standard method for calculating variance as a function of scale. The spectrum gives
the variance density as a function of wave number k and the variance contained in the wave number inter-
val ðk1; k2Þ equals the integral over the spectrum between these limits. The spatial scale associated with k is
r51=k (assuming a Fourier transformation factor e2pikr ), so often the cumulative variance at scale r is taken
as the integral of the spectrum from k51=r to infinity. However, this interpretation is not correct, because
the Fourier modes have no sharp spatial representation. Further, spectral analysis based on Fast Fourier
Transform (FFT) techniques requires samples without missing points, which is a serious drawback in many
practical applications. In the case of scatterometer ocean surface winds, Vogelzang et al. [2011] find that for
winds on a 25 km grid with a sample size of 128 points (sample length 3200 km) only about 6% of the data
falls into samples without missing points. If isolated missing points are replaced by interpolated winds,
about 35% of the data is used, thus discarding two-thirds of the data. Missing scatterometer winds are often
associated with highly dynamic features such as fronts and cyclone centers [Stoffelen and Anderson, 1997].
In consequence, the results of spectral analysis may be biased to calm conditions. Another complication is
that Fast Fourier Transform (FFT) algorithms assume the sample to be periodic. For wind spectra in the
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Earth’s atmosphere one must apply a detrending method to minimize the difference between the first and
last point of the sample, otherwise a k22 contribution to the spectrum would be introduced that dominates
at high wave numbers (small scales). Detrending has no effect on the spectrum at medium to large wave
numbers [Vogelzang et al., 2011], and its effect on nonzero wave numbers can be completely corrected for
by using first differences [Percival and Walden, 1993]. Finally, the spectral density is given on an equidistant
wave number grid. When transformed to position space, the spatial grid points concentrate at the smallest
scales.

Second-order structure functions (second moments of velocity differences) are defined in position space
and their calculation easily accommodates missing data. Often the variance contained within a certain scale
is set equal to half the structure function value at that scale. However, as emphasized by Davidson and Pear-
son [2005], this relation is only approximate. A more precise relation will be presented in this paper and it
will be shown that one-fifth to one-sixth of the structure function value is a good proxy for the variance, at
least for ocean surface winds in the Tropical Pacific.

Wind spectra and second-order structure functions only give an order-of-magnitude estimation of variance
as a function of scale. In an attempt to find a more accurate estimate, a statistic called spatial variance is
reintroduced. It is the sample variance averaged over all samples as a function of sample length [Yates,
1948]. Spatial variances have a clear interpretation and are tolerant for missing data. Nevertheless, their use
is not widespread. In metrology literature (not to be confused with meteorology), it is known as M-sample
variance [Allan, 1966]. For two-point samples it is called Allan variance, for three-point samples Hadamard
variance. Spatial variance (also referred to as blocked quadrat variance) has been used by Kahn and Teixeira
[2009] to estimate spatial length scale exponents for temperature and water vapor derived from infrared
satellite observations. Mahadevan and Campbell [2002] use spatial variance in two dimensions to character-
ize spatial heterogeneity of tracers in oceanography, restricting their analysis to domains of size L, L=2, L=4,
etc. A two-dimensional version of spatial variance is used by Blue and Chen [2011] for controlling and opti-
mizing wafer spatial variations in integrated circuit fabrication.

Lorenz [1979] introduced the ‘‘poor man’s spectral analysis,’’ a method to construct the spectrum from spa-
tial variances at scales that are a fraction 22n of the sample size, with n an integer, taking into account the
Fourier transform properties when transforming from the frequency domain to the spatial domain [see also
Cahalan et al., 1994] for a more complete description). This bears some resemblance to spatial variance, but,
as indicated by the name, the emphasis of ‘‘poor man’s spectral analysis’’ is in the frequency domain,
whereas that of spatial variance is in the spatial domain.

For data sets without missing points spatial variance is related to the second-order structure function. For a
single series of discrete data, this relationship appears to have been first recognized by Yates [1948]. It is
easily generalized to the continuous case by letting the sampling distance approach zero. Moreover, since
the relation holds for any data series that is long enough, it also must hold for ensemble averages – pro-
vided that velocity differences converge to structure functions under ensemble averaging (see Appendix A
for details). The complement of spatial variance can be Fourier transformed and related to the wind spec-
trum, as shown in Appendix B.

For data sets with missing points the sampling strategy becomes important. Spatial variances are flexible
enough to cope with a number of sampling strategies, thus enabling to study their effect, in particular for
those strategies that are commonly used in spectral or spatial analysis.

The aim of the paper is threefold: (i) to (re)introduce spatial variance as a more precise estimate of variance as
a function of scale, (ii) to study the effect of sampling strategy on spatial variance, and (iii) to compare spatial
variances with spectral variances and second-order structure functions. The paper is organized as follows: in
section 2 the relevant definitions of spectra and structure functions are presented. The problems with their
relation to variance as a function of spatial scale are discussed. It will be shown why qualitative arguments
based on the interpretation of the spectrum as a variance density are correct. In section 3, spatial variances
are defined and related to second-order structure functions and spectra. Several sampling strategies are pre-
sented in section 4. In section 5, some results are presented for scatterometer ocean surface vector winds. The
effect of sampling strategy on spatial variance is investigated. Spatial variances are compared with spectral
variances and second-order structure functions. It is shown that one-fifth to one-sixth of the second-order
structure function value is a good proxy for the cumulative kinetic energy, in accordance with simple power-
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law behavior of second-order structure functions, rp, and spectra, k2p21, with p between 2/3 and 1 or slightly
more. It is also shown that spectral sampling is not seriously biased to calm wind conditions. The paper ends
with the conclusions in section 6. Appendix A contains the derivation of the relation between spatial variance
and second-order structure functions, Appendix B that between spatial variance and spectrum.

2. Spectra and Second-Order Structure Functions

Past studies have shown that in the upper troposphere and lower stratosphere wind spectra show the clas-
sical Kolmogorov k25=3 behavior for wave numbers above 1026 m21 [Nastrom and Gage, 1985], while for
lower wavenumbers a k23 behavior is found. Spectra of ocean surface wind components calculated from
scatterometer measurements are slightly steeper [Freilich and Chelton, 1986; Patoux and Brown, 2001; Vogel-
zang et al., 2011], with exponents up to 22.4. Ocean surface wind spectra show no sign of transition to
exponent 23 for low wavenumbers.

In practical applications, spectra and structure functions are generally defined for equally spaced finite data
sets. Suppose we have a data set fuig5fuðxiÞg with xi5iDx, i50; 1; � � � ;N. Suppose also, for the moment,
that the data set does not contain missing points.

2.1. Spectra
Divide the data set into a number of nonoverlapping subsets, further referred to as samples, each contain-
ing n points indexed within the sample from 0 to n21. For each sample a periodogram wsðkjÞ, with s the
sample index, can be defined in two equivalent ways [Press et al., 1988]: as the absolute value squared of
the discrete Fourier transform of the values in the sample,

ws kj
� �

5

����
Xn21

l50

ule
2pi jl

n

����
2

; (1)

or as the discrete Fourier transform of the autocovariance function As of the sample,

ws kj
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l50
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where
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uj uj1l; (3)

and the indices are to be taken modulo n. The periodogram is given at discrete frequencies
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2
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The periodogram wsðkjÞ is normalized such that its sum over all nonzero frequencies kj equals the variance
of the sample, r2

s ðnÞ,

r2
s ðnÞ5

Xn=2

j52n=2
j 6¼0

wsðkjÞ: (5)

In deriving (5) one must use the fact that a discrete Fourier transformation assumes the samples to be cyclic,
and that the periodogram at zero frequency equals the square of the sample average of u.

As the periodogram is a very noisy estimator, the spectrum is in most cases the average of a sufficient num-
ber of periodograms. For real signals the autocovariance is real and even, and so is its periodogram. One
may therefore project the negative frequencies on the positive ones, resulting in a spectrum WðkjÞ that is a
function of nonnegative frequencies only. Since the spectrum is the average of all periodograms, summing
the spectrum over all frequencies yields the mean of the sample variances, r2ðnÞ, as
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r2ðnÞ5 1
S

XS

s51

r2
s ðnÞ; (6)

where S is the number of samples. Note that r2ðnÞ is not the variance of the whole data set but the average
value of the variance for scale nDx as indicated by the argument n.

Associating a spatial scale rm with the wavenumber km by rm51=km, the variance contained in scales up to
rm, denoted as r2ðm; nÞ, is often written as

r2ðm; nÞ5
Xn=2

j5m

WðkjÞ5
Xn=2

j52n=2

wðkjÞŵðj; mÞ; (7)

where we introduced a high pass filter ŵðj; mÞ that equals 1 for jjj � m and zero elsewhere in order to
extend the summation to all frequencies. Moreover, we assume for convenience that the average has been
removed from each sample to have wð0Þ50; as a result the summation index can take also the value 0.
Finally, we made use of the fact that all indices should be taken modulo n. After application of (2) and the
introduction of the inverse Fourier transform of ŵ in the right-hand side of (7), we can change the order of
summations and perform the summation over j which yields a Kronecker delta. The result is

r2ðm; nÞ5
Xn21

l50

AðlÞwðl; mÞ; (8)

with A the autocovariance averaged over all samples and with the inverse Fourier transform w of the high-
pass filter given by the discrete analogue of a sinc function

w l; mð Þ5
Xm=2

j52m=2

e2pi jl
n: (9)

Equation (8) shows that the discrete spectrum summed over a partial interval does not transform to a var-
iance in the spatial domain, but to a sum of autocovariances weighted with an oscillating function. The
same argument holds for continuous infinite spectra.

The conclusion is that one should be careful when translating spectral results to the spatial domain. In par-
ticular, the variance r2ðm; nÞ in (7) cannot be attributed to a sharply defined spatial scale rm.

Nevertheless, autocovariance and variance are related: if a data set contains much small scale detail, its
autocovariance will be a narrow function. The spectrum, being the Fourier transform of the autocovariance,
will be a broad function, and the spectral density at small scales (large frequencies) will be high. Therefore,
qualitative arguments based on the interpretation of the spectrum as a variance density are correct.

2.2. Structure Functions
Structure functions are defined as averages over velocity increments dun5ui2ui1n, where u is the wind
component parallel or perpendicular to the line connecting points xi and xi1n, denoted as l and t, respec-
tively. Here, each pair ðui; ui1nÞ can be considered as the end points of a sample with n11 points and lag
size n (distance between first and last point in units of the grid size Dx). Note that we changed the notation
of the sample size compared to that in the previous paragraph, because it is more convenient to work now
in terms of lags. The second-order structure functions satisfy

DllðnÞ5hðdlnÞ2i; DttðnÞ5hðdtnÞ2i; (10)

where the brackets h:i denote ensemble averaging. Ensemble averaging converges for ocean surface wind
components, because the spectra follow a power law with exponent between 23 and 21. In geophysical
applications like the one considered in this study one must rely on ergodicity which states that ensemble
averages may be replaced by series averages,

DllðnÞ5E ðdlnÞ2
h i

; DttðnÞ5E ðdlttÞ2
h i

; (11)

where E is the expectation operator that denotes averaging over all samples in a single data series. From
the definition of the velocity increments and (11) it is easily shown that
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DllðnÞ52r2
l ðnÞ 12qllðnÞ½ �; DttðnÞ52r2

t ðnÞ 12qttðnÞ½ �; (12)

where r2
l ðnÞ5E l2
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� �
. The autocorrelations qll and qtt are normalized autoco-

variances defined as

qll nð Þ5 AllðnÞ
r2

l ðnÞ
; qtt nð Þ5 AttðnÞ

r2
t ðnÞ

: (13)

with All and Att defined in (3), and qllð0Þ5qttð0Þ51. For large values of n, i.e., large distances, one expects
the autocorrelation to go to zero and (12) yields

r2
l ðnÞ5

1
2

Dll nð Þ; r2
t ðnÞ5

1
2

Dtt nð Þ: (14)

This explains why the second-order structure function is called the semivariogram in geostatistics. Wind
fields are correlated up to planetary scale, so (14) can only be approximate. Moreover, if one takes n51
(neighboring points), the variance of a sample is defined as

r2
l ð1Þ5

1
2
ðli2�lÞ21ðli112�lÞ2
h i

; (15)

with �l5 1
2 li1li11ð Þ the average velocity. Expanding yields

r2
l ð1Þ5

1
4
ðli2li11Þ2; (16)

and a similar equation holds for r2
t ð1Þ. Averaging over all samples yields for neighboring points

r2
l ð1Þ5

1
4

Dll 1ð Þ; r2
t ð1Þ5

1
4

Dtt 1ð Þ: (17)

This differs by a factor of 2 from (14), another indication that the second-order structure function gives an
order-of-magnitude estimate of variance as a function of scale.

3. Spatial Variances

3.1. Definition
To get a more reliable measure of the variance as a function of scale we introduce quantities we call spatial
variances. As noted before, spatial variances are sample variances averaged over all samples as a function
of sample length. From the point of numerical calculation, the most convenient way to define them is
through first and second moments. For wind components l and t the spatial variances Vl and Vt read

VlðnÞ5E MllðnÞ2M2
l ðnÞ

� �
; VtðnÞ5E MttðnÞ2M2

t ðnÞ
� �

; (18)

with the expectation operator E defined as before and the first and second moments defined as

Ml nð Þ5 1
n11

Xn

j50

li1j; Mll nð Þ5 1
n11

Xn

j50

l2
i1j; (19)

with similar definitions for t. Equations (18) and (19) are a generalization of (15). The data set is divided into
samples each containing n11 points, the variance over each sample is calculated, and all variances are aver-
aged. This is repeated for all values of n that are of interest. The samples may be overlapping or not (see
section 4). The spatial variance defined in (18) and (19) is tolerant of missing points, i.e., it is not necessary
to reject a sample when it contains missing points; this in contrast with spectral calculations. In (19) one can
simply neglect these points, the minimum requirement being that the sample contains at least 2 valid (non-
missing) points. Therefore, all measurement points may in principle be considered when computing spatial
variances according to (18) and (19). How one exactly deals with the missing points is part of the sampling
strategy adopted, and that influences the results. Note that the spatial variance involves all valid points in a
sample, not only the end points. Spatial variances are not spuriously sensitive to large-scale fluctuations
(low wave number spectral components) because the variance of each sample is taken with respect to the
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sample mean. The spatial variance of a well-behaving signal will go to infinity with the number of sample
points, reflecting the fact that a signal with finite power but infinite duration contains infinite energy.

3.2. Relation With Second-Order Structure Functions
As shown in Appendix A, the spatial variance can be related to the second-order structure function, and
vice versa, by [Yates, 1948]

V nð Þ5 1

ðn11Þ2
Xn

m51

ðn112mÞDðmÞ; (20)

DðnÞ5ðn11Þ2VðnÞ22n2Vðn21Þ1ðn21Þ2Vðn22Þ; (21)

where the subscript indicating the wind component under consideration has been suppressed.

These relations are statistically exact for a single data series that is free of missing points and large enough
to ensure convergence to a uniform D(m). Since no restriction is imposed on the data series (except the triv-
ial one that all data values are finite), it must also hold for ensemble averages in cases where velocity differ-
ences converge to structure functions; see Appendix A for details.

When VðnÞ is a rising function of n the relation Vðn22Þ � Vðn21Þ � VðnÞ holds, and substitution in (21)
immediately gives DðnÞ � 2VðnÞ, implying that in such cases DðnÞ is always smaller than two times the spa-
tial variance. Relations (20) and (21) confirm that the spatial variances are insensitive to large-scale fluctua-
tions, just like the second-order structure functions.

In the continuous case (20) and (21) become

V rð Þ5 1
r2

ðr

0

ds r2sð ÞD sð Þ; (22)

DðrÞ5r2 d2VðrÞ
dr2

14r
dVðrÞ

dr
12VðrÞ: (23)

Note that the continuous equivalent of equation (14) results from (23) if the first and second derivatives of
the spatial variance vanish for large r, i.e., when the spatial variance becomes constant for large r, or, equiva-
lently, when the autocorrelation vanishes.

The spatial variance VðrÞ, measures the cumulative turbulent kinetic energy over a scale r, as is obvious
from its definition. The energy contained in a range of scales (r1, r2) is therefore Vðr2Þ2Vðr1Þ. This can be
written as an integral from r1 to r2 of the derivative of VðrÞ that can be found from (22) as

dVðrÞ
dr

5
1
r2

ðr

0

ds 2s2rð ÞD sð Þ: (24)

The derivative of VðrÞ can thus be interpreted as a variance density in position space.

Note that when the second-order structure function is given by a simple power law DðrÞ5Crp, with C a con-
stant and p > 21, substitution into (22) and integration yields

V rð Þ5 Crp

ðp11Þðp12Þ : (25)

This leads to

DðrÞ
VðrÞ5ðp11Þðp12Þ: (26)

3.3. Relation With the Spectrum
It is not possible to directly Fourier transform the spatial variance, because VðrÞ approaches r2, the total var-
iance, as r goes to infinity. Therefore the Fourier integral for the zero frequency component does not exist.
The same argument applies to second-order structure functions, but there their complement (up to a factor
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2), the autocovariance, possesses a Fourier transform, see (12) and (13). Analogously, define the comple-
ment of the spatial variance, denoted as �V ðrÞ, by VðrÞ1�V ðrÞ5r2, assuming that r2 is finite. One can recog-
nize �V ðrÞ immediately as the variance contained in all scales larger than r. In Appendix B it is shown that

wðkÞ5 1
2

k2d2 �̂V ðkÞ
dk2

22kd �̂V ðkÞ
dk

1�̂V ðkÞ; (27)

with �̂V ðkÞ the Fourier transform of �V ðrÞ. Equation (27) will not be investigated further in this paper, but is
included for the sake of completeness. Moreover, it assumes finite total variance.

Note that numerical calculation of �̂V ðkÞ is plagued by the same practical problems as that of wðkÞ, see sec-
tion 2.1. In particular, some form of detrending will be needed, whereas the nice feature of spatial variance
is that it can do without detrending.

4. Sampling Strategy

The spatial variance as defined in (18) depends on the sampling strategy adopted, and when comparing it
with spectral estimates based on (5) or with structure function estimates based on (20) the sampling should
be properly taken into account.

In the first place one may choose between overlapping or consecutive (nonoverlapping) samples. The first
choice is commonly made for calculating structure functions, while the second one is customary for calcu-
lating spectra.

Second, one may choose if missing points are allowed in a sample, and if so, how many. The number of
missing points allowed can be characterized by the maximum fraction of missing points, fmax . A sample of
length n11 is rejected when the number of missing points m is such that m=ðn11Þ > fmax . With fmax 51 all
points are accepted (with the absolute minimum requirement that the sample contains at least two points),
whereas for fmax 50 no missing points are allowed as in spectral calculations.

If fmax is close or equal to 1, a sample containing only a few valid points contributes as much to the variance
as a sample of the same size containing many valid points. This applies in particular to large samples (large
distances). In the case of scatterometer ocean surface winds this may be the case if the sample is located
largely above land. This is not optimal, and can be corrected for by giving the variance of each sample a rel-
ative weight w, for instance

w5
n2m

n
; (28)

with m the number of missing points in the sample as before.

Finally, structure functions can only be calculated when both end points of the sample (lag) are present.
When checking (20) one should thus use only spatial variances from samples that have valid end points.

5. Results and Discussion

Results are shown for all ASCAT-12.5 scatterometer ocean surface vector wind data issued by the Ocean
and Sea Ice Satellite Application Facility (OSI SAF) in January 2009. The Advanced Scatterometer (ASCAT) is
a C-band radar instrument on board the MetOp-A satellite operated by the European organization for the
exploitation of Meteorological Satellites (EUMETSAT). The satellite flies in a polar orbit (inclination
98.702198�) with a period of about 100 min, so most of the Earth is covered in 24 h. More detailed informa-
tion on ASCAT can be found in Figa-Salda~na et al. [2002]. For a more detailed description of the ASCAT-12.5
wind product the reader is referred to KNMI [2013]. An overview of daily coverage can be found on www.
knmi.nl/scatterometer.

Scatterometer wind products provide horizontal wind speed and direction on a regular grid of Wind Vector
Cells (WVCs). The ASCAT grid consists of two swaths each 525 km (42 numbered WVCs) wide and located at
either side of the satellite ground track, with a symmetrical gap of about 700 km in-between. No scatterom-
eter winds can be calculated above land, so these points are set to missing. Points were also considered as
missing if either the MLE or variational quality control (VarQC) flag was set. The MLE flag indicates the
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presence of excessive wind variability,
rain splash, or other geophysical
anomalies, while the VarQC flag indi-
cates a large spatial inconsistency in
the winds.

Scatterometer winds are given in
terms of horizontal speed and direc-
tion. They were transformed to wind
components parallel and perpendicu-
lar to the satellite swath, l and t,
respectively, in order to facilitate
comparison with structure functions.
From the spatial variance perspective
such a transformation is not abso-
lutely necessary: transformation to
zonal and meridional wind compo-
nents, u and v, works equally well.

The results in this section are based on one-dimensional samples of the horizontal wind, with the samples taken
in the along-track direction, i.e., for grid cells with the same cross-swath WVC index. One could easily include
samples in the cross-track direction, but then the maximum sample size is limited by the scatterometer swath
width. The final statistics are averaged over all samples (also over samples with different WVC indices). Ergodicity
is assumed here, so that spatiotemporal averages converge to ensemble averages. Note that due to satellite
speed, an orbit length of more than 2000 km (approximately 20� of latitude) is covered in 5 min.

5.1. Dependence on Scale and Effects of Sampling Strategy
Figure 1 shows the spatial variances as a function of scale r calculated with overlapping samples for various
values of fmax and with equal weight for all samples. The left-hand plots show the results for the along-track
wind component l, the right-hand plots for the across-track component t. For small to medium scales up to
r � 2000 km, accepting only samples without missing points, fmax 50, leads to the lowest estimates for the
variance as expected, because this sampling strategy is biased away from meteorologically active areas like
fronts and cyclone centers. Nevertheless, the effect is small. Increasing fmax leads to an increase in the var-
iance, with the highest variances found for fmax 50:4. Further increment decreases the variances, because
many samples are accepted that contain a limited number of valid points, for instance samples that are
located partially over land. This is supported by Figure 2, which is the same as Figure 1 except that the var-
iance from each sample is weighted with the number of valid points according to (28). Now samples con-
taining many missing points have lower weight, resulting in more uniform behavior of the spatial variance
for fmax > 0. The largest effect of the various sampling strategies in Figures 1 and 2 occurs at scales
between 200 and 500 km, and is of the order of 30%. Note that the spatial variances for t are higher than

those for l. This reflects the anisot-
ropy of the global wind field, in par-
ticular in the tropical regions which
dominate the statistics. Figure 3
shows the effect of requiring that
both end points are present in a sam-
ple (EPR). The results in Figure 3 were
obtained with fmax 51, so the number
of missing points in a sample is not
important. The dotted curves were
obtained with dynamic weights (28)
and without EPR. They are the same
as the dotted curves in Figure 2. The
dashed curves were obtained with
equal weights. Now the variance at
larger scales is reduced by the
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Figure 1. Spatial variances for various values of fmax with equal weights for all sam-
ples. (left) Results for the along-track wind component l, (right) the across-track
component t.
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Figure 2. As figure 1, but with dynamic weights.
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influence of samples containing many
missing points, in particular samples
that lie partly over land. Imposing EPR,
solid curves, excludes those samples
and the variance increases again.

As indicated by the derivation in
Appendix A, one expects relation (20)
to hold for nonoverlapping samples
without missing points. This is indeed
the case (no results shown). For other
strategies one expects sampling differ-
ences. Figure 4 shows the results for
the comparison of spatial variances
calculated directly from (18) and (19)
(labeled ‘‘direct’’) with those obtained
from the second-order structure func-
tions by using (20) (labeled ‘‘SF’’). The

dot-dashed and dotted curves were calculated by accepting all samples (fmax 51) and imposing equal
weight for each sample on the spatial variance calculations. Therefore, spatial variances are calculated for
samples with one or both end points missing, whereas these samples do not contribute to the structure
functions. As a consequence a considerable difference between the two curves can be observed. The solid
and dashed curves were obtained by accepting only samples for spatial variance calculation without miss-
ing points (fmax 50). However, this constraint is not applied to the structure function calculations. The curves
are much closer now, but not identical due to sampling differences, with typically 5% differences.

5.2. Tropical Pacific
The form of (14) and (17) suggests to investigate the ratio of the variance over the second-order structure
function. The results are shown in Figures 5 and 6, for the wind components l and t, respectively. The
results in Figures 5 and 6 were obtained using overlapping samples with equal weights and a maximum
fraction of missing points of 0.1. The figures show results obtained for January 2009 in nine different areas
in the Tropical Pacific, for four scatterometer wind products. The areas and scatterometer wind products
are the same as studied in [King et al., 2015]. The main characteristics of the areas are given in Table 1,
and the reader is referred to the aforementioned paper for a more elaborate discussion. It is important to
note here that the scatterometer wind products as well as the test areas have different properties, e.g.,
sensitivity to rain, different structure function slopes, etc.. Nevertheless, Figures 5 and 6 show that the
ratio of spatial variance and second-order structure function is more or less constant. All ratios start at a
value of 1=4 at lag 1, in agreement with (17). Over each test area the ratios have a value of about 0.2 for
both l and t. For l the ASCAT wind products have a slightly higher ratio than the SeaWinds products,

whereas for t the results for the differ-
ent wind products are closer
together, consistent with the slope
results reported in [King et al., 2015].
This could be an instrumental effect,
because ASCAT and SeaWinds oper-
ate at a different radar frequency and
have a different observation geome-
try. Also, SeaWinds is more sensitive
to rain than ASCAT, so relatively more
cells are rejected by the quality con-
trol for SeaWinds than for ASCAT. This
may induce sampling effects that
play a role.

Figure 7 shows a histogram of all ratio’s
VðrÞ=DðrÞ for l and t from all nine areas,
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Figure 3. Effect of various sampling strategies, where ew (equal weights) stands
for equal weight for each sample and epr (end points required) for rejection of the
sample if one or both end points are missing.
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Figure 4. Comparison of directly calculated spatial variances (labeled direct) with
those obtained from second-order structure functions (labeled SF).
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all 12 months, all four wind products, and r equal to 100, 200, and 300 km. The average ratio for l is 0.174 with a
standard deviation of 0.033, that for t is 0.179 with a standard deviation of 0.031. Assuming a simple power
law behavior for the second-order structure function, (26) shows that the power corresponding to these
ratio’s is 0.95 for l and 0.92 for t. This is a bit higher than the value of 2/3 predicted by classical turbulence
theory, but in good agreement with the values found by [King et al., 2015]. Under the same assumptions
the wave spectrum behaves as k21:95 for l and k21:92 for t, which agrees well with earlier findings [Patoux
and Brown, 2001; Vogelzang et al., 2011]. Note that Patoux and Brown report higher spectral powers, up to
2.4, but these are found in the extratropics, outside the region of interest in this study.

These results can be summarized, at least for the Tropical Pacific, as

VlðrÞ � 0:17DllðrÞ; VtðrÞ � 0:18DttðrÞ: (29)
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Figure 5. Ratio of spectral variance and second-order structure functions for wind component l in January 2009 in nine areas in the Tropical Pacific for four different scatterometer wind
products.
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5.3. Comparison With Spectral Variance
Interpreting the spectrum as a variance density in the traditional way, variance as a function of scale is given
by (7). Figure 8 shows how this relates to spatial variances. The spectra were obtained with the following

sampling strategy. Wind values are stored in
a buffer of length n5256 (spanning about
3000 km for the 12.5 km product) for each
Wind Vector Cell (WVC) separately. If a value
is missing, the buffer is reset. If the buffer is
full, a periodogram is made. The spectrum is
the average of all periodograms for all
WVC’s. The samples are thus nonoverlap-
ping, but with irregular distance between
them. Before each periodogram is made the
sample is detrended using a linear
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Figure 6. As Figure 5, but for wind component t.

Table 1. Geographical Limits and Nomenclature for the Study Regions
Shown in Figures 5 and 6

West Pacific Central Pacific East Pacific
140�E–180�E 180�E–220�E 220�E–260�E

North WPN CPN EPN
5�N–10�N (Rainy) (Rainy) (Rainy)
Equatorial WPE CPE EPE
5�S–5�N (Rainy) (Dry) (Dry)
South WPS CPS EPS
10�S–5�S (Rainy) (Dry) (Dry)
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transformation that maps the value
of the last point on that of the first
point. This detrending transforma-
tion has been chosen, because it has
relatively small effect on the total
variance compared to other detrend-
ing methods except first differencing
[Vogelzang et al., 2011].

The circles in Figure 8 indicate the
values of (28) for r5k21

m with m
between 1 and 128. They are con-
nected by the dotted curves to guide
the eye. Note that the positions at
which the spectral variances are
given are strongly concentrated in a
small range of scales. The solid
curves show the spatial variances
calculated using the same sampling

strategy, including detrending of each sample, with fmax 50 (no missing points allowed) and equal weight
for all samples. Though the spectral and spatial variances agree at the largest scale, their behavior at smaller
scale is quite different: spatial variances are concave as a function of scale while spectral variances are con-
vex. This is caused by the fact that the Fourier modes that make up the spectrum have no sharp spatial
representation.

The dashed curve in Figure 8 is obtained in the same manner as the solid one, but without detrending the
samples. Comparison of the solid and dashed curves shows that detrending reduces the variance up to
about one third at large scales. At small scales the effect becomes negligible, consistent with the notion
that detrending acts as a high-pass filter. The dot-dot-dashed curve is the same as the solid curve in Figure
1 (i.e., overlapping samples with fmax 5 0 and equal weights). Note that the dot-dot-dashed curves are close
to the dashed ones. This implies that a sampling strategy of nonoverlapping samples without missing
points gives about the same results as a sampling strategy of overlapping samples without missing points.

Figure 8 shows that spectral sampling in itself does not produce a strong bias to calm conditions. The
restriction to samples without missing points leads to an underestimation of the variance of about 5%, as
shown in Figures 1 and 2. A larger effect is introduced by detrending. The detrending method employed
here, a linear transformation mapping the first and last point of the sample on the same value, reduces the
total sample variance by about one third. This can be overcome by using first differencing. The largest dif-
ferences between the spectrally calculated spatial variances (dotted curves) and the directly calculated ones
are due to invalidity of (7).

It should be added here that
Vogelzang et al. [2011] use (7) to
calculate representativeness errors
as a function of scale for the same
four wind products used in this
paper: ASCAT-12.5, ASCAT-25, Sea-
Winds-NOAA, and SeaWinds-KNMI.
The spectral integration range is
determined by the changes in
spectral slope as a function of
wave number, and was found to
be from infinity to 1/800 km21. A
reanalysis with spatial variance
gave the same results (so the con-
clusions of that study remain
valid), but now at a spatial
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Figure 7. Histograms for the ratio of spectral variance and second-order structure
functions for nine areas in the Tropical Pacific, 12 months, and four different scatter-
ometer wind products.
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integration range of 0–200 km. Following Skamarock [2004], one would expect that below spatial
scales of about 200 km the scatterometer reveals more structure than the model, as observed.

6. Conclusions

Spectral analysis and second-order structure function calculation are common methods to find order-of-
magnitude estimates of variance as a function of spatial scale. A quantity called spatial variance offers a
more accurate estimate of variance as a function of scale. Spatial variances are also known as M-sample var-
iances. Their interpretation is clear, and they are tolerant of missing data.

It is shown how spatial variances can be related to second-order structure functions, both in the discrete and in
the continuous case. For a single data series without missing points this relation, already derived by Yates
[1948], is statistically exact. As no assumptions are made on the nature of the series, except that it contains finite
values, the relation holds also for ensemble averages in cases where velocity differences converge to structure
functions. The complement of the spatial variance can be Fourier transformed and related to the spectrum.

The tolerance of spatial variances to missing data points allows investigation of various sampling strat-
egies. In this paper some sampling strategies are tested for ocean surface scatterometer winds from
ASCAT on a 12.5 km grid. When using overlapping samples, the relative effect of various choices (maxi-
mum fraction of missing points in a sample, requirement that sample end points are not missing, sam-
ple weighting) is limited to within 30%. Restricting to samples without missing points, the effect of
using nonoverlapping samples (the sampling strategy used for calculating spectra) has little effect com-
pared to using overlapping samples. Therefore spectral sampling of scatterometer winds shows no
strong bias to calm conditions.

If the second-order structure function behaves like rp its ratio with the spatial variance equals ðp11Þðp12Þ. The
inverse of this ratio is calculated for nine test areas in the Tropical Pacific and 12 months from November 2008
to October 2009 using four different scatterometer ocean surface wind products. The results show that second-
order structure functions are well suited as a proxy for the variance. For the wind field in the Tropical Pacific con-
sidered here, the variance equals about 0.17 (0.18) of the structure function value for l (t). This value is consistent
with a simple power law behavior of the second-order structure function of the form r20:95 (r20:92), implying a
wave spectrum of the form k21:95 (k21:92). These values are in good agreement with earlier results.

Comparison of spatial variances with spectral variances shows good agreement for the variance at a scale
equal to the sample length, as expected, but considerable differences at smaller scales. Though the spec-
trum can be interpreted as a variance density in the spectral domain, it cannot be transformed to a cumula-
tive variance at a sharply defined scale in the spatial domain. Since the spectrum is the Fourier transform of
the autocovariance and since autocovariance is related to variance, qualitative arguments based on the
integration of the spectrum over a finite interval to yield variances in the spatial domain are correct for
well-behaved data sets. Detrending of the samples reduces the variance at large scales, but this can be
overcome by using first differencing.

The main recommendation of the paper is thus to use spatial variances if one is interested in an accurate
estimation of variance as a function of spatial scale. A first application has been the calculation of represen-
tativeness errors in triple collocation exercises. Another application may be analysis of the geophysical
errors in scatterometer WVC’s as a function of aggregation area size.

Appendix A: Spatial Variance and Second-Order Structure Function

A1. Single Sample
Suppose we have a sample of l11 equidistant points fuig5fuðriÞg; i50; � � � ; l taken from a much longer
series. The variance of the sample, s2

l can be expressed as [see e.g., Barnes, 1991]

s2
l 5

1

2ðl11Þ2
Xl

j;k50

ðuj2ukÞ2; (A1)

where s2
l is not considered as an estimator of the variance, but as a measure. When considered as an estima-

tor, (A1) should be multiplied by a factor ðl11Þ=l in order to arrive at an unbiased estimator. (A1) is symmet-
ric in the summation indices, and the diagonal terms vanish. It can therefore be written as
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s2
l 5

1

ðl11Þ2
Xl

j;k50
k>j

ðuj2ukÞ2: (A2)

A2. Series Averaging
The running average of s2

l over the entire series of n	 l points reads

V lð Þ5 1
n2l

Xn2l

i51

s2
l 5

1

ðn2lÞðl11Þ2
Xn2l

i51

Xl

j;k50
k>j

ðui1j2ui1kÞ2: (A3)

Changing summation variable k to m5k2j and changing the order of the summations, (A3) can be written
as

V lð Þ5 1

ðl11Þ2
Xl

m51

Xl2m

j50

1
ðn2lÞ

Xn2l

i51

ðui1j2ui1j1mÞ2: (A4)

Now each sum over i can be recognized as the estimator of the second-order structure function, denoted
as DðmÞ. For a given value of l the estimation is over subsamples of length n2l with starting points ranging
from i51 to i5l. The subsamples differ only at their beginning and their end, but the points from i5l11 to i
5n2l21 are common. Since n	 l, each sum will converge to the same value DðmÞ in the limit that
n!1. Now the summation over j is easily performed, leading to

VðlÞ5 1

ðl11Þ2
Xl

m51

ðl112mÞDðmÞ: (A5)

This statistical relationship between spatial variances and structure functions is already given by Yates
[1948]. It is valid when the data set is free of missing points and large enough to ensure convergence of the
ensemble averaging over all samples to a uniform DðmÞ. For l51 the familiar result V 1ð Þ5 1

4 D 1ð Þ is
obtained.

A direct consequence of (A4) is

DðlÞ5ðl11Þ2VðlÞ22l2Vðl21Þ1ðl21Þ2Vðl22Þ; (A6)

with VðlÞ50 for l < 1. This is easily proven by substituting (A5) into the right-hand side of (A6). All terms
cancel, except DðlÞ.

A3. Continuous Case
Putting ri5iDr () i5ri=Dr, with Dr the grid size, we can introduce the position explicitly in (A5) as

V rlð Þ5
Dr

r2
l11

Xl

m51

ðrl2rm21ÞDðrmÞ: (A7)

In the limit Dr ! 0, the summation becomes an integral and the difference between rl11 and rl vanishes,
resulting in

V rð Þ5 1
r2

ðr

0

ds r2sð ÞD sð Þ; (A8)

with rl ! r and rm ! s. Note that VðrÞ is defined only for r � 0 by (A8). Since D is an estimator of the second-
order structure function, it can be extended to negative values of its argument as an even function, Dð2sÞ5DðsÞ.
From (A8) it then follows that also V can be extended as an even function, Vð2rÞ5VðrÞ, as expected.

Relation (A8) can be inverted as follows. Write

V rð Þ5 1
r

I rð Þ2 1
r2

J rð Þ; (A9)

where
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IðrÞ5
ðr

0

dsDðsÞ; JðrÞ5
ðr

0

dssDðsÞ: (A10)

Taking the first and second derivatives of V with respect to r eliminates the integrals IðrÞ and JðrÞ, and yields
the continuous analogue of (A6)

D rð Þ5r2 d2VðrÞ
dr2

14r
dVðrÞ

dr
12V rð Þ: (A11)

This can easily be verified by substituting (A9) in (A11). Equation (A11) can also be derived from (A6) by tak-
ing the continuous limit in the same way as (A5) led to (A8).

Finally, (A8) has the form of a convolution integral (D. Broomhead, personal communication, 2013), and a
change of integral variables from s to r2s0 allows it to be written as

V rð Þ5 1
r2

ðr

0

ds0s0D r2s0ð Þ: (A12)

A4. Ensemble Averaging
So far, the equations in this appendix were derived for a single, (infinitely) long, discrete or continuous data
series. Suppose now that the data were generated by a process for which ensemble averages of spatial dif-
ferences in u converge to structure functions, in particular

DEðrÞ5h uðxÞ2uðx1rÞð Þ2i; (A13)

with the brackets h:i denoting ensemble averaging and the subscript E denoting its result. Consider now
the quantity

vðx; rÞ5 1
r2

ðr

0

ds r2sð Þ uðxÞ2uðx1sÞð Þ2: (A14)

Taking an ensemble average yields

VE rð Þ5hvðx; rÞi5 1
r2

ðr

0

ds r2sð ÞDE sð Þ; (A15)

because in the right-hand side of (A14) integration and ensemble averaging can be interchanged as both
are linear operators, and ensemble averaging only affects the uðxÞ2uðx1sÞð Þ2 term.

Note that (A15) is valid under the assumption that ensemble averages of velocity differences converge to
structure functions, an assumption that is valid in this work because the spectrum of ocean surface winds
behaves like k2p21 with 1 < p < 3. We therefore drop in this paper the distinction between series averag-
ing and ensemble averaging, which is allowed anyway under the assumption of ergodicity. This holds, of
course, also for (A5), (A6), (A11), and (A12).

Appendix B: Spatial Variance and Spectrum

From the continuous analogues of (3), (12) and (13) one readily finds

wðkÞ5
ð1

21

dre2pikr r22
1
2

DðrÞ
� �

; (B1)

assuming that r2 is finite. With VðrÞ5r22�V ðrÞ equation (23) can be written as

D rð Þ52r2 d2 �V ðrÞ
dr2 24r

d�V ðrÞ
dr

12 r22�V ðrÞ
� �

; (B2)
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using the fact that DðrÞ, VðrÞ, and �V ðrÞ can be extended as even functions to negative values of their argu-
ments, see below (A7). Substitution of (B2) into (B1) yields

wðkÞ5
ð1

21

dre2pikr 1
2

r2 d2 �V ðrÞ
dr2

12r
d�V ðrÞ

dr
1�V rð Þ

� �
: (B3)

�V can be written in terms of its inverse Fourier transform, denoted as �̂V , as

�V ðrÞ5
ð1

21

dpe22pipr �̂VðpÞ: (B4)

From this it easily follows that

d�V ðrÞ
dr

522pi
ð1

21

dppe22pipr �̂VðpÞ; (B5)

d2 �V ðrÞ
dr2

524p2
ð1

21

dpp2e22pipr �̂VðpÞ: (B6)

Substitution of (B4)–(B6) in (B3) and changing the order of the integrations results in

wðkÞ5
ð1

21

dp�̂V ðpÞ
ð1

21

drð22p2r2p224pirp11Þe2piðk2pÞr : (B7)

Each factor r can be replaced now by a differentiation to k divided by 2pi. Putting the differentiations in
front of the integration to r allows this integration to be evaluated. It yields a delta function dðk2pÞ which
in turn allows the integration to p to be evaluated. The final result is

wðkÞ5 1
2

k2 d2 �̂V ðkÞ
dk2

22kd �̂V ðkÞ
dk

1�̂V ðkÞ: (B8)

This shows that the spectrum is not only related to the Fourier transform of the complement of the spatial
variance, but also to its first and second derivatives.
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