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ABSTRACT 

The ability of tannins to interfere with ruminal biohydrogenation (BH) and modulate 

the fatty acid (FA) profile of ruminant-derived products is highly controversial, which 

is probably related to the type of tannin and the dosage rate. Therefore, this in vitro 

study was conducted to analyse the effect of 4 commercial extracts of tannins (from 

chestnut, oak, quebracho and grape) at 4 doses (20, 40, 60 and 80 g/kg diet DM) with 

the aim of selecting an effective treatment to modulate the BH of unsaturated FA. 

Two in vitro assays with batch cultures of rumen microorganisms, using cannulated 

ewes as donors of rumen inocula, were performed. The incubated substrate (a total 

mixed ration similar to that fed to the animals) was supplemented with 20 g of 

sunflower oil/kg DM. The first experiment followed a 4 × 4 + 1 design (i.e., 4 types 

of tannins × 4 doses of each one, and a control), and treatment effects on the FA 

composition of the ruminal digesta were examined by gas chromatography. On the 

basis of these results, the second experiment was conducted to make sure that the 

selected dose and type of tannin would not impair rumen fermentation. To this end, 

gas production kinetic parameters, extent of degradation, in vitro true substrate 

digestibility, pH, and ammonia and volatile FA concentrations, as well as the bacterial 

community (by terminal restriction fragment length polymorphism, T-RFLP) were 

examined. All tannin extracts were able to modulate the in vitro BH of unsaturated 

FA. However, the high dose required in many cases suggests that their efficacy would 

be rather limited in terms of animal feeding. On the other hand, the oak tannin extract, 

at a dose of 20 g/kg diet DM, increased total polyunsaturated FA, 18:3n-3, 18:2n-6 

and trans-11 18:1, and decreased trans-10 18:1 and 18:0 rumen concentrations 

without eliciting any negative response in ruminal fermentation. Although this 

treatment had no discernible effects on the bacterial community structure and 
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diversity, a few fragments compatible with uncultured Lachnospiraceae species were 

affected. 
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fragment length polymorphism; VFA, volatile fatty acid. 
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1. Introduction 

Due to consumers’ concerns about food of animal origin and demands for 

healthier food, considerable effort is being made by ruminant nutrition researchers to 

develop products that are safe and potentially health-promoting. Such properties have 

been assigned to unsaturated fatty acids (FA) and particularly to conjugated linoleic 

acids (CLA) formed in the rumen by microbial biohydrogenation (BH) of certain 

polyunsaturated FA (PUFA; Lock and Bauman., 2004; Shingfield et al., 2008). 

Increased levels of desirable FA in ruminant derived products can be achieved 

through feeding strategies reducing the extent of BH or facilitating a higher rumen 

output of cis-9 trans-11 CLA, the main health-promoting CLA isomer, and especially 

trans-11 18:1, which will act as a precursor of the former in the animal’s own tissues 

(Lock and Bauman, 2004; Shingfield et al., 2008). 

Tannins are plant secondary compounds with antibacterial and rumen 

modulating properties that are able to interfere with BH (McSweeney et al., 2001; 

Mueller-Harvey, 2006; Vasta et al., 2009a). Some in vitro studies have suggested that 

diet supplementation with these phenolic compounds may be an efficient tool to 

favourably modify the BH of dietary PUFA and enhance the accumulation of trans-11 

18:1 due to an inhibition of the last step of BH (Khiaosa-ard et al., 2009; Buccioni et 

al., 2011). However, some others have reported a general inhibition of BH rather than 

a specific inhibition of the conversion of trans-11 18:1 to 18:0 (Kronberg et al., 2007; 

Minieri et al., 2014). In any case, this beneficial effect has rarely been validated in 

vivo (Vasta et al., 2009b; Khiaosa-ard et al., 2011) and many experiments seem to 

point to a different direction (e.g., Benchaar and Chouinard, 2009; Cabiddu et al., 

2009). 
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Results from our studies with lactating ewes fed diets supplemented with a 

combination of tannin extracts of quebracho and chestnut (10 g/kg diet DM; Toral et 

al., 2011) or just quebracho (20 g/kg diet DM; Toral et al., 2013) showed that tannin 

addition was not able to modify milk FA composition towards a potentially healthier 

profile, especially in the long-term. Recently, Buccioni et al. (2015), using the same 

tannin extracts (i.e., quebracho and chestnut) but at higher levels (53 g/kg diet DM), 

observed a slight increase in the milk concentration of linoleic, vaccenic and rumenic 

acids and a decrease in stearic and saturated FA. 

Given the great variation in the structural features and reactivity of different 

tannins (Álvarez del Pino et al., 2005; Mueller-Harvey, 2006), all these inconsistent 

results may be attributable to the type and/or concentration of tannins. Thus, there is a 

void of knowledge about which of the many types of tannins might be potentially 

more useful for a particular purpose, and also a need for further studies. 

Therefore, this in vitro study was conducted to analyse the effect of different 

types and doses of tannins with the aim of selecting an effective treatment to 

modulate the ruminal BH of unsaturated FA. Once a type of tannin at a practical dose 

(in terms of cost and avoidance of toxicity; Makkar, 2003) was chosen, a secondary 

aim, before recommending its test in vivo, was to make sure that it would not impair 

ruminal fermentation. 

 

2. Materials and methods 

An in vitro trial (Experiment 1) was conducted in batch cultures to assess the 

effects of different concentrations of a range of tannins on rumen BH. On the basis of 

the results obtained in this assay, a new in vitro trial (Experiment 2) was conducted to 

test the effect of a selected type and dose of tannin on rumen fermentation and 
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bacterial community. All experimental procedures were approved and completed in 

accordance with the Spanish Royal Decree 53/2013 for the protection of animals used 

for experimental purposes. 

2.1. Animals, diet and tannins 

In vitro incubations were conducted as outlined previously (Frutos et al., 

2004) with rumen fluid collected from 5 ruminally cannulated (40 mm internal 

diameter) Merino sheep (body weight = 63.6±6.42). All the animals were offered a 

total mixed ration (TMR, forage:concentrate ratio 50:50), based on alfalfa hay 

(particle size >4 cm) and concentrates, in two meals (60% at 9:00 h and 40% at 17:00 

h) at approximately 0.8 times the voluntary feed intake previously determined ad 

libitum (37 g DM/kg metabolic weight and day). Formulation and chemical 

composition of the diet is shown in Table 1. Animals had continuous access to clean 

drinking water. 

Four types of commercial oenological tannin extracts (Agrovin S.A., Alcázar 

de San Juan, Spain) were tested: 2 condensed [quebracho (QUE; Schinopsis lorentzii 

− TanicolMOX) and grape (GRA; Vitis vinifera − Tanicol VMax)] and 2 hydrolysable 

[chestnut (CHE; Castanea sativa − Vinitanon) and oak (OAK; Quercus robur and Q. 

petraea − Robletan FST)] tannins. 

2.2. In vitro experiments 

In each experiment, and after an adaptation period of 15 days, rumen fluid 

inocula (collected in three different days) were obtained via the cannula before the 

morning feeding. The inocula were immediately taken in thermal flasks to the 

laboratory where they were strained through a nylon membrane (400 µm; Fisher 

Scientific S.L., Madrid, Spain) while bubbled with CO2.  

2.2.1. Experiment 1 
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This trial was conducted using batch cultures of rumen microorganisms (in 16 

mL Hungate tubes), following a 4 × 4 + 1 (control) design. Treatments were: 4 types 

of tannins (quebracho, grape, chestnut and oak) × 4 doses of each one (20, 40, 60 and 

80 g/kg DM), and a control. 

The incubated substrate was a TMR, similar to that used to feed the animals, 

supplemented with 20 g of sunflower oil/kg diet DM [Carrefour S.A., Madrid, Spain; 

containing (g/kg total FA): 16:0 (54.8), 18:0 (44.2), cis-9 18:1 (364) and 18:2n-6 

(503)]. Both the oil and the tannins were dissolved, respectively, in ethanol 96% and 

in water at about 30ºC, and added into the tubes just before the incubation started.  

Each Hungate tube contained 78 mg DM of the substrate (ground using a 

hammer-mill fitted with a 0.5 mm screen) that were incubated with 12 mL of a mix 

(1:2) of strained rumen fluid and phosphate-bicarbonate buffer (Goering and Van 

Soest, 1970). The pH was adjusted to 6.8 with orthophosphoric acid in order to better 

simulate ruminal conditions in animals fed a 50:50 forage:concentrate diet. 

Tubes were incubated under anaerobic conditions for 12 h (when, according to 

previous preliminary assays, effects were better detected) in an incubator set at 

39.5ºC, and were individually agitated every 6 h. The reaction was stopped by placing 

the tubes into ice-water for approximately 5-10 min. They were then stored at −80ºC 

until FA analysis. 

2.2.2. Experiment 2 

Once the oak tannin extract at a dose of 20 g/kg DM was selected, a new in 

vitro trial was conducted in 125 mL sealed serum flasks to test the effect of this 

treatment on rumen fermentation and bacterial community.  

For each of the three runs, two samples of each treatment (i.e., control and 

OAK20; 325 mg DM milled to pass a 1 mm screen) and two blanks (i.e., buffered 
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rumen fluid without substrate) were incubated at 39.5ºC with 50 mL of a mix (1:2) of 

strained rumen fluid and phosphate-bicarbonate buffer. The pH of the buffer solution 

was adjusted to 6.8 as in the Experiment 1. 

The rate and extent of gas production were determined by measuring head-

space gas pressure at 2, 4, 6, 9, 12, 16, 20, 24, 30, 36, 48, 60 and 72 h post-

inoculation. Pressure values, corrected for the quantity of organic matter (OM) 

incubated and gas released from blanks, were used to generate gas volume estimates 

using a predictive equation, as reported in Frutos et al. (2004). Dry matter 

disappearance (DMD; g/kg) after 72 h incubation was estimated by filtering residues 

using pre-weighed sintered glass crucibles (100–160 µm; Pyrex, Stone, UK). 

In addition, three more flasks per treatment and run were incubated for 24 h. 

Once the reaction was stopped, the pH was measured in two flasks and centrifuged 

samples (at 976 × g for 10 min) were collected for ammonia and volatile fatty acid 

(VFA) analysis. Values of DMD and in vitro true substrate digestibility (ivTSD) were 

estimated by filtering the residues using pre-weighed sintered glass crucibles (100–

160 µm; Pyrex, Stone, UK) and determining the neutral detergent fibre content, as 

reported in Frutos et al. (2004). The third flask was immediately frozen at −80ºC for 

subsequent microbial DNA extraction and terminal restriction fragment length 

polymorphism (T-RFLP) analysis. 

2.3. Chemical analysis 

Feed samples were prepared (ISO 6498:2012) and analysed for DM (ISO 

6496:1999), ash (ISO 5984:2002), and crude protein (ISO 5983-2:2009). Neutral and 

acid detergent fibres (aNDF and ADF) were determined using an Ankom2000 fibre 

analyser (Ankom Technology Methods 13 and 12, respectively; Ankom Technology 

Corp., Macedon, NY, USA, https://ankom.com/procedures.aspx); the former was 
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assayed with sodium sulfite and α-amylase, and both were expressed with residual 

ash. The content of ether extract in the diets was determined by the Ankom Filter Bag 

Technology (Ankom Technology Method 2; Ankom Technology Corp.). Fatty acid 

methyl esters (FAME) of lipid in freeze-dried samples of TMR and in the sunflower 

oil were prepared in a one-step extraction-transesterification procedure, as outlined 

previously by Shingfield et al. (2003). 

Rumen samples for FA composition were freeze-dried directly in the Hungate 

tubes. The lipids were then extracted using a mixture of hexane and isopropanol (3:2, 

vol/vol) and converted to FAME by sequential base-acid catalysed transesterification 

(Toral et al., 2010). Methyl esters were separated and quantified using a gas 

chromatograph (Agilent 7890A GC System, Santa Clara, CA, USA) equipped with a 

flame-ionisation detector and a 100-m fused silica capillary column (0.25 mm i.d., 

0.2-μm film thickness; CP-SIL 88, CP7489, Varian Ibérica S.A., Madrid, Spain) and 

hydrogen as the carrier gas. Total FAME profile in a 2 μL sample volume at a split 

ratio of 1:50 was determined using a temperature gradient programme (Shingfield et 

al., 2003). Isomers of 18:1 were further resolved in a separate analysis under 

isothermal conditions at 170ºC (Shingfield et al., 2003). Peaks were identified based 

on retention time comparisons with commercially available authentic standards (Nu-

Chek Prep., Elysian, MN, USA; Sigma-Aldrich, Madrid, Spain; and Larodan Fine 

Chemicals AB, Malmö, Sweden; Toral et al., 2010), cross referencing with 

chromatograms reported in the literature (Shingfield et al., 2003; Toral et al., 2010) 

and comparison with reference samples for which the FA composition was 

determined based on gas chromatography analysis of FAME and gas 

chromatography-mass spectrometry analysis of corresponding 4,4-dimethyloxazoline 

derivatives (Toral et al., 2010). 
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The ammonia concentration was determined by colorimetry, and VFA by gas 

chromatography, using crotonic acid as the internal standard, both in centrifuged 

samples (Frutos et al., 2004).  

2.4. DNA extraction and T-RFLP analysis 

Frozen samples were freeze-dried and thoroughly mixed before DNA 

extraction, which was conducted in duplicate using the Qiagen QIAmp DNA Stool 

Mini Kit (Qiagen Inc., Valencia, CA, USA), with the modification of a greater 

temperature (95ºC) to improve cell lysis. Duplicate samples were combined and used 

as templates for T-RFLP analysis of bacterial 16S rRNA genes, which were 

performed as described previously (Castro-Carrera et al., 2014), using three restriction 

enzymes (HhaI, MspI and HaeIII). Determination of the sizes of the terminal 

restriction fragments (T-RF) was completed with the size standard ET 900-R (GE 

Healthcare Life Sciences, Buckinghamshire, UK) and the GeneMarker Analysis 

software (SoftGenetics, State College, PA, USA). In order to infer the bacterial 

composition of the samples, in silico restriction for the major rumen bacteria with the 

primers and the enzymes used were obtained from the Ribosomal Database Project II 

website (http://rdp.cme.msu.edu/index.jsp; Cole et al., 2014). 

2.5. Calculations and statistical analysis 

Gas production data were fitted to an exponential model using SAS software 

package (version 9.3, SAS Institute Inc., Cary, NC, USA) to provide parameters 

describing gas release in terms of cumulative gas production (A, mL of gas/g of OM 

incubated) and fractional fermentation rate (c, /h). Average fermentation rate (AFR, 

mL of gas/h) and extent of degradation in the rumen (ED, g/kg of DM) were 

estimated assuming a rumen particulate outflow (kp, /h) of 0.042, according to the 
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following equations: ED = (c × DMD)/(c + kp), and AFR = (A × c)/(2 × ln2), where 

DMD = in vitro DM disappearance after 72 h of incubation. 

Data from T-RFLP (size, bp, and peak area for each T-RF) were analysed for 

peak filtering and binning as outlined by Abdo et al. (2006), and used to determine the 

relative abundance of each fragment over the total peak area, as well as the diversity 

indices (number of T-RF or richness, and Shannon index; Hill et al., 2003). 

Multivariate analysis of variance (MANOVA) of the relative abundance data of each 

T-RF was conducted, using the R-project software (www.r-project.org, version 3.1.1), 

to assess the effect of experimental treatment on the whole bacterial structure. 

FA composition of ruminal digesta from the Experiment 1 was analysed by a 

one-way ANOVA using the MIXED procedure of SAS with a model that included the 

fixed effect of experimental treatment. Run nested within treatment was designated as 

the random effect. Orthogonal polynomial contrasts were used to evaluate linear (L), 

quadratic (Q) and cubic (C) components of the response to incremental amounts of 

each tannin extract. Rumen fermentation data from the Experiment 2 were analysed 

using the MIXED procedure of SAS with a model that included the fixed effect of 

experimental treatment and the random effect of run nested within the treatment. 

Relative abundances of each T-RF were analysed similarly, although some data did 

not satisfy the assumptions of normality and were transformed to log10 (n + c) (“c” 

being a constant of the same order of magnitude as the variable). Differences were 

declared significant at P<0.05 and considered a trend towards significance at P<0.10. 

Means were separated through the “pdiff” option of the “lsmeans” statement of the 

MIXED procedure, and least square means are reported. 

 

3. Results 
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3.1. FA composition of ruminal digesta (Experiment 1) 

As shown in Table 2 and Figure 1, all tannins and doses, with the exception of 

QUE80, proved to be able to slightly reduce the concentration of 18:0 (P<0.001) after 

12 h incubations. Low and moderate doses increased concentrations of 18:2n-6 and 

18:3n-3 (up to 90 and 86%, respectively; P<0.01). However, only some doses of 60 

and 80 g/kg tended to augment cis-9 18:1. Likewise, concentrations of cis-9 trans-11 

18:2 were only favoured by 60 g/kg of QUE and CHE, and 80 of GRA and OAK 

(P<0.001), the highest value representing an increase of 128% compared to the 

control. No significant effect of the tannin treatment was observed on the digesta 

concentration of trans-9 cis-12 18:2. 

A tendency to a greater accumulation of trans-11 18:1 was only detected with 

60 and 80 g/kg of GRA and CHE, and 20 of OAK (up to 16%; P<0.10). The 

concentration of trans-10 18:1 showed an irregular behaviour: although QUE60 

increased it, most other treatments (e.g., QUE, CHE and OAK at 20 g/kg) decreased it 

(P<0.001).  

These variations were accompanied by a number of changes in several odd 

and branched-chain FA and also in some oxo-FA concentrations (see Table 3 and 

Figure 1). Thus, the proportion of 14:0 iso was increased by QUE and CHE at 20, 40 

and 60 g/kg and by OAK at 20 and 40 g/kg (P<0.01). No differences were found in 

15:0 iso (P>0.10) while many treatments increased 15:0 anteiso, and 15:0 was higher 

in QUE40 and CHE20 and 40 (P<0.05). All tannins decreased 17:0 when added at 

doses of 20, 40 and 60 g/kg, and GRA and CHE also at 80 g/kg. Overall, despite the 

erratic pattern, all tannin extracts led to general increases in both branched-chain 

(BCFA) and odd- and branched-chain (OBCFA) fatty acids (P<0.01). 

3.2. Rumen fermentation and bacterial community (Experiment 2) 
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As shown in Table 4, addition of OAK20 had no effect on any of the rumen 

fermentation characteristics that were analysed (e.g., gas production kinetic 

parameters, extent of degradation, pH, ammonia and VFA concentrations, molar 

proportions of VFA, etc.; P>0.10). 

Regarding the microbiota, MANOVA revealed that OAK20 had no 

discernible effects on the bacterial community structure (P>0.10). Neither did the 

diversity indices (richness and Shannon) differ between treatments in data derived 

from the enzymes HhaI, MspI and HaeIII (P>0.10; Table 5). However, the OAK20 

induced variations in the relative abundances of a few T-RF (Table 5), such as an 

increase in some fragments that may correspond to uncultured bacteria of the class 

Clostridia (750 bp with HhaI; P<0.10) or the family Lachnospiraceae (65 bp with 

HhaI, 293 bp with MspI, and 277 bp with HaeIII; P<0.05). 

 

4. Discussion 

Due to its major influence on the FA composition of ruminant meat and milk, 

a great deal of effort has been directed towards modulation of lipid metabolism in the 

rumen (Lock and Bauman, 2004; Shingfield et al., 2008). The ability of tannins to 

contribute to this goal is highly controversial, which is most probably related to their 

type and dosage rate, and highlights the need to further investigate on this issue. 

As shown in Figure 1, although most FA concentrations follow a similar 

pattern of response to tannin extracts (e.g., decreases in 17:0 and 18:0 or increases in 

18:2n-6 and 18:3n-3), there were also many exceptions in their effects (e.g., on trans-

10 and trans-11 18:1 or on cis-9 trans-11 18:2) due to both the type of tannin and the 

dose. 
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Starting from the type, there are some studies on the use of commercial 

extracts of quebracho, and also of chestnut tannins (e.g., Vasta et al., 2009a; Toral et 

al., 2011; Buccioni et al., 2015), although their results are rather inconsistent. 

Nevertheless, and despite some works have been conducted with grape seeds (e.g., 

Correddu et al., 2015), reports are very limited for marketable extracts of grape or oak 

tannins. 

Tannins comprise a very wide and heterogeneous group of phenolic 

compounds with different chemical and structural features (Mueller-Harvey, 2006). 

Hence, dissimilarities in procyanidin/prodelphinidin ratios, degree of galloylation, 

molecular weights, etc. would account for major variations in their ability to bind to 

other molecules or to affect microorganisms, and consequently in their effects, in this 

case on ruminal BH. In line with this, for example, the inclusion of an extract of 

condensed tannins from Acacia mearnsii (79 g/kg DM) inhibited the in vitro 

conversion of trans-11 18:1 to 18:0, while the same amount of tannins from 

Onobrychis viciifolia decreased the hydrogenation of linoleic and linolenic acids but 

had no effect on the last step of BH (Khiaosa-ard et al., 2009). 

Regarding the key issue of the dosage rate, we chose 4 doses to have a wide 

range that allow us to detect effects that may help to understand the underlying 

mechanisms of tannins. However, only the low (20 g/kg) and perhaps the moderate 

(40 g/kg) concentrations might be of interest in terms of animal feeding. Even if the 

60 and 80 g/kg doses had shown promising effects on the BH process, they could be 

not only detrimental to animal performance but also impractical under farm 

conditions due to their cost. This occurs, for instance, in some in vitro assays that 

found a beneficial impact of tannins on BH but at very high levels (up to 160 g/kg 

DM; Vasta et al., 2009a). The difficulty in selecting dosage rates of plant secondary 
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compounds to positively affect a particular parameter without conferring a negative 

response in others has been previously reported in several occasions (e.g., Benchaar et 

al., 2008; Toral et al., 2013). 

In any case, regardless of the practicality, our results do not clearly point to a 

greater ability of a particular dose to modulate the BH process towards a potentially 

healthier FA profile, suggesting interactions between types of tannins, doses and 

specific steps of the BH pathways. Thus, for example, only doses of 60 and 80 g/kg 

were able to promote the accumulation of cis-9 trans-11 CLA, while those of 20, 40 

and 60 g/kg increased the concentration of total PUFA, linoleic and linolenic acids, 

and QUE80 was the only treatment unable to decrease the proportion of 18:0. In 

agreement with this, Buccioni et al. (2011) observed that the effect of tannins on the 

BH process was, in many cases, stronger with a lower dose (49 vs. 82 g/kg DM).  

Overall, our results are consistent with those of other in vitro studies (e.g., 

Kronberg et al., 2007; Minieri et al., 2014) and suggest a general inhibition of the BH 

rather than the specific negative effect on the conversion of trans-11 18:1 to 18:0 that 

had been detected in some in vitro assays (Khiaosa-ard et al., 2009, Vasta et al., 

2009a, Buccioni et al., 2011). However, as mentioned in the introduction, they are in 

disagreement with the slight but positive effects reported by Buccioni et al. (2015) in 

ewes fed quebracho and chestnut tannin extracts at a dose of 53 g/kg diet DM. 

Although differences between in vitro and in vivo results cannot be ruled out, after a 

comprehensive comparison of these studies, the reason for the discrepancy is still 

uncertain. It is noteworthy, however, that in this latter work, tannin extracts replaced 

bentonite from the diet, which might partly explain some differences with the control 

diet, due to the potential effects of this clay on BH (Jeronimo et al., 2010). 



 16

Despite all tannin extracts tended to favour a slight accumulation of trans-11 

18:1 (with a P<0.10 only with doses of 60 and 80 g/kg of grape and chestnut, and 20 

of oak), their effect on the concentration of trans-10 18:1, a FA with an uncertain 

involvement in consumers’ health and animals’ performance (Shingfield et al., 2008), 

was highly variable. This is in line with inconsistent results found in the literature 

(e.g., Cabiddu et al., 2009, Abbedou et al., 2011; Toral et al., 2011). Nevertheless, the 

formation of trans-10 18:1 was not promoted at the expense of trans-11 18:1, which 

may be related to the basal diet (Vasta et al., 2009b) and would indicate only small 

deviations from major ruminal BH pathways. 

In this regard, concentrations of trans-9 cis-12 18:2 were investigated to test 

the hypothesis that tannins would benefit microbial populations able to metabolise 

cis-9 cis-12 18:2 via mechanisms other than isomerisation of the cis-12 double bond. 

However, this minor BH pathway (Honkanen et al., 2012), observed in sheep fed 

quebracho tannins (Toral et al., 2013), was not evident in our current assay. 

Different effects of the extracts on the BH of different unsaturated FA would 

suggest a distinct sensitivity to tannins of the microorganisms involved in each step of 

the process (Buccioni et al., 2011) because all changes are supposed to be mediated 

by the impact of tannins on the microbiota. This was supported by the variations 

observed in odd- and branched-chain FA, which are known to be largely derived from 

bacteria (Fievez et al., 2012). The quoted review by Fievez et al. (2012) related an 

increased proportion of cellulolytic bacteria with a high iso FA content, while 

increased amylolytic populations would facilitate a higher content of anteiso and 

linear odd-chain FA. Yet, the erratic pattern observed in our incubations does not 

allow us to attribute differences to specific alterations in these two kinds of bacteria. 

Changes in odd- and branched-chain FA reflecting shifts in rumen microorganisms 
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are also supported by variations in some keto-FA (e.g., 10-oxo- and 13-oxo-18:0), 

which suggest alteration of the ruminal pathways (Toral et al., 2010, 2012). 

To recapitulate, the treatment showing a more promising behaviour at a 

practical dose was OAK20, which increased total PUFA, 18:3n-3, 18:2n-6 and trans-

11 18:1, and decreased trans-10 18:1 and 18:0 concentrations. Therefore, the second 

experiment was conducted to ensure that this oenological extract of hydrolysable 

tannins would not elicit a negative response in ruminal fermentation.  

Although the attribution of more toxic and less efficient results to 

hydrolysable than to condensed tannins has proved simplistic and erroneous, some 

generalisations still persist (Mueller-Harvey, 2006). However, the OAK20 modulated 

BH but did not detrimentally affect any of the rumen fermentation characteristics that 

were analysed, most likely due to the small amount added to the diet. A number of 

studies have demonstrated this dose-dependent effect of tannins (e.g., Hervás et al., 

2003, Makkar, 2003), which is even applicable to their capacity to reduce rumen 

ammonia concentration due to their strong inhibitory effect on proteolysis (Makkar, 

2003; Frutos et al., 2004; Mueller-Harvey, 2006). 

Finally, regarding the microbial analyses, the low dose of tannins precluded 

major changes and therefore discernible effects were observed neither in the bacterial 

community structure nor in the diversity indices. Furthermore, the issue of the shifts 

in specific bacteria involved in BH is rather complicated because recent studies 

question previous reports indicating that BH is achieved only by a small group of 

bacteria and suggest that yet uncultivated species would play a relevant role (Huws et 

al., 2011; Toral et al., 2012, Castro-Carrera et al., 2014). 

In this assay, some T-RF affected by the addition of OAK20 are compatible 

with uncultured species belonging to the family Lachnospiraceae, which include 
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bacterial strains that have been related to lipid metabolism, both in vitro (Paillard et 

al., 2007; Boeckaert et al., 2009) and in vivo (Huws et al., 2011; Toral et al., 2012). 

Concerning the tolerance of the microbes of this diverse group to the presence of 

tannins, reports in the literature are once again inconsistent. For example, it has been 

reported that sainfoin (Onobrychis viciifolia) tannins inhibit the growth of a strain of 

Butyrivibrio fibrisolvens in vitro (Jones et al., 1994) but tannin-resistant bacteria of 

this genus have been identified in the rumen (Odenyo et al., 2001). Indeed, Vasta et 

al. (2010) observed in lambs that the addition of quebracho tannins to the diet 

increased its abundance. 

 

5. Conclusions 

The four oenological tannin extracts (quebracho, grape, chestnut and oak) that 

were examined in this study seem to be able to modulate the in vitro BH of 

unsaturated FA. However, the high dose required in many cases suggests that their 

efficacy would be rather limited in terms of animal feeding. On the other hand, the 

oak tannin extract, at a practical dose of 20 g/kg diet DM, increases total PUFA, 

18:3n-3, 18:2n-6 and trans-11 18:1, and decreases trans-10 18:1 and 18:0 rumen 

concentrations without eliciting any negative response in ruminal fermentation. 

Further studies would be now necessary to examine if these positive effects are 

extended to in vivo conditions. 
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Table 1 

Formulation and chemical composition of the experimental diet. 

 TMR1 SEM2 
Ingredients, g/kg of fresh matter   

Dehydrated alfalfa hay 500 - 
Whole corn grain 140 - 
Whole barley grain 100 - 
Soybean meal solvent 440 g CP/kg 150 - 
Sugar beet pulp, pellets 50 - 
Molasses, liquid 40 - 
Mineral supplement3 18 - 
Vitamin supplement4 2 - 

Chemical composition, g/kg DM   
Organic matter 900 3.15 
Crude protein 187 6.08 
Neutral detergent fibre 311 24.3 
Acid detergent fibre 218 21.1 
Ether extract 23.5 1.80 

1n = 6. Contained (g/kg of total fatty acids): 16:0 (252), 18:0 (53.8), cis-9 18:1 (139), 

18:2n-6 (346) and 18:3n-3 (119). 

2SEM=standard error of the mean. 

3Contained (g/kg): CaCO3 (556), Ca2HPO4 (222), and NaCl (222). 

4VITAFAC Ovino 0.2% AC (DSM Nutritional Products S.A., Madrid, Spain). 

Declared as containing: vitamin A (4,000,000 IU/kg), vitamin D3 (1,000,000 IU/kg), 

vitamin E (5 g/kg), iron (17.5 g/kg), manganese (20 g/kg), cobalt (50 mg/kg), iodine 

(250 mg/kg), zinc (15 g/kg), selenium (100 mg/kg), sepiolite (100 g/kg), calcium 

(26.2 g/kg), and magnesium (6.15 g/kg). 
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Table 2 

Effect of incremental levels of different tannin extracts (quebracho, QUE; grape, GRA; chestnut, CHE; oak, OAK) on 18:0 and 

unsaturated fatty acid concentration (g/100 g of total fatty acids) after 12-h in vitro incubation with rumen inoculum from sheep1. 

 18:0 cis-9 18:1 trans-10 
18:1 

trans-11 18:1 cis-9 
trans-11 

18:22 

trans-9 cis-
12 18:2 

18:2n-6 18:3n-3 PUFA3 

Control 61.2a 2.06c 0.387b-e 5.15d 0.088d-f 0.033 0.877f 0.175f 1.38e 

QUE20 58.8c-e 2.24bc 0.354f-h 5.35cd 0.092d-f 0.035 1.31b-d 0.278a-d 2.07b-d 
QUE40 58.2ef 2.40bc 0.321h 5.57a-d 0.100d-f 0.034 1.41a-d 0.314ab 2.21ab 
QUE60 58.7de 2.45ab 0.423a 5.61a-d 0.142c 0.036 1.42a-d 0.286a-c 2.21ab 
QUE80 60.4ab 2.31bc 0.406a-c 5.29cd 0.098d-f 0.038 1.11c-f 0.213d-f 1.77de 

GRA20 58.4ef 2.21bc 0.398a-d 5.30cd 0.081d-f 0.038 1.31b-d 0.285a-c 2.07b-d 
GRA40 58.4ef 2.29bc 0.368d-g 5.49a-d 0.114c-e 0.033 1.29b-d 0.256a-e 2.13b 
GRA60 58.1ef 2.48ab 0.393a-e 5.68a-c 0.091d-f 0.042 1.27b-e 0.234c-f 2.21ab 
GRA80 58.9c-e 2.60a 0.400a-d 5.95a 0.201a 0.037 1.14b-f 0.230c-f 1.86b-d 

CHE20 58.4ef 2.28bc 0.346gh 5.25cd 0.096d-f 0.030 1.47ab 0.307ab 2.25ab 
CHE40 58.4ef 2.34a-c 0.354f-h 5.38b-d 0.100d-f 0.033 1.47ab 0.313ab 2.27ab 
CHE60 57.4f 2.60a 0.411ab 5.71a-c 0.186ab 0.042 1.67a 0.325a 2.56a 
CHE80 59.8b-d 2.37ab 0.386b-f 5.65a-c 0.114c-e 0.043 1.08d-f 0.198ef 1.74c-e 

OAK20 58.0ef 2.34abc 0.352gh 5.86ab 0.076ef 0.037 1.47a-c 0.299a-c 2.27ab 
OAK40 58.3ef 2.30bc 0.376c-g 5.59a-d 0.076f 0.038 1.25b-e 0.269a-d 2.06b-d 
OAK60 58.5ef 2.23bc 0.366e-g 5.60a-d 0.115cd 0.032 1.29b-d 0.247b-e 2.11bc 
OAK80 59.9bc 2.41ab 0.400a-c 5.44b-d 0.148bc 0.039 0.906ef 0.193ef 1.56de 

SED4 0.692 0.155 0.160 0.233 0.0210 0.0047 0.203 0.0349 0.278 
P-value <0.001 0.053 <0.001 0.099 <0.001 0.288 0.006 <0.001 <0.001 

Contrasts5          
QUE LQ (L) Q (L) L  L L L 
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GRA LQ (L)  (L)   L Q LQ 
CHE LQ (L) Q  LQ  L LQ L 
OAK LQC    Q  LQC Q LQC 

1The incubated substrate was a TMR (forage:concentrate ratio 50:50) supplemented with 20 g of sunflower oil/kg diet DM.  

2Coelutes with trans-7 cis-9 18:2 and trans-8 cis-10 18:2. 

3PUFA, polyunsaturated fatty acids. 

4SED=standard error of the difference. 

5For each tannin, significance (P<0.05) of linear (L), quadratic (Q) and cubic (C) responses to tannin addition. Trends towards 

significance (P<0.10) are reported in parentheses. 

a-hWithin a column, different superscripts indicate significant differences.  



 28

Table 3 

Effect of incremental levels of different tannin extracts (quebracho, QUE; grape, GRA; chestnut, CHE; oak, OAK) on odd- and 

branched-chain and oxo- fatty acid concentration (g/100 g of total fatty acids) after 12-h in vitro incubation with rumen inoculum from 

sheep1. 

 14:0 iso 15:0 iso 15:0 anteiso 15:0 17:0 BCFA2 OBCFA3 10-oxo-18:0 13-oxo-18:0 

Control 0.068e 0.261 0.431f 1.06c-e 0.955a 2.34ef 4.84de 0.143b-d 0.190d-f 

QUE20 0.085a-d 0.305 0.489b-f 1.13a-c 0.851i 2.63b-d 5.13b-d 0.101de 0.164fg 
QUE40 0.093a-c 0.320 0.519a-d 1.18a 0.862hi 2.71ab 5.24a-c 0.103de 0.166e-g 
QUE60 0.084a-d 0.273 0.491b-f 1.07c-e 0.881fg 2.59b-f 5.06b-e 0.096e 0.134g 
QUE80 0.071de 0.251 0.436ef 1.04e 0.947ab 2.32f 4.79e 0.112de 0.188d-f 

GRA20 0.077de 0.309 0.535a-c 1.09b-e 0.884fg 2.73ab 5.28ab 0.143b-d 0.203c-e 
GRA40 0.075de 0.287 0.502a-f 1.07c-e 0.878f-h 2.61b-e 5.09b-e 0.194a 0.222cd 
GRA60 0.075de 0.289 0.528a-d 1.07c-e 0.890ef 2.62b-e 5.12b-d 0.189a 0.231bc 
GRA80 0.079c-e 0.289 0.540a-c 1.09b-e 0.922cd 2.64bc 5.16b-d 0.175ab 0.231bc 

CHE20 0.095ab 0.316 0.521a-d 1.17a 0.871gh 2.68bc 5.21a-c 0.134b-e 0.221cd 
CHE40 0.096ab 0.318 0.513a-e 1.16ab 0.876f-h 2.64bc 5.19a-c 0.123c-e 0.262ab 
CHE60 0.098ab 0.312 0.550ab 1.11a-e 0.894ef 2.77ab 5.29ab 0.104de 0.147g 
CHE80 0.074de 0.255 0.455d-f 1.06de 0.934bc 2.36d-f 4.84de 0.137b-e 0.200c-f 

OAK20 0.099a 0.352 0.578a 1.13a-d 0.876f-h 2.96a 5.49a 0.172a-c 0.294a 
OAK40 0.084b-d 0.310 0.505a-f 1.07c-e 0.882fg 2.69a-c 5.21a-c 0.178ab 0.272a 
OAK60 0.077de 0.304 0.519a-d 1.07c-e 0.907de 2.67bc 5.19a-c 0.160a-c 0.199c-f 
OAK80 0.074de 0.264 0.470c-f 1.09c-e 0.957a 2.41c-f 4.94c-e 0.144b-d 0.200c-f 

SED4 0.0073 0.0336 0.0379 0.0372 0.0091 0.137 0.159 0.0243 0.0158 
P-value 0.004 0.232 0.027 0.007 <0.001 0.003 0.010 <0.001 <0.001 

Contrasts5          
QUE LQ   Q LQC   L L 
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GRA     LQ Q    
CHE LQ  L Q LQC L L L QC 
OAK LQ  QC  LQ QC Q  Q 

1The incubated substrate was a TMR (forage:concentrate ratio 50:50) supplemented with 20 g of sunflower oil/kg diet DM.  

2BCFA, branched-chain fatty acids. 

3OBCFA, odd- and branched-chain fatty acids. 

4SED=standard error of the difference. 

5For each tannin, significance of linear (L), quadratic (Q) and cubic (C) responses to tannin addition. 

a-iWithin a column, different superscripts indicate significant differences. 
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Table 4 

Effect of the addition of an oak tannin extract (20 g/kg diet DM) on rumen fermentation 

parameters after in vitro incubation with rumen inoculum from sheep1. 

Item2 Control OAK20 SED3 P-value 
DMD72 (g/g) 0.703 0.679 0.0301 0.464 
A (mL/g OM) 381 381 10.7 0.979 
c (/h) 0.068 0.071 0.0016 0.176 
AFR 18.7 19.5 0.355 0.115 
ED (g/g) 0.435 0.426 0.0209 0.690 
ivTSD (g/g) 0.809 0.802 0.0195 0.752 
pH 6.44 6.46 0.0240 0.526 
Ammonia (mg/L) 709 654 101 0.618 
Total VFA (mmol/L) 79.2 71.5 4.72 0.176 
Molar proportions (mol/mol)     

Acetate 0.613 0.602 0.0225 0.641 
Propionate 0.177 0.182 0.0117 0.664 
Butyrate 0.157 0.162 0.0095 0.665 
Others4 0.053 0.054 0.0029 0.671 

Acetate:propionate ratio 3.52 3.35 0.338 0.635 
1The incubated substrate was a TMR (forage:concentrate ratio 50:50) supplemented 

with 20 g of sunflower oil/kg diet DM.  

2A = cumulative gas production; AFR = average fermentation rate; c = fractional 

fermentation rate; DMD72 = DM disappearance after 72 h of incubation; ED = extent of 

degradation in the rumen; ivTSD = in vitro true substrate digestibility; VFA = volatile 

fatty acids. 

3SED=standard error of the difference. 

4Calculated as the sum of isobutyrate, isovalerate and valerate. 
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Table 5 

Effect of the addition of an oak tannin extract (20 g/kg diet DM) on the diversity indices 

of the bacterial community, and on the relative frequencies [expressed as log10 (n + c) of 

the percentage over the total peak area, with original values in parentheses] of some 

terminal restriction fragments (T-RF) after 24-h in vitro incubation with rumen 

inoculum from sheep1. 

  Control OAK20 SED2 P-value 
Diversity indices      

      
HhaI Richness 64.3 63.0 2.67 0.643 
 Shannon index 3.58 3.59 0.0658 0.933 
      MspI Richness 95.0 95.3 4.70 0.947 
 Shannon index 4.11 4.15 0.0509 0.472 
      HaeIII Richness 56.0 57.3 3.67 0.735 
 Shannon index 3.61 3.62 0.0732 0.940 

      
T-RF frequencies      
      

Clostridia3 750 bp (HhaI) -0.064 
(0.864) 

0.099 
(1.28) 

0.0611 0.056 

 95 bp (MspI) 0.836 
(7.06) 

0.836 
(7.42) 

0.0908 0.783 

      Lachnospiraceae3 65 bp (HhaI) 0.895 
(7.87) 

0.946 
(8.82) 

0.0138 0.022 

 293 bp (MspI) 0.077 
(1.20) 

0.176 
(1.50) 

0.0247 0.016 

 277 bp (HaeIII) -0.056 
(0.227) 

0.291 
(1.28) 

0.109 0.034 

1The incubated substrate was a TMR (forage:concentrate ratio 50:50) supplemented 

with 20 g of sunflower oil/kg diet DM.  

2SED=standard error of the difference. 

3Putative taxonomic identification.  
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FIGURE CAPTIONS 

Figure 1. Effect of incremental levels of different tannin extracts (quebracho, grape, 

chestnut and oak) on the percentage of variation with respect to the control (i.e., without 

tannins) of 17:0 (SEM=0.801), 18:0 (SEM=0.317), cis-9 18:1 (SEM=1.45), trans-10 

18:1 (SEM=1.82), trans-11 18:1 (SEM=0.987), cis-9 trans-11 18:2 (SEM=10.5), 18:2n-

6 (SEM=5.32), and 18:3n-3 (SEM=6.09) content after 12-h in vitro incubation with 

rumen inoculum from sheep. 

Differences (*: P<0.05; t: P<0.10) compared with the control. SEM=standard error of 

the mean. 
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FIGURE 1 
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