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Introduction

The beginning of the last century brought two revolutions in physics: Gen-
eral Relativity and Quantum Mechanics that allowed physicists to dig into
the universe of the large scales and small distances, respectively. A few
significant physicists, see the picture in Fig. 1, helped to establish the new
principles that challenged conventional wisdom. With the pass of the years
the interconnection of the two worlds has become closer, with clear impli-
cations of the world of elementary particles in Astrophysics and Cosmology.
The relationship about the two developed directions in nowadays physics

Figure 1: Solvay Conference on 1927.

can be visualized in the Cosmic Uroboros picture, seen in Fig. 2. From
head to tail around the serpent in Fig. 2, the icons represent the size of the
cosmic horizon (1028 cm), the size of a supercluster of galaxies (1025), a sin-
gle galaxy, the distance from Earth to the Great Nebula in Orion, the solar
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12 Introduction

Figure 2: The scale of the modern physics.

system, the sun, the earth, a mountain, humans, a single-celled creature of
the bacterium, a strand of DNA, an atom, a nucleus, the scale of the weak
interactions (carried by the W and Z particles), and approaching the tail the
extremely small size scales on which physicists hope to find massive dark
matter particles (10−17 − 10−25 cm), and on even smaller scales a Grand
Unified Theory [1](GUT). We can see that particle physics (small size) and
cosmology (large size) overlap each other at last, as the tail inside the head
of the snake in the figure.

In the present work I shall concentrate on the region of 10−15 − 10−13

cm, where standard elementary particles find their place. In modern high
energy physics it has been accepted generally that quarks are the basic build-
ing blocks of matter. With the Gell-Mann-Zweig quark model [2, 3] for the
normal hadron states, mesons are made of a quark-antiquark pair, qq̄, and
baryons made of three quark components, qqq. The strong interaction be-
tween quarks and gluons is described by Quantum Chromodynamics (QCD).
According to QCD theory, mesons and baryons are formed from color-singlet
combinations of quarks. The need for the extra color degrees of freedom is
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evidenced by the existence of the ∆++(32
+
). Its flavour-spin wave function

is symmetric and one should introduce another color wave function to save
Fermi statistics, an antisymmetric color wave function, which is made of
three components, red, green and blue. Thus, with six basic quark com-
ponents (flavour) combined with three colors, the wave functions of color-
singlet combinations for hadrons are described as SU(6)flavor ⊗ SU(3)color.
The quark model was successfully motivated by the so-called “November
revolution” [4,5], with the discovery of the J/ψ particle nearly at the same
time by two experimental groups in 1974, and drew the attention of many
theoretical physicists later on [6–8]. After this discovery, both theory and
experiment jumped to search for new states with charm, which are a good
testimony for the QCD predictions. Therefore, with the new found states
with charm, even though c quark is much heavier than the s, u, d quarks,
meaning that symmetry is broken badly, we still can include the fourth
quark, charm c, by extending SU(3) to SU(4). Thus, for qq̄ mesons, we
have 3 ⊗ 3̄ = 8 ⊕ 1 → 4 ⊗ 4̄ = 15 ⊕ 1. But, for qqq baryons, the configura-
tions of 3-quark are more complicated than for mesons, and also the SU(4)
symmetry is more strongly broken for the heavy c quark. Generally, most
of the “ordinary” mesons and baryons with s, u, d and c can be included
in SU(4) multiplets, as shown in Fig. 3. This is the success of QCD in the
interpretation for the structure of the particles.

On the other hand, in the experiments, there are some states found,
such as the mesons, f0(500), f0(980), a0(980), κ(800), f0(1370), f0(1500)
and f0(1710), et al., the baryons, Λ(1405), N(1440), N(1535), et al., with
structure and properties difficult to explain by the normal quark model.
Thus, these states are called sometimes “exotic” states, although strictly
speaking exotic states are those which can not be built with qq̄ for mesons or
qqq for baryons. Some recent experimental discussions are given in [10,11].
What is the structure of these states? Under the Standard Model (SM) pro-
posed by Glashow [12] and Weinberg [13], the strong interacting particles
are colored quarks and gluons, described by the QCD, but, the visible par-
ticles in nature are color-singlet mesons and baryons. In theory, there are
still some states expected to be color-singlet with multi-quark combinations,
which are typically predicted by QCD-motivated models as non-qq̄ mesons
and non-qqq baryons. For example, similarly to the familiar meson octet of
flavour-SU(3) combining a quark triplet with an antiquark antitriplet, two
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Figure 3: SU(4) multiplets of mesons (left) and baryons (right) [9]. Left:
(a) for the 16-plets of pseudoscalar mesons; (b) for the 16-plets of vector
mesons. Right: the 20-plet with an SU(3) octet; (b) the 20-plet with an
SU(3) decuplet.
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Figure 4: The diagram presentation of the “normal” and exotic states:
baryon, meson, tetraquark, pentaquark, baryonium, hybrid and glueball (in
Spanish).

quark triplets can be combined to form a “diquark” antitriplet and a sex-
tet, or, green-red and blue-green diquarks form yellow (antiblue) and cyan
(antired) antitriplets. In fact, these diquarks do not exist since they are
not color-singlets [10]. But, the anticolored diquark antitriplets could com-
bine with other colored antiquark antitriplets to make a more complicated
structure forming multiquark color-singlet states. These so-called “exotic”
color-singlet multiquark states are: tetraquark mesons (containing a diquark
and diantiquark, 4-quark state [q̄q̄][qq]), pentaquark baryons (containing two
diquarks and one antiquark, 5-quark state q̄qqqq), the H-dibaryon (contain-
ing three diquarks, 6-quark state qqqqqq), glueballs (mesons made only from
gluons, gg, ggg), hybrids (formed from a q, q̄ and a gluon q̄qG, or qqqg),
and molecules (deuteron-like bound states made with two or more color-
singlet “normal” hadrons, qq̄ mesons or/and qqq baryons, by exchanging
virtual mesons π, ρ, ω, · · · , for example, meson-meson molecule (qq̄)(qq̄),
meson-baryon molecule (qq̄)(qqq), baryon-antibaryon molecule called bary-
onium (q̄q̄q̄)(qqq), and so on), some of them are illustrated in Fig. 4. One
should note that theoretically the molecules are constructed from the long
distance interaction force at the hadron level and are different from the
other categories of exotic states at the quark level (short distance region).

Looking for these exotic state candidates, they have been the subject of
many theoretical and experimental investigations in hadron physics. The
structure of the lightest scalar mesons σ, κ, a0(980) and f0(980), et al., is
still a critical issue in the theoretical interpretation. Are their components



16 Introduction

tetraquarks (see lattice QCD simulation [14]), mixing of scalar tetraquark
and quarkonia states [15], mesonic molecules [16–20], or something else?
A recent investigation of these states with tetraquarks, molecules, meson-
meson scattering and disconnected contributions in lattice was done in
Ref. [21], showing that whenever there are both connected and singly dis-
connected contributions, the disconnected part should never be dropped.
The tetraquark [q̄q̄][qq] potential was analysed in detail using SU(3) lattice
QCD in Ref. [22]. Also there are some heavy states claimed recently as
tetraquark states with QCD sum rules [23–26].

In the 2003, LEPS’s experiment reported the existence of a peak in
the K+n invariant mass distribution in the reaction γn → K+K−n [27]
measured in nuclei, declared as an evidence of the pentaquark and called
Θ+ state (also seen in CLAS [28] and HERA-B [29]), which drew numer-
ous theoretical attentions later: results with QCD sum rule [30, 31], SU(3)
Skyrme model [32], lattice QCD [33], decay model [34,35], chiral perturba-
tion method [36, 37], and so on. But, later in high-statistices experiments
of CLAS [38] and J-PARC [39], the signal of this state could not be re-
produced. Therefore the existence of the pentaquark is still a questionable
issue because of recent theoretical results in Effective Field Theory [40,41],
SU(3) lattice QCD [42, 43] and QCD sum rule [44] (a recent experimental
review can be seen in Ref. [45]). Actually, the updated reaction of Ref. [27]
performed in Ref. [46] with the γd→ npK+K− reaction, where a peak was
also seen, was dismissed as a proof of a state in Ref. [47]. It was show there
that a broad peak in the region of theK+n invariant mass around 1540 MeV
come artificially from the prescription given to calculate the momentum of
the neutron which was not measured (nor the proton). It was shown there
that the prescription failed to reproduce the actual neutron momentum. In
addition it was shown that extra strength could be produced with a fluctu-
ation. This was indeed the case and in the final accumulated strength with
three times more statistics, the narrow peak has disappeared [48] and only
the broad peak predicted in Ref. [47] remains.

The H-dibaryon was first predicted in 1977 by R.L. Jaffe with the quark
bag model [49], which proposed a stable, flavor-singlet (strangeness S = −2)
bound state dihyperon H(2150) and another isosinglet dihyperon H∗(2335)
state (as a bump in the ΛΛ invariant-mass distribution). After that, the
six quark states were also investigated theoretically with a nonrelativistic
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quark model [50], the Skyrme model [51], and recently lattice QCD [52,53],
and chiral effective field theory [54]. To search for the H-dibaryon experi-
mentally, the KEK-PS E224 Collaboration investigated the Ξ− 12C reaction
at rest and found no strong evidence of H-dibaryon state in the observed
Λ momentum spectrum [55]. With better statistics, the KEK-PS E522
Collaboration observed a bump near the ΛΛ threshold in the new measure-
ment data of the ΛΛ invariant mass spectrum for the 12C(K+,K−ΛΛX)
reactions, and still there was no significant enhancements observed above
the level of the model predictions [56]. More recently Belle experiments
with high-statistics looked for H-dibaryon production in inclusive Υ(1S)
and Υ(2S) decays [57]. In their searched results there is no evidence of
the H → Λpπ− (H̄ → Λ̄p̄π+) signals in the inclusive Λpπ− (Λ̄p̄π+) invari-
ant mass distribution, and also of the H → ΛΛ (H̄ → Λ̄Λ̄) signals in the
ΛΛ (Λ̄Λ̄) mass spectra. Therefore, until now, similarly to the pentaquark
state, there is still no evidence for the H-dibaryon (or six-quark states) in
nowadays experiments. Their existence is just at the level of the strong
theoretical motivation in different models.

Therefore, at present, we still lack enough experimental evidence for
the existence of so called “exotic” hadrons predicted by QCD-motivated
models. But, for the molecules, the situation is different for there is much
experimental support from hadron interactions. Strong evidence is found in
high energy hadron experiments that many new particles are not simply ex-
plained in the normal quark model, such as baryoniums, and XY Z mesons
which are charmonium-like and bottomonium-like states still not fitting into
cc̄− and bb̄−meson level schemes. Early in 1949, Fermi and Yang worked
on the “elementary” particles to find out what particles are simple and
what particles are complex, and theoretically proposed that the pion was a
tightly bound state formed by a nucleon and an anti-nucleon [58], which is
known as so-called baryonium (later, more theoretical discussions are seen
in Refs. [59–61]). Many years later, the BESII collaboration reported the
observation of a strong near-threshold mass enhancement in the invariant
mass spectrum of pp̄ in the radiative decay process J/ψ → γpp̄ in 2003 [62],
which observed a narrow peak close to low-mass pp̄ system with the mass
of M = 1859+3

−10(stat)
+5
−25(syst) MeV/c2 and the width of Γ < 30 MeV/c2

fitted by the S-wave Breit-Wigner resonance function. This possible new
resonance is modified with a small shift on its mass and width by the BESIII
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experiments in 2012, M = 1832+19
−5 (stat)+18

−17(syst)± 19(model) MeV/c2 and
Γ < 76 MeV/c2 [63], using more J/ψ sample events and a partial wave anal-
ysis. This new hypothetical state is known as X(1835), and has draw much
theoretical attention by different models [64–71]. A search for this state in
experiments was reviewed in Ref. [72], but it has also been questioned as a
new state in [73], which concludes that the peak observed is a consequence of
the final state interaction. Thus, the study of baryonium spectrum is a topic
of hadron physics drawing much theory attention. In Ref. [74], using the
one-boson-exchange potential model, the states of Y (2175) and η(2225) are
declared as bound states of ΛΛ̄ 3S1 and ΛΛ̄ 1S0, respectively. However, in
Ref. [75] the Y (2175), now officially called φ(2170), is found as a three body
resonance of φKK̄, with the KK̄ forming the f0(980). In the heavy quark
sector, Ref. [76] concluded that the Y (4630) and Y (4660) are the first ob-
servation of charmed baryonium constituted by four quarks, by reanalyzing
the Belle experimental data of Y (4630) → ΛcΛ̄c and Y (4660) → ψ(2S)ππ.
Using heavy baryon chiral perturbation theory, Ref. [77] investigated the
heavy baryonium mass spectrum and searched for bound states by solving
the Schrödinger equation with the two-pion exchange interaction potential.
Analogously, with the same method, the heavy baryonium mass spectrum
was revisited extrapolating the charm systems ΛcΛ̄c, ΣcΣ̄c to the beauty
sector of ΛbΛ̄b in Ref. [78].

In 2003, another well known particle was found, X(3872), which was
first discovered in the Belle experiment of the exclusive decay process B →
Kπ+π−J/ψ [79]. In this decay process, a narrow peak was found in the
π+π−J/ψ invariant mass distribution, with mass M = 3872.0± 0.6(stat)±
0.5(syst) MeV and width Γ < 2.3 MeV, which is very close the mD0 +mD∗0

threshold. Later, this new state, X(3872), was confirmed in different exper-
iments via different decay channels, CDF [80], DØ [81], BaBar [82], and its
JPC quantum numbers were also established recently in the Large Hadron
Collider (LHC) experiment of the LHCb’s results [83], as JPC = 1++.
The X(3872) is well know as a key member of the heavy quarkonium
family (more discussion about this particle is seen in the review of Ref.
[84]). One also has the so-called XY Z mesons, which can decay to fi-
nal states containing a heavy quark Q (where Q is either a c or b quark)
and a heavy antiquark Q̄, but cannot be easily accommodated in an un-
filled QQ̄ level. Normally, in the quark model, a heavy quark Q and a
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Figure 5: The spectrums of charmonium (left) and bottomonium (right).

heavy antiquark Q̄ can construct QQ̄ particle systems, called conventional
“quarkonium” mesons, such as charmonium (with Q as c) and bottomo-
nium (with Q as b), and these systems can be reasonably well described
by non-relativistic Quantum Mechanics (quarkonium model). For exam-
ple, ηc(1S), hc(1P ), ηc(2S), J/ψ, ψ(3770), χc0(1P ), χc1(1P ), χc2(1P ),
ψ(4040)(3S), ψ(4160)(2D), ψ(4415)(4S), et al., are conventional charmo-
nium states [85], and, ηb(1S, 2S), hb(1P, 2P ), χbJ(1P 2P ), Υ(nS), et al.,
are bottomonium states [86], as shown in Fig. 5. But, the properties of
X(3872) are not consistent with the normal charmonium, thus, it is just a
charmonium like state, which has drawn much attention in theoretical dis-
cussions [87–96]. Motivated by the discovery of X(3872), the experimental
facilities of charm factories and B-factories, such as BABAR at PEP-II, Belle
at KEKB, CLEO-III and CLEO-c at CESR, CDF and D at Fermilab, BESII
and BESIII at BEPCII, KEDR at VEPP-4, and, MALICE, ATLAS, CMS,
LHCb at the LHC, et al., have looked for new heavy quarkonium states
and have found many charmonium like and bottomonium like states in the
last decade, for example, X(3940), X(4160), Y (3915), Y (4260), Y (4360),
Z(4430), Z1(4050), Z2(4250), et al.. Even though there is no confirmation
of the observation of Z(4430), Z1(4050), Z2(4250) by the Belle collabora-
tion [97, 98], a more exciting recent finding is the observation of the state
Z+
c (3900) in the BESIII experiment Y (4260) → J/ψπ+π− decay [99], which

was seen as a peak in the π±J/ψ mass spectrum, and was later confirmed
by Belle collaboration [100] and the analysis of the CLEO-c data [101]. Not
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soon later, the BESIII collaboration reported the results of related obser-
vations, with three more charged states, Z+

c (4025) [102], Z+
c (4020) [103],

Z+
c (3885) [104]. But, up to now, the states Z+

c (3900) and Z+
c (3885), also

Z+
c (4025) and Z+

c (4020), seem likely the same state but seen in different
decay channels, and more investigations are needed before a firm conclusion
can be drawn [10,105–107]. On the other hand, the Y (4260) state, which was
first discovered by BaBar in the initial-state radiation (isr) process e+e− →
γisrπ

+π−J/ψ, as a broad resonance peak in the invariant-mass spectrum
of π+π−J/ψ [108], was subsequently confirmed by CLEO [109], Belle [110].
Due to the large partial decay width of Γ(Y (4260) → π+π−J/ψ) > 1 MeV,
which is much larger than that for typical charmonium [111], as suggested
by W. S. Hou in 2006 [112], the Belle collaboration was motivated to in-
vestigate whether or not there is a corresponding structure in the bot-
tomonium mass region

√
s ∼ 10.87 GeV. In this investigation the large

anomalous cross section for e+e− → π+π−Υ(nS), (n = 1, 2, 3) and the
partial widths Γ(Υ(5S) → Υ(mS)π+π−), (m = 1, 2) obtained from the
observed cross sections [113], may suggest the existence of a bottomo-
nium like bb̄ state around the energy range 10.89 GeV, as suggested in
Ref. [112], which would be the equivalent of the Y (4260). Therefore, contin-
uing studies, Belle subsequently found the strong resonance signals in the
mass spectra of the decay processes Υ(5S) → Υ(nS)π+π−, (n = 1, 2, 3)
and Υ(5S) → hb(mP )π

+π−), (m = 1, 2) [114], which corresponded to two
charged bottomonium-like states, the Zb(10610) and Zb(10650). The ob-
servation of Z+

c (3900), Zb(10610) and Zb(10650) in recent experiments has
drawn much attention to theoretical discussions and comments [115–123].
In 2012, BESIII also observed seven N∗ intermediate states in the decay
channel ψ(3686) → pp̄π0 [124], as N(1440), N(1520), N(1535), N(1650),
N(1720), and, two new resonances N(2300) and N(2570). There are also
some predictions of the exotic baryons recently in theory, about resonant
states formed by a heavy meson and a nucleon [125, 126], hidden charm
baryons [127], hidden beauty baryons [128], and about baryon-baryon bound
states [129].

Until now, the large number of new states found in the hadron exper-
iments during the last few years in charmonium and bottomonium spec-
troscopy, seem to suggest that there are there too many XY Z states, as
claimed in Ref. [130]. Furthermore, the properties of some of them are still
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not easy to explain within the conventional quark model spectrum. The
situation is that there are no compelling theoretical pictures that provide
an unquestionable description of what is seen in the experiments. As the
Quarkonium Working Group (QWG) concluded, there are still a lot of sur-
prises and puzzles in the studies of heavy quarkonium [131] (more comments
are also seen in the reviews of Refs. [132,133]). Although far away from the
states reported so far, one cannot omit here the Higgs-like boson which
was discovered by the ATLAS Collaboration and the CMS Collaboration in
LHC experiments at CERN [134, 135]. This discovery is considered to be
the most important advance in particle physics in the last half century, and
justified the awarding of the Nobel Prize in Physics for 2013 to François
Englert and Peter W. Higgs [136].

Thus, under the SM, the understanding of the properties of the particles
found in the hadron experiments, such as structure, decay mode, produc-
tion, and in-medium behaviour, et al., and the search for new states of the
hadron spectroscopy theoretically, is the motivation of the present thesis.
What theories and methods do we exploit? I will give more details in the
next chapter. Then, I will show our investigation results in the following
three chapters, and finish with a chapter dedicated to the conclusion.
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Chapter 1

Theoretical Approach

In this chapter, we will give a detail of the theories and approaches used in
the present work. First, we make a short review of the QCD theory, such as
its Lagrangian, running coupling, asymptotic freedom, confinement, chiral
symmetry and its breaking, and so on. Following, I will make a summary on
the interaction Lagrangian used in the present work. Next, one of the non-
perturbative QCD methods, the chiral unitary approach will be discussed,
including its extrapolation to higher partial waves. Then, we review one
more extrapolation of the chiral unitary approach to the Faddeev equations
for the three-body interaction, and its application under the Fixed Center
Approximation (FCA). Finally, we make an overview of the heavy quark
flavour-spin symmetry and Heavy Quark Effective Theory.

1.1 The QCD theory

The strong interaction is the strongest force of nature, which binds nucle-
ons in nuclei. Quantum Chromodynamics (QCD) is the theory of strong
interactions, a gauge field theory that describes the strong interactions of
colored quarks and gluons. Nowadays, QCD has firmly occupied its place
as part of the Standard Model (SM) of Particle Physics as a SU(3) compo-
nent of the SU(3) × SU(2) × SU(1) gauge theory, where the SU(3) gauge
group describes the strong color interactions among quarks and the SU(2)
× SU(1) gauge group describes the electroweak interactions.

23
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1.1.1 The QCD Lagrangian

In the framework of a constituent quark model, the spin 3/2 baryon, ∆++,
is composed of three identical up (u) quarks. Thus, together with spin,
isospin, its wave function with spin third component 3/2 can be written as
|∆++〉 = |u ↑ u ↑ u ↑〉, which is a completely symmetric wavefunction and is
in contradiction with the spin-statistics theorem for a fermion. Therefore,
the only way to construct a completely antisymmetric wavefunction for the
∆++ is to postulate an additional quantum number, which is called “color”.
Then, the quarks can exist in three different color states, called red, green
and blue. Thus, we can make an antisymmetric wavefunction in color space,
|∆++〉 = 1√

6
εijk|ui ↑ uj ↑ uk ↑〉, where εijk is the totally antisymmetric

tensor. Since there are 3 dimensions for the color space, the context of
QCD is based on the gauge group SU(3), a Special Unitary group with 3
complex dimensions. Now we can define a quark field in the 3-dimensional
color space

ψiq(x) =

 ψ1
q (x)

ψ2
q (x)

ψ3
q (x)

 ,

with a given flavour q = u, d, s, ..., which fulfils a colour gauge transforma-
tion,

ψiq(x) → ψ′i
q (x) = U ik(x)ψ

k
q (x) ,

ψ̄q i(x) → ψ̄′
q i(x) = ψ̄kU

† k
i (x) , (1.1)

where the U ik(x) is the usual exponential representation of the gauge trans-
formation matrix, which is a 3 × 3 matrix and depends arbitrarily on the
quark coordinates x, given by

U ik(x) = exp

[
−i

8∑
a=1

χa(x)
(λa)ik
2

]
, (1.2)

where it contains eight independent and arbitrary functions χa(x) multiplied
by eight reference matrices λa (a = 1, ...8), the Gell-Mann matrices [137].

The QCD Lagrangian has to be exactly symmetric with respect to the
local gauge transformations of Eq. (1.1) and describes the interactions of
quarks and gluons, which contains three parts,

LQCD = Lqua + Lint + Lglu. (1.3)
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The first part of the Lagrangian, Lqua, describes the propagation of free
quarks, given by

Lqua(x) =
∑

q=u,d,s,...

 ∑
k=1,2,3

ψ̄q k(x)(i∂µγ
µ −mq)ψ

k
q (x)

 , (1.4)

where mq is the quark mass, and γµ are the Dirac γ-matrices. The second
part, Lint, is a quark-gluon interaction term, as

Lint(x) = gs
∑

q=u,d,s,...

ψ̄q i(x)
(λa)ik
2

γµψkq (x)A
a
µ(x) . (1.5)

where gs is the dimensionless coupling, and Aaµ(x) correspond to the gluon
fields. Then, the third part, Lglu is a gauge-invariant term describing the
propagation of gluon fields, written

Lglu(x) = −1

4
F aµν(x)F

aµν(x) , (1.6)

where
F aµν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAbµA
c
ν , (1.7)

is the gluon field-strength tensor, and the fabc are the structure constants
of the SU(3) group, having [λa, λb] = ifabcλc. Finally, the full form of the
QCD Lagrangian is obtained by adding together the three pieces above

LQCD =
∑
q

ψ̄q(iDµγ
µ −mq)ψq −

1

4
GaµνG

aµν , (1.8)

where we define Dµ = ∂µ − igs
λa

2 A
a
µ. We can see that, LQCD describes not

only quark-gluon interactions but also gluondynamics (the specific gluon
self-interactions), and the fundamental parameters of QCD are the coupling

gs (or αs =
g2s
4π [9]) and the quark masses mq.

1.1.2 Running coupling, asymptotic freedom and confine-
ment

Now we will discuss about an important parameter of the QCD Lagrangian,
the coupling in the quark-gluon interaction term, gs. As an assumption or
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approximation, if the strong coupling do not run, QCD would be a theory
with a fixed coupling, the same at all scales, and is scale invariant, which is
closely related to the class of angle-preserving symmetries (called conformal
symmetries) and due to a property of light-cone scaling (called Bjorken
scaling) [138].

On top of the underlying scaling behavior, the running coupling will
introduce a dependence on the absolute scale, meaning that it is a function

of an (unphysical) renormalization scale µ, as αs = g2s
4π = αs(µ

2) (for a
given process, if one takes µ as the scale of the momentum transfer Q,
then, αs(µ

2) = αs(Q
2)). The running is logarithmic with energy, thus, the

coupling is governed by the so-called beta function, a renormalization group
equation, satisfying

β(αs) = µ2
∂αs
∂µ2

=
∂αs

∂ ln µ2
, (1.9)

where the function driving the energy dependence is defined as

β(αs) = −
∞∑
n=0

bn α
n+2
s = −α2

s (b0 + b1 α
1
s + b2 α

2
s + · · · ), (1.10)

with b0, b1, b2, · · · as the coefficients of leading order (one-loop), next to
leading order (two-loop), next to next to leading order (three-loop), · · ·
(their values can be seen in Refs. [9, 138–140]). And a minus sign in Eq.
(1.10) is consistent with the fact of asymptotic freedom, discussed later.

We can see that, the differential equation of Eq. (1.9) depends on the
energy scale, since there will be an integrated constant µ0, and also depends
on how many loops are involved in the calculation from the loop coefficients
bi of Eq. (1.10). For example, working on one loop amplitude and a given
scale of µ (or Q) as the mass of Z boson, Q = mZ , one can determine the
running coupling for the b0 > 0 and the number of flavors nf ≤ 16,

αs(Q
2) =

αs(m
2
Z)

1 + b0αs(m2
Z) log(Q

2/m2
Z) +O(α2

s)
, (1.11)

where αs(mZ) ' 0.12 [140], which is a small value and means a weak coupled
effect in the mZ scale. Using Eq. (1.11), the running of the coupling
constant is shown in Fig. 1.1 (so-called running coupling). As one can
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Figure 1.1: The running coupling constant αs(Q
2) as a function of momen-

tum transfer Q2 [140] (left), and the schematic view of the αs behavior at
different scales [137] (right).

be seen in the left of this figure, there is a wide region spreading up to the
scale Q > 1 GeV. In this region, the coupling αs is small, αs ∼ 0.1 − 0.3,
thus, the strong coupling becomes weak for the “hard” processes [9, 141]
involving large momentum transfers which correspond to short distances,
r ∼ 1/Q, and one can apply perturbative QCD. Furthermore, from Eq.
(1.11) and Fig. 1.1, a most spectacular consequence is the vanishing of the
running coupling in the limit of a very large energy (or momentum transfer),

αs(Q
2) → 0 for Q2 → ∞. (1.12)

This leads to the well known results of asymptotic freedom, discovered by D.
Gross, F. Wilczek, and H. Politzer [142,143] (the Nobel prize in physics was
awarded to them in 2004), which means that the QCD coupling effectively
decreases with energy and then when the quarks are really close to each
other, the force is so weak that they behave almost as free particles (more
correctly, it is the coupling rather than the force which becomes weak as
the distance decreases.) [138].

Conversely, quite a different situation takes place in the quark-gluon
interactions at small momentum transfers (at long distances). According
to Eq. (1.11) and Fig. 1.1, we also can see that when the scale is close to
1 GeV the coupling diverges rapidly, indicating that in the region of the scale
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Q < 1 GeV (large-distance or low-momentum transfer) the perturbative
QCD can not be applied. Therefore, this low momentum transfer region is
also called non-perturbative region, where the coupling becomes very strong
for the long distant interaction, and the fact is that the force between two
quarks does not vanish as their separation (or distance) r increases, having

V (r) → ∞ as r → ∞. (1.13)

Thus, when the quarks move apart, the force becomes stronger since the
distance increases. This force forbids the quarks to separate, then, in nature
we can not see the free quarks, showing that quarks are confined at rather
short distances (∼ 1 fm), the fact of confinement. It is true that at long
distances quarks and antiquarks strongly interact and form hadrons, which
is a characteristic for QCD at low energy scale. In QCD, the non-observation
of free colour-charged particles (quarks, antiquarks and gluons) is arranged
in a form of the colour confinement principle, postulating that all observable
states, i.e., all hadrons, have to be colour-neutral [137]. To work on this
region, we should use nonperturbative methods, for example, Effective Field
Theory (EFT) [144–147] (we will discuss it later), of which the underlying
ideas is to extrapolate the QCD Lagrangian symmetry to construct the
interaction Lagrangian with the “confinement” hadrons of the color singlet
instead of the unseen and unfree (even until now) quarks and gluons.

1.1.3 Chiral symmetry and its breaking

Nowadays, we know that there are six quark flavors with different masses,
the three light quarks u, d, and s and the three heavy flavors c, b, and t, mu = 0.002 GeV

md = 0.005 GeV
ms = 0.095 GeV

� 1GeV ≤

 mc = 1.275 GeV
mb = 4.650 GeV
mt = 173.5 GeV

 ,

where 1 GeV is the scale of QCD as discussed before. Thus, for small
momentum transfer, Q < 1 GeV < mc,b,t, the heavy quarks should not have
any influence on the dynamics, which will lead to a new flavor symmetry
of QCD, chiral symmetry (on the other hand, conversely, for the heavy
quark sector, the approximation to take the mQ → ∞ limit of QCD will
lead to another symmetry, spin-flavor heavy quark symmetry, discussed
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later). Containing only the light-flavor quarks in the so-called chiral limit,
mu,md,ms → 0 (mq → 0), the QCD Lagrangian of Eq. (1.8) is therefore
invariant under the independent transformations of right- and left-handed
fields (“chiral rotations”) :

ψRql =
1

2
(1 + γ5)ψql ; ψLql =

1

2
(1− γ5)ψql , (1.14)

where ql are only light quark fields. With the absence of the heavy quarks
and the massless of light quarks, the QCD Lagrangian in the chiral limit
can then be written as

L0
QCD =

∑
ql

(ψ̄Rql iDµγ
µψRql + ψ̄LqliDµγ

µψLql)−
1

4
GaµνG

aµν , (1.15)

which is invariant under independent global SU(3)L × SU(3)R symmetry.

In fact, the light quarks, u, d, and s, have not exact zero masses. There-
fore, the chiral symmetry of the strong interactions is broken by the particu-
larly non-zero quark masses. Taking into account finite light quark masses,
the quark mass term mixes left- and right-handed fields,

LM = −ψ̄qlMψql = −(ψ̄RqlMψLql + ψ̄LqlMψRql) , (1.16)

which is an explicit symmetry-breaking term when it transforms under
SU(3)L × SU(3)R (more discussions can be seen in Ref. [148]).

Furthermore, the chiral symmetry SU(3)L×SU(3)R spontaneously breaks
down to SU(3)V and, according to Goldstone theorem [149, 150], an octet
of pseudoscalar massless bosons appears in the theory, which is the Chiral
Perturbation Theory and discussed in next section.

1.2 Interaction Lagrangian

According to field theory, the interaction information can be obtained from
the Lagrangian. In this section, I will discuss about the Lagrangians used in
the present work, which are under the framework of the Chiral Perturbative
Theory (ChPT) and Local Hidden Gauge (LHG), as discussed below.
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1.2.1 The lowest order of ChPT Lagrangian

As discussed before, the chiral SU(3)L × SU(3)R symmetry in the mass-
less limit will be broken by the finite masses of light quark, and this sym-
metry of the QCD Lagrangian also spontaneously leads to SU(3)V sym-
metry of the ground state, with the Goldstone bosons, which is an octet
of the pseudoscalar mesons, (π,K, η). This is because the eight broken
SU(3)L × SU(3)R generators transform the composite field ψ̄Rqlψ

L
ql

along
symmetry directions, and thus, fluctuations in field space along these eight
directions are eight massless Goldstone bosons. The spontaneous symmetry
breaking means that the ground state of the system is no longer invariant
under the full symmetry group of the Hamiltonian. This is well described
by one of the EFT, ChPT. The ChPT provides a systematic method for
discussing the consequences of the global flavor symmetries of QCD at low
energies by means of the EFT. Because of the QCD confinement, in the low
energy region, we should use the non-perturbative QCD and work with the
EFT as discussed before. More systematic discussions about the ChPT can
be seen in Refs. [148,151–154].

In the framework of mesonic ChPT, the most general chiral Lagrangian
describing the dynamics of the Goldstone bosons is organized as a string of
terms with an increasing number of derivatives (or, equivalently, in terms
of increasing powers of momentum) and quark mass terms,

LMeff = LM2 + LM4 + LM6 + · · · , (1.17)

where the subscripts refer to the order in the momentum and quark mass
expansion, and, parity conservation requires an even number of derivatives.
To lowest order (leading order), the effective chiral Lagrangian is uniquely
given by

LM2 =
f2

4
〈∇µU∇µU † + χU † + Uχ†〉, (1.18)

where f is the pion-decay constant and 〈 〉 denotes the trace of the matrix.
In Eq. (1.18), the meson fields are described by a unitary 3× 3 matrix,

U(x) = u(x)2 = exp
{
i
√
2Φ(x)/f

}
, (1.19)
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which gives a very convenient parametrization of the Goldstone fields,

Φ(x) =

8∑
a=1

λaφa =


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 ; (1.20)

the field χ embodies two of the scalar and pseudoscalar external fields (s, p),

χ = 2B0(s+ ip), (1.21)

where B0 is a constant and one of the two free parameters (the other one
is f), which is also not fixed by symmetry requirements alone; and, the
covariant derivative ∇µU contains the couplings to two gauge fields (vµ, aµ),
the external vector and axial fields,

∇µU = ∂µU − irµU + iUlµ , (1.22)

with rµ = (vµ + aµ) and lµ = (vµ − aµ). The higher order terms of the
mesonic ChPT Lagrangian are out of the discussion in the present work,
which have more free parameters.

In the low-energy EFT, the interaction of baryons with the Goldstone
bosons is described as well by the external fields at low energies. To be
specific, we consider the octet of the 1

2

+
baryons, which are described in a

complex, four-component Dirac field, given by a traceless 3× 3 matrix,

B =
8∑

a=1

λaBa =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (1.23)

Since the power counting is different from the mesonic Lagrangian, the
lowest order of the baryonic Lagrangian, for the meson-baryon interaction,
is written as

LB1 = 〈B̄(iγµ∇µ−MB)B〉+D
2
〈B̄γµγ5{uµ, B}〉+F

2
〈B̄γµγ5[uµ, B]〉, (1.24)

where the D and F are the axial SU(3) coupling constants, with the values,
D = 0.85, F = 0.52 [153], and, MB denotes the mass of the baryon octet
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in the chiral limit (the masses of baryons do not vanish in the chiral limit).
But now, ∇µ is defined as

∇µB ≡ ∂µB + [Γµ, B] , (1.25)

with

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u

†
]
, (1.26)

where the matrix field u is defined in Eq. (1.19), and rµ, lµ are given in Eq.
(1.22). Finally, another Hermitian building block, the field uµ also includes
the external gauge fields, defined as

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u

†
]
. (1.27)

Notice that from the point of view of chiral power counting ∇µB and MBB
are O(1), but iγµ∇µB −MBB is O(p) [153,154].

In the present work, we only use the lowest order of ChPT Lagrangian
since it contains just a few free parameters and is enough with the com-
plement of the unitary of the scattering amplitude (this is proved by the
results of Refs. [16–19,155]), which will be discussed in the next section.

1.2.2 Local hidden gauge Lagrangian

Before, I have discussed the effective chiral Lagrangians describing the pseu-
doscalar meson (π,K, η) interaction and the pseudoscalar meson-baryon in-
teraction, which do not contain any vector meson (ρ, ω, φ,K∗) fields. How to
include massive spin S = 1 particles in the effective low-energy Lagrangian?
In theory, the vector mesons can be included in the chiral Lagrangian by
treating them as vector fields [156–160] or tensor fields [161, 162], and, as
gauge bosons [156–159] or not gauge bosons [160–162]. Thus, normally there
are two types of theoretical approach distinguished by the way of including
the vector fields, the massive Yang-Mills approach (vector mesons as heavy
gauge particles of the Yang-Mills type) and the hidden symmetry scheme
(vector mesons as dynamical gauge bosons), which are equivalent by the
proof in Ref. [161, 163] (more discussions and clarifications can be seen in
Ref. [164], also some discussions can be found in Refs. [165, 166]). In the
present work, we use the LHG formalism, which treat the vector mesons
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as dynamical gauge bosons of the hidden local symmetry in the non-linear
U(3)L × U(3)R/U(3)V sigma model with a chiral Lagrangian.

We summarize the formalism of the hidden gauge interaction for vector
mesons which we take from Refs. [156, 159, 163] (see also useful Feynman
rules in Ref. [167] extended to SU(4), which is done in Ref. [127, 168]).
The Lagrangian accounting for the interaction of vector mesons amongst
themselves is given by

LIII = −1

4
〈VµνV µν〉 , (1.28)

where the 〈〉 symbol represents the trace in the SU(4) space and Vµν is given
by

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (1.29)

with the coupling of the theory given by g = mV
2f where f = 93 MeV is the

pion decay constant and mV the mass of vector meson, taking mV = mρ.
The magnitude Vµ is the SU(4) matrix of the vectors of the meson 15-plet
+ singlet, given by [93,169]

Vµ =


ρ0√
2
+ ω√

2
ρ+ K∗+ D̄∗0

ρ− − ρ0√
2
+ ω√

2
K∗0 D∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ


µ

. (1.30)

The interaction of LIII provides a contact term which comes from [Vµ, Vν ][Vµ, Vν ]

L(c)
III =

g2

2
〈VµVνV µV ν − VνVµV

µV ν〉 , (1.31)

as well as to a three vector vertex from

L(3V )
III = ig〈(∂µVν − ∂νVµ)V

µV ν〉 = ig〈(V µ∂νVµ − ∂νVµV
µ)V ν〉 , (1.32)

which, thus, can be simplified as

LV V V ≡ L(3V )
III = ig 〈[Vν , ∂µVν ]V µ〉. (1.33)

It is worth recalling the analogy with the coupling of vectors to pseu-
doscalars given in the same formalism by

LV PP = −ig 〈[P, ∂µP ]V µ〉, (1.34)
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where P is the SU(4) matrix of the pseudoscalar fields extended the SU(3)
representation of Eq. (1.20),

P =
π0
√
2
+ η8√

6
+ η̃c√

12
+ η̃′c√

4
π+ K+ D̄0

π− − π0
√
2
+ η8√

6
+ η̃c√

12
+ η̃′c√

4
K0 D−

K− K̄0 −2η8√
6

+ η̃c√
12

+ η̃′c√
4

D−
s

D0 D+ D+
s − 3η̃c√

12
+ η̃′c√

4

 .

(1.35)

where η̃c stands for the SU(3) singlet of the 15th SU(4) representation and
we denote η̃′c for the singlet of SU(4) (see quark content in Ref. [168]). The
physical ηc can be written as [168]

ηc =
1

2
(−

√
3η̃c + η̃′c) . (1.36)

In the present work, we also need the vertex of the hidden gauge Lagrangian

LPV V =
G′
√
2
εµναβ 〈∂µVν∂αVβP 〉, (1.37)

where G′ = 3m2
V /(16π

2f3) [96,170].

The baryonic vertex when the baryons belong to the octet of SU(3) is
given in terms of the Lagrangian [171,172]

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
, (1.38)

where B is now the SU(3) matrix of the baryon octet [154, 173]. Similarly,
one has also a Lagrangian for the coupling of the vector mesons to the
baryons of the decuplet, which can be found in Ref. [174].

Extrapolating to the heavy quark sector the lower vertex V BB does not
have such a simple representation as in SU(3) and in practice one evaluates
the matrix elements using SU(4) symmetry by means of Clebsch-Gordan
coefficients and reduced matrix elements. This is done in Refs. [127, 168]
(a discussion on the accuracy of the SU(4) symmetry is done there). Since
the 20 representation for baryon states of 3/2+ is not considered there, we
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must consider these matrix elements in the present work too. Once again
one uses SU(4) symmetry for this vertex to evaluate the matrix elements,
as done in Refs. [127, 168]. Alternatively, one can use results of SU(3)
symmetry substituting a s quark by a c quark, or make evaluations using
wave functions of the quark model [175], substituting the s quark by the c
quark.

1.3 Chiral unitary approach

ChPT has been successful in the interpretation of the particle properties in
the low energy region of the hadron interaction as a nonperturbative QCD
approach. But, there are some limitations of using it widely. As shown
in the discussion of the lowest order ChPT Lagrangian above, we can see
that there are only two free parameters in the lowest order (leading order)
Lagrangian. In fact, when going up to next to leading order, O(p4) for
the mesonic ChPT Lagrangian there will be 12 parameters, and for next-
next-leading order O(p6) there are more than 100 parameters. Therefore,
the theoretical power is lost in the higher order expansion. To overcome
these limitations, one should implement others nonperturbative method,
such as effective field theory [144–147], Lattice QCD [176–179], QCD sum
rule [91,180–182], Dyson-Schwinger equations [183–185], chiral quark model
[186, 187], chiral unitary approach (ChUA) [16–19, 155], and so on. In the
present work, we use the ChUA, but, as discussed in Ref. [166], there are
three different ways to construct a unitary T -matrix for extending chiral
symmetry, the inverse amplitude method [17,18], N/D method [19] and the
Bethe-Salpeter (BS) equation [16,155] (a overview can be seen in Refs. [188,
189]). We choose one of them, the BS equation, to perform our investigation
(its wide application to the low energy interaction will be discussed in later
chapters of our study results), and show some details of the method below.
We give one more step and also extrapolate this approach from s-wave to
higher partial wave interaction.

1.3.1 The BS equation

Since the interaction supposedly produces a state below the threshold (a
bound state), a certain class of diagrams needs to be summed to infinite
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order to produce a pole at the appropriate energy, but, then ChPT expan-
sion for the scattering amplitude is not applicable, thus, Ref. [190] adopts
a potential model approach to investigate the Λ(1405) state in the K̄N
and its coupled channels interaction, constructing a pseudo-potential in
the Born approximation from the ChPT Lagrangian and then iterates in
a Lippmann-Schwinger equation solving analytically the T -matrix. Along
the same line, Ref. [191] interprets the properties of the N∗(1535) resonance
with the interaction of πN and its coupled channels. Following the spirit
of the approach of Refs. [190, 191], in Ref. [16] the kernel of the interac-
tion (potential V ) of pseudoscalar mesons was evaluated starting from the
chiral Lagrangians [151–154,173], and then, implementing unitarity in cou-
pled channels, simplifying the Lippmann-Schwinger equation as a algebraic
BS equation, the scalar meson resonances σ [or f0(500)], f0(980), a0(980)
were dynamically produced using only one free parameter, with phase shifts,
inelasticities, mass distributions of given channels consistent with the exper-
imental data (the consistency of the results with QCD sum rules can be seen
in Refs. [192,193]). The same idea is also extrapolated to the meson-baryon
interaction in Ref. [155] to interpret the dynamics properties of Λ(1405)
state.

In Refs. [16,155], the potential V is derived from the lowest order ChPT
Lagrangian, then, inserted into the coupled channels Lippmann-Schwinger
equations to calculate the scattering amplitudes,

tij = Vij + Vil Gl tlj , (1.39)

where the indices i, j run over all possible channels for the meson-baryon
interaction case

Vil Gl tlj = i

∫
d4q

(2π)4
Ml

El(~q )

Vil(k, q)Tlj(q, k
′)

k0 + p0 − q0 −El(~q ) + iε

1

q2 −m2
l + iε

,

(1.40)
whereMl, El correspond to the mass and energy of the intermediate baryon
and ml to the mass of the intermediate meson. Eq. (1.39) is depicted
by the series of diagrams of Fig. 1.2, which sums up automatically all of
the diagrams and contains the dynamics to produce a resonance [190]. In
principle one would have to solve the integrals in Eq. (1.39) by taking t
and V off shell. In fact, for s-wave, we only need the on shell information,
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Figure 1.2: Diagrammatic representation of the Lippmann-Schwinger equa-
tions of Eq. (1.39) for K̄N scattering [155].

and we can simplify the coupled integral equations. The argument goes as
follows.

Taking the one loop diagram of Fig. 1.2 with equal masses in the external
and intermediate states for simplicity, we have

V 2
off = C(k0 + q0)2 = C(2k0 + q0 − k0)2

= C(2k0)2 + 2C(2k0)(q0 − k0) + C(q0 − k0)2

= V 2
on + 2C(2k0)(q0 − k0) + C(q0 − k0)2, (1.41)

where C a proportionality constant and the first term in the last expression
V 2
on is the on shell contribution, with Von ≡ C2k0. Neglecting p0 − E(−~q )

in Eq. (1.40), a typical approximation in the heavy baryon formalism, the
one loop integral for the second term of Eq. (1.41) becomes

2iVon

∫
d3q

(2π)3

∫
dq0

2π

Ml

El(~q )

q0 − k0

k0 − q0
1

q02 − ω(~q )2 + iε

= −2Von

∫
d3q

(2π)3
Ml

El(~q )

1

2ω(~q )
∼ Von q

2
max (1.42)

with ω(~q )2 = ~q 2 + m2
l . This term, proportional to Von, has the same

structure as the tree level term in the Bethe-Salpeter series and it can be
reabsorbed in the lowest order Lagrangian by a suitable renormalization of
the parameter f . Similarly, the term proportional to (q0 − k0)2 in the last
term of Eq. (1.41) cancels the baryon propagator in Eq. (1.40) while the
remaining factor gives rise to another term proportional to k0 (and hence
Von) and a term proportional to q0, which vanishes for parity reasons.

These arguments can be extended to coupled channels and higher order
loops with the conclusion that Vil and tlj factorize with their on shell values
out of the integral in Eq. (1.40), reducing the problem to one of solving a
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 T G V V T

 

Figure 1.3: Diagrammatic representation of the BS equation.

set of algebraic equations, the BS equation, written in matrix form as

T = V + V GT, (1.43)

or equivalently
T = [1− V G]−1 V, (1.44)

with G a diagonal matrix with its element for l channel given by

Gl(s) = i

∫
d4q

(2π)4
mf

(P − q)2 −m2
1 + iε

1

q2 −m2
2 + iε

, (1.45)

where m1, m2 are the masses of the hadrons, q is the four-momentum of
one meson, and P is the total four-momentum of the systems, thus, s = P 2.
Besides, mf is a mass factor, taking mf = 1 for meson-meson loop and
mf = 2MB = 2m1 when m1 is the baryon mass (MB) in the meson-baryon
loop. Then, the BS equation is also represented by a series of diagrams,
as shown in Fig. 1.3. The integral for the G function, Eq. (1.45), is
logarithmically divergent. There are two methods to regularize it. One is
the dimensional regularization and the analytic expression can be seen in
Ref. [194] with a scale µ and the subtraction constant a(µ) as free parameter,

Gl(s) =
mf

16π2
{
aµ + ln

m2
1

µ2
+
m2

2 −m2
1 + s

2s
ln
m2

2

m2
1

+
qcm√
s

[
ln(s− (m2

1 −m2
2) + 2qcm

√
s)

+ln(s+ (m2
1 −m2

2) + 2qcm
√
s)

−ln(−s− (m2
1 −m2

2) + 2qcm
√
s)

−ln(−s+ (m2
1 −m2

2) + 2qcm
√
s)
]}

, (1.46)



1.3. CHIRAL UNITARY APPROACH 39

where qcm is the three-momentum of the intermediate mesons in the center
mass frame. As discussed in Ref. [194], for µ at low energy scale, the
“natural” value of aµ is around −2, and µ, aµ are not independent. The
other method to regularize it is using a cut-off momentum, performing the
integration

Gl(s) = mf

∫ qmax

0

d3~q

(2π)3
ω1 + ω2

2ω1ω2

1

P 0 2 − (ω1 + ω2)2 + iε
, (1.47)

where ωi =
√
~q 2 +m2

i , (i = 12), and qmax is the cut-off of the three-

momentum, the free parameter. Also the analytic formula of Eq. (1.47)
can be seen in Refs. [18,195]. Normally at low energies, the two regulariza-
tion methods are compatible and there are relationships between these free
parameters, a(µ), µ and qmax [194] (see also Eq. (52) of Ref. [196]).

Furthermore, we want to discuss the unitary properties of the coupled
channel BS equation. According to the Mandl and Shaw normalization
[197], the unitarity in coupled channels implies

Im Tij = Tin σnn T
∗
nj , (1.48)

where σ is a real diagonal matrix whose elements are given by

σnn ≡ Im Gn = −mf
qcm
8π

√
s
θ(s− (m1 +m2)

2)). (1.49)

The coupled channel BS equation fulfils the normalization requirement of
the unitarity, thus, it is one of the ChUA. This unitarity is important when
extrapolating the loop function G to the second Riemann sheet above the
threshold for searching the pole of the resonance (a detail of the second
Riemann sheet for the pole can be seen in Refs. [16, 198,199]), written

GIIl (s) = GIl (s) + imf
qcm
4π

√
s
. (1.50)

Finally, the on shell approximation of the BS equation, which has been
proved reasonable [16,155] as discussed above, works well in the low energy
region and is successfully explored to explain the properties of resonances
(we will come back its wide application in later chapters). The on-shell
factorization is accurate enough for the theoretical reproduction of the res-
onances. A different justification is given in [194], where staring from Eq.
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(1.48), a subtracted dispersion relation is used to obtain T−1, which pro-
vides the result of the BS equation when one neglects the contribution of
the left hand cut. This contribution is usually quite energy independent in
the physical region of interest, and hence can be easily accommodated by
means of the subtraction constant. A systematic investigation of the ChUA
is carried on Ref. [200], which also compared the contribution for both the
on-shell approximation and full off-shell effects in the scattering of ππ and
its coupled channels. The results of Refs. [127, 168] in the charm sector
with the on-shell BS equation is consistent with the results of Ref. [201]
using several coupled-channel models, also with the results of chiral quark
model in Ref. [202]. Recently, no qualitative difference between the on-shell
and off-shell approaches for the BS equation is observed in the low energy
interaction using the Lattice QCD data in Ref. [203].

1.3.2 The partial wave BS equation

To distinguish the nature of a resonance whether it is a “composite” or “gen-
uine” state [204], the works of Refs. [95, 205] develop the coupled channel
approach to establish the relationship of the couplings of the states in dif-
ferent channels versus the wave function. A further generalization to higher
partial waves was done in Ref. [206].

Following Ref. [206] one uses the set of coupled Schrödinger equations

|Ψ〉 = |Φ〉+ 1

E −H0
V |Ψ〉

= |Φ〉+ 1

E −Mi − ~p 2

2µi

V |Ψ〉 ,
(1.51)

where H0 is the free Hamiltonian, µi is the reduced mass of the system of
total mass Mi = mai +mbi, and

|Ψ〉 =


|Ψ1〉
|Ψ2〉
...

|ΨN 〉

 , |Φ〉 =


|Φ1〉
0
...
0

 , (1.52)

where |Φ1〉 represents the only channel present at t = −∞ taken as a plane
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wave. V is the potential chosen as

〈~p|V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lPl(cos θ) , (1.53)

where v is a N × N matrix with N the number of channels, Λ is a cutoff
in the momentum space, and Pl(cos θ) is the Legendre function. Note that
the functions inherent to a l-wave character have been explicitly taken into
account in V and hence v is considered as a constant in Eq. (1.53).

As shown in Ref. [206] one can see that the T -matrix can be written in
the form of Eq. (1.53) and one finds

〈~p|T |~p ′〉 ≡ (2l + 1) t Θ(Λ− p)Θ(Λ− p′)|~p |l|~p ′|lPl(cos θ) , (1.54)

with

t = (1− vG)−1v , (1.55)

where G is the loop function for the two intermediate hadron states, which
differs technically from the one more commonly used in the chiral unitary
approach [19] in that it contains the factor |~p |2l in the integral, since this
factor has been removed from v (see Eq. (1.53)). Hence

Gii =

∫
|~p |<Λ

d3~p
|~p |2l

E −Mi − ~p 2

2µi
+ iε

. (1.56)

For more details we refer to Ref. [206].

1.4 Three-body interaction

Some discovered particles, such as the φ(2170) (also calledX(2175), Y (2175)),
Y (4260), N∗(1710), et. al., look like having a more complicate structure and
would come from multi-body hadron interaction. The simplest multi-body
interaction is the three-body interaction, which is a subject of study in
hadron physics, drawing much attention for a long time [207–211]. Thus, in
this section, we will discuss about how to extend the ChUA formalism to
the three-body interaction.
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1.4.1 The Faddeev equations with ChUA

We have discussed the ChUA above for the two-body interaction, which
is rather successful and plays an important role in the description of the
hadronic properties in the studies of the meson-meson and meson-baryon
interactions. Developing the ChUA for the three-body interaction is the
main motivation of the work in Ref. [212], which combine the three-body
Faddeev equations with chiral dynamics and has reported several S-wave
JP = 1

2

+
resonances qualifying as two mesons-one baryon molecular states.

This combination of Faddeev equations and chiral dynamics produces results
consistent with QCD sum rules in the investigation of the DKK̄ system
in the work of Ref. [213]. The details of this extension of the ChUA is
systematically discussed in Ref. [214] and a short review is given below 1.

For the three-body interaction as Faddeev suggested in Ref. [208], the
scattering amplitude of T -matrix can be written as a sum of three partitions,

T = T 1 + T 2 + T 3, (1.57)

where T i (i = 1, 2, 3) includes all the possible interactions contributing to
the three-body T -matrix with the particle i being a spectator in the last
interaction. Obviously, as shown in Fig. 1.4 the sum of T 1, T 2 and T 3

contains all the possible diagrams obtained by permutations of the different
interactions between the three particles. The series T 1, T 2 and T 3 can be
rewritten to get the Faddeev equations,

T 1 = t1 + t1G
[
T 2 + T 3

]
,

T 2 = t2 + t2G
[
T 1 + T 3

]
, (1.58)

T 3 = t3 + t3G
[
T 1 + T 2

]
,

where ti (i = 1, 2, 3) correspond to the two-body t-matrix in ChUA and G
is the Green-function of the three-body system.

Within unitary chiral dynamics, combining with the ChUA formalism,
the Faddeev partitions T i are given by

T i = δ̃3(~ki − ~k ′
i )t

i +

3∑
i=1

3∑
j 6=i=1

T ijR , (1.59)

1We thank Alberto Mart́ınez Torres for useful discussions and kind help.
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Figure 1.4: Diagrammatic representation of the Faddeev partitions [214].

with j 6= k 6= i = 1, 2, 3 and δ̃3(~ki − ~k ′
i ) ≡

[
(2π)3Ñiδ

3(~ki − ~k ′
i )
]
, where

Ñi =


√
2ω(~ki)

√
2ω(~k′i) , i = 1, 2,(√

2ω(~ki)
√

2ω(~k′i)
)/(√

2mi

√
2m′

i

)
, i = 3,

for a two meson-one baryon system and

Ñi =

√
2ω(~ki)

√
2ω(~k′i) , i = 1, 2, 3,

for a three meson system, with the three-momentum, the mass and the en-
ergy of the incoming (outgoing) particle, ~ki (~k

′
i), mi (m

′
i) and ω(

~ki), (ω(~k
′
i))

respectively. In Eq. (1.59), the T ijR matrices are summing all the diagrams
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with the same last two t-matrices,

T 12
R = t1g12t2 + t1

[
G 121 T 21

R +G 123 T 23
R

]
,

T 13
R = t1g13t3 + t1

[
G 131 T 31

R +G 132 T 32
R

]
,

T 21
R = t2g21t1 + t2

[
G 212 T 12

R +G 213 T 13
R

]
, (1.60)

T 23
R = t2g23t3 + t2

[
G 231 T 31

R +G 232 T 32
R

]
,

T 31
R = t3g31t1 + t3

[
G 312 T 12

R +G 313 T 13
R

]
,

T 32
R = t3g32t2 + t3

[
G 321 T 21

R +G 323 T 23
R

]
,

where all the loop dependence is assembled in the loop function Gijk, there-
fore, they are algebraic equations. The loop function Gijk are generally
defined as,

Gijk =

∫
d3k′′

(2π)3
ĝij(slm,~k

′′)F ijk(~k′′,~k′j ,
~kk, s

k′′
l′k′), (1.61)

with i 6= j, j 6= k = 1, 2, 3, l 6= m 6= i, l′ 6= k′ 6= j, where the elements of the
ĝij matrix are given by,

ĝijξ =
Nl

2El(~k′′)

Nm

2Em(~k′′)
× 1

√
slm − El(~k′′)− Em(~k′′) + iε

, (1.62)

and the matrix,

F ijk(~k′′,~k′j ,
~ki, s

k′′
l′k′) = tj(sk

′′
l′k′)× gjk(~k′′,~kk)

× [gjk(~k′j ,
~kk)]

−1[tj(sl′k′)]
−1, (1.63)

with the variable of the invariant mass slm in the center mass frame of
the subsystem with l and m particles. And for the definition of the T ijR
matrices, which should sum all the possible diagrams with the elements of
the t-matrix, for example, the T 12

R element is the series as,

T 12
R ≡ t1g12t2 + t1G121t2g21t1 + t1G121t2G212t1g12t2 + · · ·

+ t1G123t2g23t3 + t1G123t2G232t3g32t2 + · · · . (1.64)

Thus, the full three-body T -matrix is given by,

T =

3∑
i=1

T i =

3∑
i=1

tiδ̃3(~k ′
i − ~ki) +

3∑
i=1

3∑
j 6=i=1

T ijR . (1.65)
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As comment in Ref. [214], the obtained six coupled equations of Eq.
(1.60), which appear as a reformulation of the Faddeev equations, are alge-
braic equations instead of integral equations. The solution of these equations
have been simplified with the ChUA and can be looked for the correspon-
dence of the peaks found in the amplitude to poles of the physical states.
Thus, this extension for the Faddeev equations has been successful to inter-
pret the structure and properties of the states found in the experiments, such
as, X(2175) in the φKK̄ system [75], N∗(1710) in the ππN system [215],
Y (4260) in the J/ψKK̄ system [216], and others, as the low lying Λ∗ and
Σ∗ states of JP = 1/2+ [212].

1.4.2 The FCA to Faddeev equations

We have given the formalism for the three-body interaction with the ChUA
extension to Faddeev equation above. Furthermore, when there are reso-
nances (or bound states) appearing in the two-body subsystem of the three-
body interaction, we can take the FCA [208,218–222] to the Faddeev equa-
tions. The FCA assumes that a cluster is formed by two particles and is not
much modified by the interaction of a third particle with this cluster. Mul-
tiple scattering of the third particle with the components of the cluster is
then taken into account. By taking the FCA to Faddeev equations, several
multi-ρ(770) states are dynamically produced in Ref. [223], in which the res-
onances f2(1270)(2

++), ρ3(1690)(3
−−), f4(2050)(4

++), ρ5(2350)(5
−−), and

f6(2510)(6
++) are theoretically found as basically molecules of an increasing

number of ρ(770) particles with parallel spins. Analogously, in Ref. [224], the
resonances K∗

2 (1430), K
∗
3 (1780), K

∗
4 (2045), K

∗
5 (2380) and a new K∗

6 could
be explained as molecules with the components of an increasing number of
ρ(770) and one K∗(892) meson. With the same approach, the ∆ 5

2

+(2000)

puzzle is solved in Ref. [225] in the study of the π − (∆ρ) interaction. The
FCA to Faddeev equations is technically simple, and allows one to deal
with three-body hadron interactions which would be otherwise rather cum-
bersome [226–228]. As discussed in Ref. [227], this method is accurate when
dealing with bound states, and gets consistent results with the full Faddeev
equation evaluation without taking FCA [229], or a variational calculation
with a nonrelativistic three-body potential model [230] (more discussions
can be seen in Ref. [231]). One should also know the limits of the applica-
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Figure 1.5: Diagrammatic representation of the FCA to Faddeev equations.

bility of the FCA, and one should avoid the case in which the states have
enough energy to excite its components in intermediate states [232], which is
the case of resonances above threshold. Thus, the Faddeev equations under
the FCA are an effective tool to deal with multi-hadron interaction, more
details given below.

The FCA to Faddeev equations assumes a pair of particles (1 and 2)
forming a cluster. Then particle 3 interacts with the components of the
cluster, undergoing all possible multiple scattering with those components.
This is depicted in Fig. 1.5. With this basic idea of the FCA, we can write
the Faddeev equations easily. For this one defines two partition functions
T1 and T2, which sum all diagrams of the series of Fig. 1.5 which begin with
the interaction of particle 3 with particle 1 of the cluster (T1), or with the
particle 2 (T2). The equations then read

T1 = t1 + t1G0T2, (1.66)

T2 = t2 + t2G0T1, (1.67)

T = T1 + T2, (1.68)

where T is the total three-body scattering amplitude that we are looking
for. The amplitudes t1 and t2 represent the unitary scattering amplitudes
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with coupled channels for the interactions of particle 3 with particle 1 and 2,
respectively. And G0 is the propagator of particle 3 between the components
of the two-body system.

For the unitary amplitudes corresponding to single-scattering contribu-
tion one must take into account the isospin structure of the cluster and
write the t1 and t2 amplitudes in terms of the isospin amplitudes of the
(3,1) and (3,2) systems. Besides, because of the normalization of Mandl
and Shaw [197] which has different weight factors for the particle fields, we
must take into account how these factors appear in the single scattering and
double scattering and in the total amplitude. This is easy and is done in
detail in Refs. [224,226]. We show below the details for the case of a meson
cluster (also particles 1 and 2) and a meson as scattering particle (the third
particle). In this case, following the field normalization of Ref. [197] we find
for the S matrix of single scattering, Fig. 1.5 (a),

S
(1)
1 =− it1(2π)

4 δ(k + kR − k′ − k′R)

× 1

V2

1√
2ω3

1√
2ω′

3

1√
2ω1

1√
2ω′

1

, (1.69)

S
(1)
2 =− it2(2π)

4 δ(k + kR − k′ − k′R)

× 1

V2

1√
2ω3

1√
2ω′

3

1√
2ω2

1√
2ω′

2

, (1.70)

where, k, k′ (kR, k
′
R) refer to the momentum of initial, final scattering par-

ticle (R for the cluster), ωi, ω
′
i are the energies of the initial, final particles,

V is the volume of the box where the states are normalized to unity and the
subscripts 1, 2 refer to scattering with particle 1 or 2 of the cluster.

The double scattering diagram, Fig. 1.5 (b), is given by,

S(2) =− i(2π)4δ(k + kR − k′ − k′R)
1

V2

1√
2ω3

1√
2ω′

3

1√
2ω1

1√
2ω′

1

1√
2ω2

1√
2ω′

2

×
∫

d3q

(2π)3
FR(q)

1

q02 − ~q 2 −m2
3 + i ε

t1t2, (1.71)

where FR(q) is the cluster form factor that we shall discuss below. Similarly,
the full S matrix for scattering of particle 3 with the cluster will be given
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by,

S = −i T (2π)4δ(k + kR − k′ − k′R)×
1

V2

1√
2ω3

1√
2ω′

3

1√
2ωR

1√
2ω′

R

. (1.72)

In view of the different normalization of these terms by comparing Eqs.
(1.69), (1.70), (1.71) and (1.72), we can introduce suitable factors in the
elementary amplitudes,

t̃1 =
2MR

2m1
t1, t̃2 =

2MR

2m2
t2, (1.73)

with m1, m2, MR the masses of the particles 1,2 and the cluster, respec-
tively, where we have taken the approximations, suitable for bound states,

1√
2ωi

= 1√
2mi

, and sum all the diagrams by means of,

T = T1 + T2 =
t̃1 + t̃2 + 2 t̃1 t̃2 G0

1− t̃1 t̃2 G2
0

. (1.74)

When t̃1 = t̃2 in some cases, it can be simplified as,

T =
2 t̃1

1− t̃1G0
. (1.75)

The function G0 in Eqs. (1.74) and (1.75) is given by,

G0(s) =
1

2MR

∫
d3~q

(2π)3
FR(q)

1

q02 − ~q 2 −m2
3 + i ε

, (1.76)

where FR(q) is the form factor of the cluster of particles 1 and 2. Note that,
when the cluster, the particles 1 and 2, one of them is a baryon, the factors
in Eqs. (1.73) and (1.76), 2mi (i = 1, 2) and 2MR should be replaced by 1

by taking the baryonic field factor approximation
√

2MB
2EB

≈ 1. We must use

the form factor of the cluster consistently with the theory used to generate
the cluster as a dynamically generated resonance. This requires to extend to
the wave functions the formalism of the chiral unitary approach developed
for scattering amplitudes. This work has been done in Refs. [95, 205, 206]
for S-wave bound states, S-wave resonant states and states with arbitrary
angular momentum, respectively. Here we only need the expressions for
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S-wave bound states, and then the expression for the form factors is given
in section 4 of Ref. [205] by,

FR(q) =
1

N

∫
|~p |<Λ′,|~p−~q |<Λ′

d3~p
1

2E1(~p )

1

2E2(~p )

1

MR − E1(~p )− E2(~p )

1

2E1(~p− ~q )

1

2E2(~p− ~q )

1

MR − E1(~p− ~q )− E2(~p− ~q )
,

(1.77)

N =

∫
|~p |<Λ′

d3~p
( 1

2E1(~p )

1

2E2(~p )

1

MR − E1(~p )− E2(~p )

)2
, (1.78)

where E1 and E2 are the energies of the particles 1, 2 and MR the mass
of the cluster. The parameter Λ′ is a cut off that regularizes the integrals
of Eqs. (1.77) and (1.78). This cut off is the same that one needs in the
regularization of the loop function of the two particle propagators in the
study of the interaction of the two particles of the cluster [205]. As done
in Refs. [224,226], we take the value of Λ′ the same as the cutoff qmax used
to generate the resonance in the two-body interaction. Thus we do not
introduce any free parameters in the present procedure.

In addition, q0, the energy carried by particle 3 in the rest frame of the
three particle system, is given by,

q0(s) =
s+m2

3 −M2
R

2
√
s

. (1.79)

Note also that the arguments of the amplitudes Ti(s) and ti(si) are
different, where s is the total invariant mass of the three-body system, and
si are the invariant masses in the two-body systems. The value of si is given
by [224],

si = m2
3+m

2
i +

(M2
R +m2

i −m2
j )(s−m2

3 −M2
R)

2M2
R

, (i, j = 1, 2, i 6= j) (1.80)

where ml (l = 1, 2, 3) are the masses of the corresponding particles in the
three-body system and MR the mass of two body resonance or bound state
(cluster).

The Faddeev equations under the FCA are a useful tool to deal with
three-body interaction. They are particularly suited to study system in
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which a pair of particles cluster together and the cluster is not much modified
by the third particle. Even if there is a sizeable modification of the cluster,
the method is useful in combination with information from other sources on
how the cluster can be modified by the presence of the third particle [227].
The assumption of a small modification of the cluster wave function seems
to imply that the mass of the third particle should be smaller than that of
the cluster components, but this can also happen if the cluster is strongly
bound, independent of the masses. In any case, in an exploratory study
of the systems under consideration, where uncertainties of even 50 MeV
are readily acceptable, the FCA proves to be a sufficiently accurate tool,
and relatively simple to use, once comparison with more accurate tools has
shown that the same results are obtained within a few MeV of difference.

1.5 Heavy quark flavour-spin symmetry

In subsection Sub. 1.1.3 before, we have discussed in the limit of taking
the light quark mass mq → 0 that QCD has an SU(3)L × SU(3)R chiral
symmetry. But, for the heavy quark sector, since the heavy quark masses
mQ > 1 GeV, which are larger than the scale of nonperturbative QCD,
this implies a different property for the hadrons containing a single heavy
quark, leading to the Heavy Quark Spin-Flavor Symmetry [233–236]. Con-
sidering a meson with heavy-light quarks Qq̄, the typical momentum trans-
fer (< 1 GeV) between the heavy and light quarks leads to an important
consequence, that the velocity v of the heavy quark is almost unchanged
by such interaction since ∆v = ∆p/mQ ∼ 0. Therefore, in the limit of
mQ → ∞, the heavy quark behaves like a static external source, as a spec-
tator in the interaction, and the meson dynamics reduces to that of light
degrees of freedom interacting with this external source. Thus, this leads to
Heavy Quark Flavor Symmetry: the dynamics is unchanged under the ex-
change of heavy quark flavors. Besides, in this limit, the static heavy quark
can only interact with gluons via its chromoelectric charge, which is spin
independent. This leads to another symmetry, Heavy Quark Spin Symme-
try (HQSS): the dynamics is unchanged under arbitrary transformations on
the spin of the heavy quark. Both of them are so-called the Heavy Quark
Spin-Flavor Symmetry in the heavy quark QCD.

HQSS predicts that all types of spin interactions vanish for infinitely
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massive quarks. The spin-dependent interactions are proportional to the
chromomagnetic moment of the heavy quark, and hence, they are of the
order of 1/mQ. The total angular momentum ~J of the hadron is always a

conserved quantity, but in this case the spin of the heavy quark ~SQ is also
conserved in the mQ → ∞ limit. Consequently, the spin of the light degrees

of freedom ~Sl = ~J − ~SQ is a conserved quantity in that limit. Thus, heavy
hadrons come in doublets (unless sl = 0), containing states with total spin
j± = sl±1/2 (with ~S2

l = sl(sl+1) and ~J 2 = j(j+1)) obtained by combining
the spin of the light degrees of freedom with the spin of the heavy quark
sQ = 1/2. These doublets are degenerate in the mQ → ∞ limit. This is
the case for the ground state mesons D and D∗ or Ds and D∗

s which are
composed of a charm quark with sQ = 1/2 and light degrees of freedom with
sl = 1/2, forming a multiplet of negative parity hadrons with spin 0 and
1. The entire multiplet of degenerate states should be treated in any HQSS
inspired formalism as a single field that transforms linearly under the heavy
quark symmetries [235,236]. For finite charm quark mass, the pseudoscalar
and vector D meson masses differ in about just one pion mass (actually one
has mD − mD∗ = O(1/(mD + mD∗))), even less for the strange charmed
mesons, thus it is reasonable to expect that the coupling DN → D∗N might
play an important role. This is indeed what happens when SU(8) symmetry
is used [237,238].

As discussed before, the strong interaction in the low energy region is
described by the effective theory, the nonperturbative approach. Of course,
the strong interactions for the heavy quark with light quarks and gluons
can be described by an effective theory, which is invariant under changes of
the flavor and spin of the heavy quark. The theoretical framework for such
interactions is provided by the so-called Heavy Quark Effective Theory [146,
239]. Considering a heavy quark with velocity v interacting with external
fields, where the velocity of an on-shell quark is defined by p = mQv, the
effective Lagrangian is formulated by the velocity-dependent fields hv(x),
called large component field, together with small component field Hv(x),
which are defined as

hv(x) = exp(imQ v ·x)P+Qv(x), Hv(x) = exp(imQ v ·x)P−Qv(x), (1.81)

where P± are the velocity-dependent projection operator, P± = 1
2(1 ± 6 v),
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and Qv(x) is the original field at tree level,

Qv(x) = exp(−imQ v · x)[hv(x) +Hv(x)]. (1.82)

Then, the effective Lagrangian related to heavy quarks is given by [235,236]

LQeff = h̄v(iv ·D)hv− H̄v(iv ·D+2mQ)Hv+ h̄vi 6 D′Hv+ H̄vi 6 D′hv, (1.83)

with D′
µ = Dµ − vµ v ·D.

In fact, the small component field Hv is related to the large scalemQ and
dependent on the large component field hv(x). By solving the generating
functional of QCD Green functions, the Hv field is worked out

Hv =
1

iv ·D + 2mQ − iε
i 6 D′hv, (1.84)

which indicates that the small component field Hv is indeed of order 1/mQ,
so called “small” component [235,240]. Hence, one can establish the desired
heavy mass expansion for the effective Lagrangian of Eq. (1.83) in terms of
the 1/mQ terms [235,236,241,242]

LQeff = h̄v(iv ·D)hv +
1

2mQ
h̄v(iD

′)2hv +
g

4mQ
h̄vσµνG

µνhv +O(
1

m2
Q

) + · · ·

= LQ0 + LQ1 + · · · , (1.85)

where using the identity [Dµ, Dν ] = igGµν , the definition σµν = i[γµ, γν ]/2,
the lowest order Lagrangian and the next leading order term are defined as

LQ0 = h̄v(iv ·D)hv ,

LQ1 =
1

2mQ
h̄v(iD

′)2hv +
g

4mQ
h̄vσµνG

µνhv .
(1.86)

Similarly, one can also make a mass expansion for the original field

Qv(x) = exp(−imQ v · x)
(
1 +

1

iv ·D + 2mQ − iε
i 6 D′

)
hv

= exp(−imQ v · x)(1+ 6 D′/2mQ + · · · )hv. (1.87)

More discussion about the higher order 1/mQ expansion can be referred to
the reviews of Refs. [235,240].
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Analogously, heavy hadrons chiral perturbation theory can be derived
from the spontaneously broken SU(3)L × SU(3)R chiral symmetry on the
light quarks, considering the spin-flavor symmetry on the heavy quarks.
For the low momentum strong interactions of the ground states with the
s` = 1/2 spin symmetry doublet of heavy mesons P and P ∗, containing only
one heavy quark Q, we first need to introduce a superfield describing the
combined doublet of the two P and P ∗ fields,

H(Q)
a =

1+ 6 v
2

[P ∗(Q)
aµ γµ − P (Q)

a γ5]. (1.88)

But, we do not make more discussion on its chiral Lagrangian for its com-
plication and in the present work we use another approach on this is-
sue, seen later. Further discussions and applications can be seen in Refs.
[236,243–247].
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Chapter 2

The study of the three-body
interaction

Now we use the three-body formalism, as discussed in Sec. 1.4, to in-
vestigate some multibody hadron system interactions. First, we investigate
some charm systems with one nucleon, for example NDK, K̄DN and NDD̄
interactions, and also with two nucleons, the DNN system. Then, we in-
vestigate the D∗-multi-ρ systems for the multi-hadron interaction with the
same formalism. Besides, we also study some three-body systems with light
quarks, such as ηKK̄, η′KK̄ and ρKK̄ interactions.

2.1 NDK, K̄DN and NDD̄ molecules

While the three baryon system has been a subject of intense theoretical
study [248–250], it has only been recently that attention was brought to
systems with two mesons and one baryon, with unexpected results. In-
deed, states with two pseudoscalar mesons and one baryon were studied
in Ref. [212]. The same happened with the low lying JP = 1/2+ N∗

states [215]. Independently, and using variational techniques, a N∗ state
around 1920 MeV was predicted in Ref. [230] as a molecule of NKK̄, cor-
roborated in coupled channels Faddeev equations in Refs. [229, 251]. A
different calculation also predicts a quasibound πK̄N system, with the dif-
ference that the Nπ interaction is in p-wave [252]. Systems of bound or
quasibound three mesons did not wait long and in Ref. [75] the X(2175)

55
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(now the φ(2170)) was explained as a resonant φKK̄ system, also described
as such in a phenomenological way in Ref. [253]. In a similar way, the
K(1460) is explained as a KKK̄ state in Ref. [254] and more recently the
π(1300) is described as a πKK̄ molecule in Ref. [255].

The charm sector has not yet been explored for such three body systems.
For this purpose we have selected systems that have a nucleon and a D
meson. The DN system, in collaboration with coupled channels, leads to
the formation of a dynamically generated state, the Λc(2595) [237,256–258].
On top of it we add a K, K̄ or D̄ meson and we study the stability of the
system. The case of scattering of N on the DK cluster, which is known
to generate the D∗

s0(2317) [259–261] is also considered. On the other hand,
the DD̄ system leads to a bound state in isospin I=0 [261], which might
have already been observed [262], in analogy to the f0(980) made of KK̄
[16, 17, 263–267]. We add a nucleon to it and study the interaction of the
three body system. The system obtained would be the analogous to the
one found in Refs. [229, 230, 251] as a NKK̄. In all cases we find bound or
quasibound states with masses around 3100 MeV in the first cases and 4400
MeV in the case of NDD̄.

We use the FCA to the Faddeev equations, seen in subsection 1.4.2. The
method has proved to be rather reliable for cases like K-deuteron scattering
very close to threshold (see Ref. [222] and the earlier work [218]). In a closer
problem to the present one, diverting a bit from threshold in the bound
region, the FCA has been applied to the study of the NKK̄ system in Ref.
[226] and the results compare favorably with those of the Faddeev approach
in Ref. [229] and those of the variational approach in [230]. Similarly the
FCA has been applied to an analogous problem, the one of the K̄NN system
[227]. Yet, it has been reassuring to see in that paper that the results of the
FCA are qualitatively in agreement with those of other approaches [268–
273], and remarkably similar to those obtained in the variational approach
of Refs. [271,272] which use the same input as in Ref. [227]. The differences
between Ref. [271, 272] and Ref. [227] are at the level of a few MeV in the
binding.

2.1.1 Considering the isospin structure

We follow the FCA to the Faddeev equations of subsection 1.4.2, and one
more thing that we should take into account is the isospin components
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of the two-body interaction amplitudes. Thus, we turn to the amplitudes
corresponding to single-scattering contribution, Fig. 1.5 (a). One must
take into account the isospin structure of the cluster and write the t1 and t2
amplitudes in terms of the isospin amplitudes of the (3,1) and (3,2) systems.
Details can be seen in Refs. [223, 224] and our paper [274]. In the present
case this is particularly easy. Whether we have the K̄DN, KDN, NDK or
NDD̄ system, where the first particle is labelled 3 and the last two particles
are making the cluster (particles 1, 2), the bound state of 1, 2 is in I = 0
from former studies and the total spin is then I = 1

2 . Then, for all four
cases we find

t1 =
3

4
tI=1
31 +

1

4
tI=0
31 , (2.1)

t2 =
3

4
tI=1
32 +

1

4
tI=0
32 , (2.2)

in which tI=1
31 is the two-body unitary scattering amplitude of isospin I = 1

between particle 3 and 1 evaluated with its coupled channels, and similarly
for the other cases. We show below the explicit evaluation for the NDD̄
case. The derivation for the other systems is identical. Here we take the
case of IDD̄ = 0 and Itotal ≡ INDD̄ = 1/2. We have

|DD̄ >(0,0)=

√
1

2
|(1
2
,−1

2
) > −

√
1

2
|(−1

2
,
1

2
) >, (2.3)

where |(12 ,−
1
2) > denote |(I1z , I2z ) > which shows the Iz components of

particles 1 and 2. Then we obtain

t = < NDD̄| t̂ |NDD̄ >

=(< DD̄|(0,0)⊗ < N |(
1
2
, 1
2
)) (t̂31 + t̂32) (|DD̄ >(0,0) ⊗|N >( 1

2
, 1
2
))

=

[√
1

2

(
< (

1

2
,−1

2
)|− < (−1

2
,
1

2
)|
)
⊗ < N |(

1
2
, 1
2
)

]
(t̂31 + t̂32)

[√
1

2

(
|(1
2
,−1

2
) >

− |(−1

2
,
1

2
) >

)
⊗ |N >( 1

2
, 1
2
)

]
=

[√
1

2
< (1, 1),−1

2
| −
√

1

2

(√
1

2
< (1, 0),

1

2
| −
√

1

2
< (0, 0),

1

2
|
)]

t̂31

[√
1

2

× |(1, 1),−1

2
> −

√
1

2

(√
1

2
|(1, 0), 1

2
> −

√
1

2
|(0, 0), 1

2
>

)]
+

[√
1

2
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×
(√

1

2
< (1, 0),

1

2
| −
√

1

2
< (0, 0),

1

2
|
)
−
√

1

2
< (1, 1),−1

2
|
]
t̂32

[√
1

2

×
(√

1

2
|(1, 0), 1

2
> −

√
1

2
|(0, 0), 1

2
>

)
−
√

1

2
|(1, 1),−1

2
>

]
=
(3
4
tI=1
ND +

1

4
tI=0
ND

)
+
(3
4
tI=1
ND̄ +

1

4
tI=0
ND̄

)
, (2.4)

where the notation of the states followed in the terms is |(1, 1),−1
2 >≡

|(I31, I31z ), I2z > for t31, and |(I32, I32z ), I1z > for t32.

2.1.2 The case of K̄DN interaction

Our strategy proceeds as follows: first we generate the resonance or bound
state in the compound system and determine the value of the parameter Λ,
then calculate the form factor and G0 propagator and take the t1 and t2
amplitudes from the unitary coupled channel approach, finally the total scat-
tering amplitude T is evaluated. For the K̄DN scattering, the first thing we
do is to reproduce the work of Refs. [257,275] in coupled channels for theDN
system. The coupled channels used are πΣc, DN, ηΛc, KΞc, KΞ′

c, DsΛ, η
′Λc

and the dynamics is obtained from the exchange of vector mesons between
the pseudoscalar meson and the baryon. This procedure, based on the LHG
approach [156,159,163], leads to the chiral Lagrangians in the SU(3) sector.
One gets as dynamically generated resonance the Λc(2595), which couples
most strongly to the DN channel and is interpreted as a DN bound state.
As shown in Fig. 2.1, the method generates a pole in the DN scattering
amplitude in I = 0 in the first Riemann Sheet at (2595 + i0) MeV. Since
the works of Refs. [257, 275] use dimensional regularization for the loops,
and we need a cut off to obtain the wave function and form factor, the
equivalent cut off must be obtained. There are three methods to do this.
One of them is to compare the value of the G propagator (the loop function
of two particles propagator which appears in the BS equation of Eq. (1.43))
at threshold using the dimensional regularization formula [276] with the one
of the cut off which can be taken from Ref. [155] (Ref. [16] for meson-meson
interaction) or the analytic expression in Ref. [195]. Another method is to
compare the pole position using different regularization schemes. The third
one is to use the relation between the subtraction constant a(µ) and the cut
off Λ of Eq. (52) in Ref. [196]. The best fitting results by these methods
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Figure 2.1: Imaginary part of the DN amplitude for isospin I = 0.

give us a value of Λ = 973 MeV. The imaginary part of the DN amplitude
in I = 0 is shown in Fig. 2.1. The Λc(2595) form factor using this cut off is
shown in Fig. 2.2. In the next step we evaluate G0 by means of Eq. (1.76)
(for the baryon cluster) and we show its real and imaginary parts in Fig.
2.3.
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Figure 2.2: Form factors of Λc(2595) and D
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s0(2317).

In the final calculation we also need to know the two-body unitary
scattering amplitudes in different isospin states. For the K̄DN interac-
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Figure 2.3: Real(solid line) and imaginary(dashed line) parts ofG0 in K̄DN .

tion, the amplitudes of K̄D and K̄N are needed. For the K̄D inter-
action we have taken the results of Ref. [261]. On the other hand, the
K̄N scattering has been evaluated using the chiral unitary approach of
Ref. [155] with the dimensional regularization scheme of Ref. [276], using
µ = 630 MeV, ai(µ) = −1.84 for all channels. This scheme leads to the
generation of the two Λ(1405) states reported in Ref. [277].

In Fig. 2.4 we show the results of |T |2 for the K̄Λc(2595) scatter-
ing. We find a peak around 3150 MeV, slightly above the threshold of the
Λc(2595) + K̄ mass (3088 MeV) and below the threshold of the K̄DN sys-
tem (3298 MeV). The width of the peak is about 50 MeV, which indicates
the width of the state that we obtain. In our study of the system K̄DN ,
where we have chosen the DN system in I = 0, since this is the channel with
strong attraction leading to the Λc(2595) resonance, the quantum numbers

of the K̄DN state are C = 1, S = −1 and JP = 1
2

+
since we only consider

the interaction among the components in L = 0. The mass of this state
is very close to that of the Ξc(3123), of unknown spin and parity, but its
decay width is larger than that of the Ξc(3123), 4± 4 MeV [9]. The larger
width, tied to the πΣ decay of the K̄N system, seems unavoidable, and this
indicates that the resonance that we find could most probably correspond
to a resonance not yet found.
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Figure 2.4: Modulus squared of the K̄Λc(2595) scattering amplitude.

2.1.3 Investigating the NDK interaction

The two body KD and DN interactions were studied by the coupled chan-
nel with ChUA in Refs. [261] and [257,275], respectively. It was found that
the resonance D∗

s0(2317) is dynamically generated in I = 0 from KD scat-
tering and the Λc(2595) is produced in I = 0 from the DN interaction,
as we mentioned above. Hence there are two possible cases of three body
scattering in the NDK system. One is the N−(DK)D∗

s0(2317)
and the other

one is the K − (DN)Λc(2595).

First, we are going to investigate the three body scattering for the N −
(DK)D∗

s0(2317)
. In order to calculate this, in a first step we obtain the DN

amplitude, t1 from Refs. [257,275] and theKN amplitude, t2 from the chiral
unitary approach of Ref. [155]. For the DN matrix element the result of
Ref. [257] is reproduced and the imaginary part of the DN matrix element
that we obtain is shown in Fig. 2.1. In the case of the KN system, the
interaction is repulsive in I = 1 and has vanishing interaction in I = 0.
We take the parameters for the loop function from Ref. [276]. For the next
step, in order to get the total scattering amplitude T , we need to know
the form factor for D∗

s0(2317) and G0(s). Here the cut off is determined by
comparing the value of the G function that one obtains from the dimensional
regularization [276] and the cut off scheme [155] at threshold. In this way
Λ = 900 MeV is obtained for the cut off of the D∗

s0(2317) form factor. The
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Figure 2.5: Real(solid line) and imaginary(dashed line) parts of G0 in N −
DK.

form factor of the D∗
s0(2317) is plotted in Fig. 2.2 and the G0(s) function

for this case is represented in Fig. 2.5.

Using the aforementioned total three-body scattering amplitude T , we
obtain |T |2 for the ND∗

s0(2317) scattering shown in Fig. 2.6. We found a
peak around 3050 MeV which is about 200 MeV below theD∗

s0(2317) and N
threshold. This reflects the strong attraction in the DN system that leads
to the Λc(2595). The width of the state is smaller than 10 MeV. We do
not find a counterpart in the PDG and the quantum numbers, with positive
strangeness, correspond to an exotic state.

As an alternative possibility, the three body scattering in the KDN
system can also be formed as K− (DN)Λc(2595), with the Λc(2595) assumed
as a two body cluster. Now we need the two body matrix elements KD
and KN . The latter one is calculated using the chiral unitary approach
that was mentioned before. The KD matrix element, as also mentioned
above, is investigated in Ref. [261]. In order to calculate the form factor for
the Λc(2595), the cut off is needed. With the aforementioned strategy the
value of Λ = 973 MeV is obtained and it was already used in section 2.1.2.
Using this cut off value, the G0(s) function is the same as in section 2.1.2
when we had scattering of a K̄ on the cluster of Λc(2595), since the masses
of K̄ and K are the same. The G0(s) function is, thus, the one plotted
in Fig. 2.3. Ultimately the total three-body scattering amplitude for the
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Figure 2.6: Modulus squared of the ND∗
s0(2317) scattering amplitude.

KΛc(2595) scattering is evaluated and the result of |T |2 is represented in
Fig. 2.7. There is an explicit narrow peak at 3100 MeV.

One may try to investigate the structure of the peak in Fig. 2.7, but
it would only distract us from the main point, which is that the weight of
|T |2 in Fig. 2.7 is very small compared with the one in Fig. 2.6 for the
N − (DK)D∗

s0(2317)
configuration. Note that a proper comparison requires

to take into account the different field normalizations. Indeed, the S matrix
for N − (DK)D∗

s0(2317)
goes as

S ' 1− iT
1√

2ωD∗
s0(2317)

1√
2ω′

D∗
s0(2317)

√
2MN

2EN

√
2MN

2E′
N

, (2.5)

while for K − (DN)Λc(2595) it goes as

S ' 1− iT
1√
2ωK

1√
2ω′

K

√
2MΛc

2EΛc

√
2MΛc

2E′
Λc

. (2.6)

Hence, the proper comparison is T
2mD∗

s0

in the first case versus T
2mK

in the

second, or T (K(DN)) versus mK
mD∗

s0

× T (N(DK)). Considering this, the
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Figure 2.7: Modulus squared of the KΛc(2595) scattering amplitude.

strength of the peak for |T (K(DN))|2 is about a factor 90 smaller than
for |T (N(DK))|2. This means that the K(DN) configuration in the wave
function of the KDN system has a very small weight. Hence, we predict
a bound state of NDK mostly made of a N orbiting around a bound DK
cluster forming the D∗

s0(2317).

2.1.4 NDD̄ interaction results

The two-body DD̄ interaction was investigated in Refs. [261, 262, 278] and
a resonance called X(3700), was dynamically generated. This resonance
would be the analogue one to the f0(980) which is basically a KK̄ bound
state [16, 17, 263–267]. In our procedure we also reproduce this DD̄ state
successfully, getting the pole as (3718+ i0) MeV with the same parameters
as in Ref. [261]. We take a value of Λ = 850 MeV from Ref. [262], which is
consistent with the methods mentioned above. Then we can calculate the
form factor of the X(3700) with Eq. (1.77) by means of this cut off. Next
we evaluate the G0 by means of Eq. (1.76), for N propagating between the
D and D̄, and its results are shown in Fig. 2.8.

The nucleon interaction with the D, D̄ mesons was studied by the cou-
pled channels two-body scattering equations in Refs. [257, 258]. For the
DN scattering amplitude, as mentioned before, we followed the procedure
of Ref. [257]. For the I = 1 sector there are eight coupled channels and we
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Figure 2.8: Real(solid line) and imaginary(dashed line) parts ofG0 inNDD̄.

have used the same parameters as in I = 0 which reproduced the Λc(2595)
resonance. The D̄N interaction, which is similar to the KN channel [257],
is repulsive in I = 1 and vanishes for I = 0. As in [258], we took the same
parameter as for the DN interaction. Finally we obtain the T matrix, for
the NDD̄ interaction by means Eq. (1.68), and show the results of |T |2
in Fig. 2.9. From this figure we can see that there is a clear peak of |T |2
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Figure 2.9: Modulus squared of the NX(3700) scattering amplitude.

around 4400 MeV and the width is very small, less than 10 MeV. The peak
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appears below the NDD̄ and NX(3700) thresholds and corresponds to a
bound state of NX(3700). This would be a hidden charm baryon state

of JP = 1
2

+
which appears in the same region of energies as other hidden

charm states of JP = 1
2

−
obtained from the D̄Λc, D̄Σc and D̄∗Λc, D̄

∗Σc
in Refs. [127, 168]. In these latter works some reactions were suggested to
observe those states in future Facilities. The same or similar reactions could
be used to observe these states of positive parity.

2.1.5 Conclusions

We have investigated three body systems that have one D meson or DD̄,
together with one baryon. The systems are K̄DN , NDK and NDD̄. Con-
cretely, for K̄DN we study the scattering of K̄ with the D and N com-
ponents of the cluster of DN that makes the Λc(2595) resonance. In the
second case, NDK, we find that the important configuration corresponds
to N scattering over the cluster of KD that makes the D∗

s0(2317). In the
case of the NDD̄ we look at N scattering on the DD̄ cluster that is sup-
posed to generate a bound state called X(3700). In all cases we find bound
or quasibound states, relatively narrow, with energies 3150 MeV, 3050 MeV
and 4400 MeV, respectively. All these states have JP = 1/2+ and isospin
I = 1/2 and differ by their charm or strangeness content, S = −1, C = 1,
S = 1, C = 1, S = 0, C = 0, respectively.
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2.2 DNN quasi-bound state

The interaction of mesons with nuclei and the property of mesonic bound
states are one of the most important topics in the nuclear-hadron physics [279–
284]. Bound states of pions andK− have been investigated for long and have
revealed the roles of strong interactions in the hadron-nucleus bound states.
A step forward in the experimental observation of the most deeply bound
pionic states was given using the (d,3He) reaction [285], and also, although
less clearly, using the coherent radiative π− capture [286] in Ref. [287]. The
deeply bound kaon atoms had been studied theoretically using the opti-
cal potentials [288–292]. Because of the large imaginary part, the width
of the bound states is larger than the energy separation between the lev-
els [283, 293], so that the experimental observation is not obvious (see also
Refs. [294,295]).

The simplest of the many-body kaonic nuclear system is the K̄NN .
Because the Λ(1405) resonance is interpreted as a quasi-bound state of the
K̄N system in the πΣ continuum [155,190,194,277,296–299], one expects a
quasi-bound K̄NN system driven by the attractive K̄N interaction in the
isospin I = 0 channel. Various approaches have resulted in a rather general
consensus that the quasi-bound state is obtained above the πΣN threshold
and the width is larger than the binding [227, 228, 231, 268–273, 300–302].
Thus, the experimental identification of this system would be difficult.

What we report here is the analogous state of the K̄NN , substituting the
K̄ by a D meson. The DN interaction in I = 0 dynamically generates the
JP = 1/2− excited state, Λc(2595) [237, 256–258]. The Λc(2595) resonance
is rather narrow (Γ < 1.9 MeV), in contrast to the analogous Λ(1405) with
the widths of 30-60 MeV [277,298,299]. While the large width of the Λ(1405)
is responsible for the large width of the K̄NN state, the analogous state
DNN , where the Λc(2595) plays the role of the Λ(1405) in the K̄NN state,
has much better chances to survive as a long lived and observable state.

The interaction of the D mesons with nuclei has been addressed in
Refs. [237, 257, 303] and the possibility of making bound atomic states of
D mesons in nuclei has been considered in Ref. [304]. However, few-body
systems like DNN are less affected by the Coulomb repulsion particularly
for the total isospin Itot = 1/2. With this in mind we tackle the DNN
system from two different approaches: the FCA to the Faddeev equations,
as done in Refs. [227, 228, 231] for the K̄NN system, and the variational
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method as done in Refs. [271,272]. In order to gain confidence that the state
found is narrow, we have also evaluated the width of the state coming from
the absorption of the D by a pair of nucleons going to the ΛcN system in the
FCA, analogous to the absorption of K̄ by a pair of nucleons as considered
in Refs. [272,289,305,306].

2.2.1 DN scattering and interaction

We consider the two-body DN scattering based on the model in Ref. [257].
This is a coupled-channel approach to the s-wave meson-baryon scattering in
the vector-meson exchange picture. The negative parity Λc(2595) resonance
is dynamically generated as a quasi-bound state of the DN system in the
I = 0 channel, just like the Λ(1405) resonance in the strangeness sector [155,
190,194,277,297–299].

We consider seven (eight) coupled channels in the isospin I = 0 (I = 1)
sector, DN , πΣc, ηΛc, KΞc, KΞ′

c, DsΛ, and η′Λc (DN , πΛc, πΣc, ηΣc,
KΞc, KΞ′

c, DsΣ, and η
′Σc). The scattering amplitude tij is obtained from

the ChUA as discussed in subsection 1.3.1

t(I) = ((v(I))−1 − g(I))−1, (2.7)

with the dimensional regularization for the loop function g(I) in the present
work. The diagonal components of the s-wave scattering amplitudes in the
DN channel, which are complex above the πYc (Yc = Λc,Σc) threshold, are
shown in Fig. 2.10, where the Λc(2595) of the I = 0 resonance is dynamically
generated and the other resonance in I = 1 is also generated at ∼ 2760 MeV.

Now we construct an effective single-channel potential, which will be
used in the variational calculation of the DNN system. We utilize the
method in Ref. [307], first constructing a single-channel framework which
is equivalent to Eq. (2.7) and then translating the result into a local and
energy-dependent potential in coordinate space.

The effective interaction veff is constructed to reproduce the original
amplitude t11, given by

t11 =[(veff)−1 − g1]
−1. (2.8)

It is shown that the veff is given by the sum of the bare interaction in channel
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Figure 2.10: (Color online) S-waveDN scattering amplitude in the coupled-
channel model (2.7); (a): I = 0 channel, (b): I = 1 channel. Vertical dotted
lines represent the threshold energies of πΣc and DN channels.

1 (v11) and the term with coupled-channel effects as [307]

veff =v11 +

N∑
m=2

v1mgmvm1 +

N∑
m,l=2

v1mgmt
(N−1)
ml glvl1, (2.9)

where t
(N−1)
ml = [(v(N−1))]−1 − g(N−1)]−1 is the (N − 1)× (N − 1) matrix of

the coupled-channel amplitude without the DN channel.
We then translate veff into the local potential in coordinate space. Thus,

the two-body potential can be written as

vDN (r;W ) =
MN

2π3/2a3sω̃(W )

× [veff(W ) + ∆v(W )] exp[−(r/as)
2], (2.10)
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where as = 0.4 fm is the range parameter of the potential and ω̃(W ) is the
reduced energy of the DN system. This complex and energy-dependent po-
tential reproduces the scattering amplitude t11 when the Schrödinger equa-
tion with this potential is self-consistently solved. The strength of the po-
tential vDN (r;W ) at r = 0 is shown in Fig. 2.11. One finds that the real
part (imaginary part) is larger (smaller) than that of the K̄N potential [307],
which demonstrate the differences of the interaction kernel.
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Figure 2.11: (Color online) Strength of the effective potential vDN (r,W ) at
r = 0 by Eq. (2.10); (1): I = 0 channel, (b): I = 1 channel. The range
parameter is chosen to be as = 0.4 fm. Vertical dotted lines represent the
threshold energies of πΣc and DN channels.

2.2.2 The FCA for the DNN system

The FCA to the Faddeev equations has been used with success as discussed
above. The method has been used with success in the study of K− scatter-
ing with the deuteron in Refs. [218,221,308,309] (see a review in Ref. [222]
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for comparison with full Faddeev calculations). In the present case, where
we want to study the DNN system, we have also the precedent of the work
of Refs. [227,228], where the K̄NN system was studied within this approx-
imation and found to provide results in qualitative agreement with those of
the variational calculations [271, 272]. The condition that the interacting
particle (D meson) is lighter than those of the two-body cluster (nucleon) is
not fulfilled in this case. This certainly introduces larger uncertainties than
in other cases studied but we still expect that one can get good results at
a qualitative level. We already mentioned in the section Sec. 2.1 that the
FCA is still a sensible tool in this case when dealing with bound states.

In the FCA to the Faddeev equations for the DNN three body system,
one takes the NN as a cluster and D scatters from that cluster. We consider
theDNN system with total isospin Itot = 1/2 and with the total spin-parity
JP = 0− and JP = 1−. In this approach, all the two-body pairs are in s
wave.

First we make the evaluation for the case of JP = 0−, which corresponds
to the spin (isospin) of the NN pair as SNN = 0 (INN = 1). To have total
isospin Itot = 1/2, the dominant component of the DN system is I = 0,
where the Λc(2595) resonance appears.

The T matrix for the three-body DNN scattering is labeled by the DN
isospins in the entrance channel I and the exit channel I ′, TI,I′ . We denote
the two-body (s-wave) DN scattering amplitudes by t(0) for I = 0 and t(1)

for I = 1. Then the T matrix satisfies

TI,I′ = t(I)δI,I′ + t(I)GtrI,I′′G0TI′′,I′Pex, (2.11)

which is diagrammatically represented in Fig. 2.12. In Eq. (2.11), G0 is the
meson exchange propagator

G0 =

∫
d3q

(2π)3
FNN (q)

1

q02 − ~q 2 −m2
D + iε

, (2.12)

where FNN (q) is the form factor, representing the momentum distribution
of the NN system. Pex is the isospin exchange factor, which depends on the
total isospin of the nucleon, INN , in the final state, Pex = (−1)INN+1 = 1
for J = 0, and = −1 for J = 1. And, the transition matrix G is given by
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I IÕ

TIIÕ = 

IÓ IÕ

TIÓIÕ

tI

+ 

tI
Pex

G

Figure 2.12: Diagrammatic illustration of the three-body equation (2.11).

GtrI,I′′ =

 1

2

√
3

2√
3

2
−1

2

 .

The three-body amplitude TI,I′ is obtained by solving Eq. (2.11):

T =

[
1− 1

2
(t(0) − t(1))G0Pex − t(0)t(1)G2

0

]−1

×

(
t(0) + 1

2 t
(1)G0t

(0)Pex
√
3
2 t

(0)t(1)G0Pex√
3
2 t

(0)t(1)G0Pex t(1) − 1
2 t

(0)G0t
(1)Pex

)
.

In calculating the T matrix for the scatterings in the J = 0 and J = 1
channels, we take the linear combinations, with a factor 2 for the choice of
the first nucleon, as

T (J = 0) = 2
(√

3
2

1
2

)(T00 T01
T10 T11

)(√
3
2
1
2

)
,

T (J = 1) = 2
(
−1

2

√
3
2

)(T00 T01
T10 T11

)(
−1

2√
3
2

)
.

Substituting the T matrix and replacing Pex by +1 for J = 0, INN = 1
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scattering and −1 for J = 1, INN = 0, we obtain

T (J = 0) =

(
3

2
t(0) +

1

2
t(1) + 2t(0)t(1)G0

)
×
[
1− 1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

, (2.13)

T (J = 1) =

(
1

2
t(0) +

3

2
t(1) + 2t(0)t(1)G0

)
×
[
1 +

1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

. (2.14)

These results coincide with those derived in the charge basis with the for-
malism of the FCA [228,231] (more details are seen in the appendix of our
paper [310]).

We can see that Eq. (2.12) contains the folding of the D intermediate
propagator with the form factor of the NN system. Eq. (2.12) requires
the NN form factor. In order to estimate the NN size one can rely upon
the results of Ref. [272] in the study of the K̄NN system, where the NN
repulsion at short distance was explicitly taken into account. In practical
terms we use the same expression for the form factor as for the deuteron [311]

F (q) =

∫ ∞

0
d3p

11∑
j=1

Cj
~p2 +m2

j

11∑
i=1

Ci
(~p− ~q)2 +m2

i

, (2.15)

but with the parametersmi rescaled such as to give an average separation of
the nucleons ofRNN ' 2 fm [272]. They are shown in Fig. 2.13. The validity
of this NN form factor will be examined by the result of the variational
calculation, where the average distance of the NN pair in the DNN system
will be optimized in the three-body dynamics.

We need the argument s1 of the DN amplitude, t(
√
s1). To evaluate it

we adopt a common procedure of dividing the binding energy into the three
particles proportionally to their masses. The energy of the nucleon and the
D meson are given by

EN =MN

√
s

2MN +mD
, ED = mD

√
s

2MN +mD
,
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Figure 2.13: Form factor of the deuteron, and the one corresponding to an
NN system with a reduced radius from Ref. [272].

so the total energy of the two-body system can be calculated as

s1 = (pD + pN1)
2 = s

( MN +mD

2MN +mD

)2
− ~p 2

N2
. (2.16)

The approximate value of ~p2N2
can be obtained by assuming

~p 2
N2

2MN
' BN2 ; BN2 =MN −MN

√
s

2MN +mD
, (2.17)

which provides a rough estimate for bound systems with the strong inter-
action.

We use here a different prescription for s1 than the one used in Ref. [227].
The latter one was based on the calculation of s1 = (pA+p1)

2 = m2
A+m

2
b1
+

2pA · p1 and further steps to calculate pA · p1, where A is the interacting
particle and b1 one of the particles of the cluster. However, when the binding
of the system is large, like in the present case, assuming p2A = m2

A and
p21 = m2

b1
grossly underestimated the binding of the particles and we have

introduced the new, more realistic prescription of Eq. (2.16).

2.2.3 Evaluation of the D(NN) Absorption

As we shall see later, we obtain a DNN bound system with a very small
width. This is related to the small width of the Λc(2598) state which is
generated in DN interaction in I = 0. Yet, this calculation only takes into
account the decay channel DN → πΣc for which there is little phase space
and DN → πΛc channel which comes from the subdominant DN I = 1
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component in the DNN system. Now we allow the D to be absorbed by two
nucleons, in analogy to the K̄NN → ΛN considered in Refs. [289,305,306].
Here the channel will be DNN → NΛc whose absorption process is shown
diagrammatically in Fig. 2.14 (other mechanisms and decay channels will
be discussed in the end of this section). We calculate only the first diagram
in Fig. 2.14. The second one gives an identical contribution and they sum
incoherently: there is no interference since the NΛc and ΛcN are orthogonal
states. Hence, the total width will be twice the one obtained from just one
diagram.

N

N Λc(2286)

N

x

y
D

D

NΛc

x

y

D

D

N N

+

Figure 2.14: Diagrammatic representation of the D(NN) absorption.

The S-matrix for the diagram is given by

S =

∫
d4x

∫
d4y(−i)tDN→DN

× 1√
2ωD

ϕD(~x)e
−iωDx

0
e
iE′

N1
x0
e−iEN1

x0ϕ∗
N ′

1
(~x)ϕN1(~x)

×
∫

d4q

(2π)4
e−iq(y−x)

i

q2 −m2
D + iε

×Vy~σ~q eiEΛcy
0
e−iEN2

y0ϕ∗
Λc
(~y)ϕN2(~y),

where Vy is the Yukawa vertex. We take the same coupling as K−p → Λ
since in the D and Λc the c quark plays the role of the s quark in the K̄
and Λ. In Ref. [312], the Vy is given as

Vy = − 1√
3

3F +D

2f
,
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with D = 0.795, F = 0.465 [313]. After performing the integrations, the
S-matrix is written as follows

S =
1

V 2

∫
d3q

(2π)3
1√
2ωD

tDN→DN
1

q2 −m2
D + iε

×Vy~σ~q ϕ̃(~q − ~pΛc +
~P

2
)(2π)4δ4(pi − pf )

≡ −iT 1√
2ωD

1

V 2
(2π)4δ4(pi − pf ). (2.18)

Taking an approximation to the D propagator in Eq. (2.18),

1

q2 −m2
D

→ 1

(q0)2 − ~p 2
Λc

−m2
D

, (2.19)

where q0 = EΛc − EN2 and pΛc ≈ λ1/2(M2
NND,M

2
N ,M

2
Λc
)/2MNND, and

defining of ~q − ~pΛc ≡ ~q ′, the square of the total matrix element is obtained
as follow:

|T |2 = V 2
y ~p

2
Λc

(
1

(q0)2 − p2Λc
−m2

D

)2

×
∣∣∣∣ 1

2π2

∫
q′2dq′ϕ̃(~q ′)tDN,DN (

√
s′)

∣∣∣∣2 , (2.20)

With this T matrix we evaluate the cross section for the process of Fig. 2.14
(left) and we obtain

σabs =
1

2π

MNNMΛcMN

M2
NND

pΛc

pD
|T |2.

It is interesting to relate this cross section to the imaginary part of the
forward D(NN) → D(NN) amplitude from the diagram of Fig. 2.15 using
the optical theorem. We find

Im TD(NN) = −pD
√
s

MNN
σabs = − 1

2π

MΛcMN

MNND
pΛc |T |2.

The next step is to convert the absorption diagram of the Fig. 2.15 (a)
into a “many body” diagram of Fig. 2.15 (b) where the nucleon where the D
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Figure 2.15: D(NN) absorption.

is absorbed, the only occupied state of the “many body” system, is converted
into a hole state in the many body terminology [314]. Once this is done,
one observes that if we remove the amplitude tDN in the expression of T ,
the expression that we obtain for Im TD(NN) corresponds to the evaluation
of the imaginary part of the two-body loop function g of a nucleon and a D
meson [Fig. 2.15 (c)] but with a D selfenergy insertion accounting for the
(ΛcNh) excitation of the D meson. We call this δg̃. The Feynman rules to
evaluate Im δg̃ and Im TD(NN) are identical, except that tDN,DN is removed
in the evaluation of Im δg̃. Hence we obtain

iIm δg̃ = −i 1
2π

MΛcMN

MNND
pΛc |T̃ |2.

with |T̃ |2 is given by Eq. (2.20) removing tDN,DN . This simplifies the
expression since

1

2π2

∫
q′2dq′ϕ̃(~q ′) = lim

r→0

∫
d3q′

(2π)3
ei~q

′~rϕ̃(~q ′) (2.21)

=ϕ(r = 0).

Thus |T̃ |2 is given by

|T̃ |2 = V 2
y ~p

2
Λc

1

[(q0)2 − p2Λc
−m2

D]
2
|ϕ(0)|2.

Finally ~p 2
Λc

accompanying V 2
y in the former expression requires a small cor-

rection. The factor comes from the non relativistic ~σ~q form of the DNΛc
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Figure 2.16: The meson-baryon loop function gDN in the DN channel (solid
line) and with the effect of the two-body absorption iIm δg̃ added (dashed
line).

vertex. If we take instead the relativistic Yukawa vertex of the type γµγ5,
then we find the easy prescription to account for the relativistic correction,

V 2
y ~p

2
Λc

→ V 2
y

1

4m2
Λc

(MN +MΛc)
2~p 2

Λc
.

The next step is to reevaluate the tDN,DN amplitude used as input in the
fixed center formulas. As we mentioned, it was obtained using the method
of Ref. [257] with several coupled channels and the formula (2.7). We redo
the evaluation by replacing the loop function in the DN channel as

gDN → gDN + i Im δg̃ (2.22)

to take into account the D absorption by two nucleons or, analogously, the
ΛcNh excitation of the D meson. When doing this, the DN amplitude be-
comes complex below the DN threshold and the narrow Λc(2598) resonance
acquires now a moderate width due to the D absorption with a second nu-
cleon. The second process of Fig. 2.14 (right) is accounted for when we
consider the three-body amplitude T in the FCA formula with the first D
scattering with the second nucleon.

Let us numerically investigate the effect of the absorption. In Fig. 2.16,
we show the meson-baryon loop function gDN in the DN channel together
with the two-body absorption contribution to the imaginary part, iIm δg̃.
We can see that the imaginary part of the total g function is no longer



2.2. DNN QUASI-BOUND STATE 79

zero below the DN threshold due to D absorption. In Fig. 2.17, we show
the modulus of the two-body amplitude |t| for the DN channel for I = 0
using gDN and gDN + iIm δg̃ of Eq. (2.22). As we can see, the inclusion
of the absorption mechanism induces an increase in the width of the peak
of Λc(2595) in |t| which will have repercussion in the width of the DNN
system.
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Figure 2.17: Modulus of the two-body amplitude DN → DN (solid line)
and with the effect of the two-body absorption iIm δg̃ added (dashed line).

2.2.4 Variational calculation of the DNN system

Here we calculate the energy of the DNN system with a variational ap-
proach formulated for the K̄NN system in Refs. [271, 272]. As in the case
of the FCA, we consider the DNN system with total isospin I = 1/2 and
the total spin-parity either JP = 0− or JP = 1−. The trial wave function
for the JP = 0− state is prepared with two components:

|ΨJ=0 〉 = (N 0)−1[|Φ0
+ 〉+ C0|Φ0

− 〉],
|ΨJ=1 〉 = (N 1)−1[|Φ1

+ 〉+ C1|Φ1
− 〉],

where N 0, N 1 are the normalization constants, C0, C1 are the mixing co-
efficients, |Φ0

+ 〉, |Φ1
+ 〉 are the main component, and |Φ0

− 〉, |Φ1
− 〉 are the

mixture components. Note that only the main component of |ΦJ=0,1
+ 〉 is

taken into account in the FCA calculation. The wave functions are expanded
in terms of gaussians in coordinate space, and we minimize the total energy
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of the system with the Hamiltonian given below. Detailed explanation of
the variational method can be found in Ref. [272].

We consider the following Hamiltonian in this study:

Ĥ = T̂ + V̂NN +Re V̂DN − T̂c.m., (2.23)

where T̂ is the total kinetic energy, V̂DN is the DN potential term which is
the sum of the contributions from two nucleons, and T̂c.m. is the energy of the
center-of-mass motion. For the NN potential V̂NN , we use three models:
HN1R which is constructed from Hasegawa-Nagata No.1 potential [315],
the Minnesota force [316], and the gaussian-fitted version of the Argonne
v18 potential [317]. We have examined three kinds of NN interactions.
Because we work in the isospin symmetric limit, the Coulomb interaction
is not included in all cases. In Fig. 2.18, we show the spatial form of the
potentials in the 1S0 channel. The phase shifts of the NN scattering in the
1S0 channel are shown in Fig. 2.19 in comparison with experimental data.
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Figure 2.18: (Color online) (a): Coordinate space NN potentials in the 1S0
channel. (b): Detail of the lower part of the panel (a).

We take the real part of the DN potential for the energy variation,
and the imaginary part will be used to estimate the mesonic decay width.
The energy dependence of the interaction was treated self-consistently in
the study of K̄NN system [272]. In addition, the self-consistent treatment
requires some assumption on the energy fraction of the DN pair in the
three-body system, which cannot be determined unambiguously. In this
study, therefore, we refrain from the self-consistent treatment of the energy
of the DN subsystem and set the strength of the potential at the energy of
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Figure 2.19: (Color online) NN phase shifts in the 1S0 channel calculated
by the NN potentials.

the Λ∗
c resonance:

Re vDN (r = 0;W =MΛ∗
c
) =

{
−1336 MeV (I = 0)

−343 MeV (I = 1)
, (2.24)

withMΛ∗
c
= 2597.1 MeV. In this case, theMΛ∗

c
in I = 0 channel is correctly

reproduced, while the I = 1 resonance disappears, because the strength
of the DN potential (2.10) reduces at the lower energy region as seen in
Fig. 2.11.

It is useful to introduce one- and two-body densities in order to extract
the spatial structure of the DNN bound state. We first define the one-body
densities as

ρN (r) =〈Ψ |
∑
i=1,2

δ3(|ri −RG| − r)|Ψ 〉,

ρD(r) =〈Ψ |δ3(|rD −RG| − r)|Ψ 〉,
ρT (r) =ρN (r) + ρD(r),

where RG is the center-of-mass coordinate of the three-body system. We
also define the two-body correlation densities as

ρNN (x) =〈Ψ |δ3(|r1 − r2| − x)|Ψ 〉,

ρDN (x) =〈Ψ |
∑
i=1,2

δ3(|rD − ri| − x)|Ψ 〉,
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which stand for the probabilities of finding NN or DN pair at relative
distance x.

In this setup, since the imaginary part of the DN potential is not in-
cluded, the Λ∗

c appears as a stable bound state. Thus, in the variational
approach, the DNN three-body bound state can be found in the energy
region below the Λ∗

cN threshold
√
s ∼ 3536 MeV. If the three-body (quasi-

)bound state exists above the Λ∗
cN threshold, the variational calculation will

find the Λ∗
cN two-body scattering state as the ground state of the three-

body system.

A three-body bound state above the πΛcN threshold
√
s ∼ 3363 MeV

has a mesonic decay width. The three-body decay width can be estimated
by the matrix element of the imaginary part of the DN potential as

ΓπYcN =− 2〈Ψ |Im V̂DN |Ψ 〉,

where |Ψ 〉 is the obtained wave function of the ground state. As seen in
Fig. 2.11, the imaginary part of the DN potential is much smaller than the
real part.

2.2.5 Results with the FCA approach
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Figure 2.20: Modulus squared of the three-body scattering amplitude for
I = 1/2 and J = 0 (left), J = 1 (right) with reduced size of the NN radius.

We first study the quasi-bound state found in the FCA calculation. In
Figs. 2.20 we show the results for |T |2 as functions of the total energy

√
s
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Figure 2.21: Modulus squared of the three-body scattering amplitude for
I = 1/2 and J = 0 (left), J = 1 (right) with reduced NN radius (with δG̃).

assuming the NN system to have reduced size. Both for INN = 0, INN =
1(J = 1, J = 0), we obtain a neat peak. The resonance energy for J = 0 is
about 3486 MeV and the width is extremely small. In the case of J = 1 we
have a smaller binding and the energy is about 3500 MeV, with a width of
around 9 MeV. We should note that the binding is similar for both the spin
channels.

Next we include δg̃ to account for absorption and plot |T |2 for the DNN
system in Figs. 2.21 for J = 0 (INN = 1) and J = 1 (INN = 0). The
difference of the peak position by the absorption effect is only a few MeV
(2-4 MeV) which is certainly within our uncertainties. The novelty, which is
welcome, is that |T |2 has become now wider and acquires a width of about
20-25 MeV. We are now in a position to compare the strength of these two
amplitudes and we see that in the case of J = 0 the strength of |T |2 at the
peak is about a factor 15 larger than that for J = 1. This means that the
state that we find at J = 1 should be more difficult to see, or alternatively
we should see the small strength as an indication that this state is more
uncertain in our approximation, as should be the smaller shoulder that one
can see at higher energies for J = 1 in Fig. 2.21 (right).

2.2.6 Results with the variational approach

Now we investigate the same system in the variational approach. We first
adopt HN1R potential for the nuclear force. As a result of the variational
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calculation, we have found that the total spin J = 1 system (INN = 0)
is unbound with respect to the Λ∗

cN threshold. A bound state of the spin
J = 0 system (INN = 1) is found at B ∼ 225 MeV measured from the
DNN threshold (∼ 3745 MeV). This corresponds to the total energy of the
three-body system as MB ∼ 3520 MeV. We also examine the Minnesota
force and Av18 potential. The results are summarized in Table 2.1, together
with the contributions from the individual terms in Eq. (2.23).

Table 2.1: Results of the energy compositions in the variational calculation
for the ground state of the DNN system with total isospin I = 1/2 (range
parameter as = 0.4 fm). Terms “bound” and “unbound” are defined with
respect to the Λ∗

cN threshold. All the numbers are given in MeV.

HN1R Minnesota Av18
J = 1 J = 0 J = 0 J = 0

unbound bound bound bound
B 208 225 251 209
MB 3537 3520 3494 3536
ΓπYcN - 26 38 22

Ekin 338 352 438 335
V (NN) 0 −2 19 −5
V (DN) −546 −575 −708 −540
Tnuc 113 126 162 117
ENN 113 124 181 113

P (Odd) 75.0 % 14.4 % 7.4 % 18.9 %

As seen in the Table 2.1, the DNN system in the J = 0 channel is
bound below the Λ∗

cN threshold (B ∼ 209 MeV) for all the NN potentials
employed. A large kinetic energy of the deeply bound system is overcome by
the strong attraction of the DN potential, while the NN potential adds a
small correction. Comparing the results with three different nuclear forces,
we find that the binding energy is smaller when the NN potential has a
harder repulsive core (see the potential in Fig. 2.18).

In the J = 1 channel, the ground state energy is obtained slightly above
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the Λ∗
cN threshold. The fact that the J = 1 channel is unbound is confirmed

by changing the parameter µ in the trial wave function, which controls the
size of the total system [272]. We also examine the J = 1 channel with the
Minnesota force. Although the repulsive core is soft in this case, no bound
Λ∗
cN is found.

Using the imaginary part of the DN potential, we evaluate the mesonic
decay width of the quasi-bound state in the J = 0 channel, ΓπYcN . The re-
sults are 20-40 MeV as shown in Table 2.1. This corresponds to the result of
FCA without the D absorption, where the width is less than 10 MeV. Note,
however, that in the variational approach we have evaluated the width per-
turbatively, while in the FCA the evaluation is done nonperturbatively. In
this sense, ΓπYcN obtained in the variational approach can only be regarded
as an estimation of the mesonic decay width.

2.2.7 Structure of the DNN quasi-bound state

To further investigate the structure of the DNN systems, we calculate the
expectation values at various distances of the obtained wave function. The
results of the root-mean-square radii and the relative distances are shown
in Table 2.2. Except for the Av18 case where the wave function spreads
due to the weaker binding, the size of the DNN bound state in the J = 0
channel is smaller than that of the K̄NN system, in which the NN and K̄N
distances are RNN ∼ 2.2 fm and RK̄N ∼ 1.9 fm. It is, on the other hand,
acceptable to use the reduced size of Eq. (2.15) for the NN distribution in
the FCA calculation, given the uncertainty that arises from the choice of
the NN interaction. The large relative distances in the J = 1 channel also
reflect the nature of the scattering state in this channel.

In view of the different values of RNN obtained from the use of different
NN potentials (see Table 2.2) and the different binding obtained in each case
(see Table 2.1), we redo the calculations in the FCA changing the NN form
factor of Eq. (2.15). We find a change in the binding from RNN = 2.62 fm
to 1.55 fm of 10 MeV (more bound) versus 16 MeV in Table 2.1. In the
case of RNN from RNN = 2.62 fm to 1.03 fm the change is 28 MeV (more
bound) versus 42 MeV in Table 2.1. The effects of the binding go in the
same direction in both cases and they also agree in absolute value at the
qualitative level.

In Fig. 2.22, we show the one-body densities of the nucleon and D meson
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Table 2.2: Structure of the DNN ground state (range parameter as = 0.4
fm).

√
〈r2〉T ,

√
〈r2〉D and

√
〈r2〉N mean the root-mean-square radius of

the distribution of total system, nucleons and D meson, respectively. RNN
(RDN ) is the mean distance between two nucleons (D meson and a nucleon)
in theDNN . RDN (I) is the mean distance of a DN component with isospin
I. All the numbers are given in fm.

HN1R Minnesota Av18
J = 1 J = 0 J = 0 J = 0√

〈r2〉T 4.81 0.75 0.50 1.26√
〈r2〉N 5.61 0.88 0.59 1.47√
〈r2〉D 2.52 0.41 0.28 0.67

RNN 10.04 1.55 1.03 2.62
RDN 7.11 1.12 0.76 1.87

RDN (I = 0) 4.52 0.83 0.62 1.28
RDN (I = 1) 10.03 1.57 1.03 2.65

of the quasi-bound state with the HN1R potential. It is clear that the D
meson distributes more compactly than the nucleons. This result indicates
a schematic picture where the D meson sits at the center and nucleons
circulate around it.

It is instructive to look at theDN correlation in more detail. In Fig. 2.23,
we show the DN two-body correlation density as well as its isospin decom-
position. It is seen that the I = 0 component distributes more compactly
than the I = 1 component, which reflects the strength of the attraction
in each channel [see Eq. (2.24)]. Moreover, the I = 0 component is simi-
lar to the distribution of the relative distance of the DN two-body bound
state ρΛ∗

c
(r). This indicates that the structure of the Λ∗

c is maintained even
in the three-body system. This feature has also been found in the K̄NN
system [272,318].

As in the case of the K̄NN system, the survival of the Λ∗
c in the three-

body system opens the possibility of the “Λ∗
c-hypernuclei”, in which the Λ∗

c

is treated as an effective degree of freedom [319,320]. In fact, this picture is
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Figure 2.22: (Color online) (a): One-body densities ρN (r) and ρD(r) in the
J = 0 channel with HN1R potential. (b): the same plot of the densities
multiplied by r2.
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Figure 2.23: (Color online) (a): Normalized DN two-body correlation den-
sity ρDN (r) with isospin decomposition. The I = 0 DN bound state (Λ∗

c)
correlation density is also shown for comparison. (b): the same plot of the
densities multiplied by r2.

more suitable in the charm sector, since the width of the Λ∗
c is smaller than

that of the Λ∗, so the effect of the imaginary part in the calculation should
be smaller. Note also that the binding of the DN system is as large as 200
MeV, while the binding of the Λ∗

cN is much smaller, especially for the case
of the realistic Av18 potential.

We have examined theoretical uncertainties in the construction of the
potential. The range parameter of the DN potential as is introduced in
Eq. (2.10) and chosen to be 0.4 fm. When we adopt as = 0.35 fm, the
binding energy changes by a few MeV, and the size changes less than 0.1
fm. The Minnesota potential has a parameter u which controls the strength
of the NN odd force [316]. The effect of the slight inclusion of the odd force
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(u = 0.95) turns out to be very small, less than 1 MeV. We thus conclude
that these uncertainties are much smaller than the dependence on the choice
of the NN potential. The variation of the values in Tables 2.1 and 2.2 can
be regarded as the theoretical uncertainties in the present calculation.

2.2.8 Discussions

• Comparison of two approaches

We have presented the results of two approaches, the Faddeev FCA
calculation and the variational calculation. In the total spin J = 0
channel, both approaches find a quasi-bound state around 3500 MeV
which is below the Λ∗

cN threshold. The assumed NN distribution
in the FCA turns out to be similar to that found in the variational
calculation by minimizing the total energy. It is therefore reasonable
to conclude that these approaches find the same quasi-bound state.

The spin J = 1 channel, on the other hand, has differences in the
two approaches. The lowest-energy state obtained in the variational
calculation is a Λ∗

cN scattering state, while a narrow peak is found
in the FCA amplitude below the Λ∗

cN threshold, although the signal
strength is not so significant as the J = 0 case. A major reason of this
discrepancy may be traced back to the DN interaction in the isospin
I = 1 channel. The difference of the results in the two approaches also
stems from the odd component of theNN state, which is included only
in the variational calculation. In addition, we should also remember
that the two approaches employ different approximations.

• Comparison with K̄NN results

It is instructive to compare the DNN quasi-bound state with the
corresponding K̄NN state in Ref. [272]. In both cases, we obtain a
quasi-bound state, but the DNN system has a larger binding energy
and a narrower width. This is in parallel with the properties of theDN
and K̄N two-body quasi-bound states, and they are closely related
through the DN and K̄N interactions.

The D meson can be more strongly bound in a nucleus than K̄
meson by two reasons: the coupling itself is stronger, and, the heavier
mass of the D meson is advantageous to increase the binding. So,
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we can consider two hypothetical variants between the DNN system
(B ∼ 230 MeV) and K̄NN system (B ∼ 30 MeV)1; case I: kinematics
of the DNN system with the K̄N potential (m = mD, V = VK̄), and
case II: kinematics of the K̄NN system with the DN potential (m =
mK̄ , V = VD). The result of the variational calculation shows that
B ∼ 40 MeV for case I and B ∼ 190 MeV for case II. As summarized
in Table 2.3, the suppression of the kinetic energy by the heavy D
mass is more important for the strong binding of the DNN system.
One should note that in the present case, the strength of the two-body
interaction is fixed at the energy of the two-body quasi-bound state.
Since the DN two-body bound state locates 200 MeV below the DN
threshold, the strength of the potential is reduced, as seen in Fig. 2.10.
Thus, in the present prescription, the attractive strength of the DN
potential is not very much different from the K̄N one, and the result
of case I does not very much deviate from the K̄NN quasi-bound
state. The narrow width of the DNN system is a consequence of the
narrow width of the Λ∗

c(2595).

Table 2.3: Binding energies of the three-body bound state in J = 0 channel
measured from the three-body threshold with different meson mass and
different meson-nucleon potential.

m = mK̄ m = mD

V = VK̄ ∼ 30 MeV ∼ 190 MeV
V = VD ∼ 40 MeV ∼ 230 MeV

2.2.9 Possible experiments to produce the DNN state

The very narrow width of the DNN system is qualitatively different to
the K̄NN one where the width was so large as to make its experimental
observation practically unfeasible. In the present case there is a clear situa-
tion and there are no problems in principle for the observation of the state.

1Here we also set the strength of the K̄N potential at the energy of the Λ∗ for com-
parison with the DNN calculation.
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In the FCA calculation, we observe that the two-nucleon absorption width
is larger than the three-body decay width. This indicates that the DNN
quasi-bound state can be more easily seen in the two-baryon final states
such as ΛcN . The findings of the present work should stimulate efforts to
find suitable reactions where this state could be found.

As a suggestion in this direction we can think of the p̄ 3He → D̄0D0pn→
D̄0[DNN ] reaction, which could be done by FAIR at GSI. With a p̄ beam
of 15 GeV/c there is plenty of energy available for this reaction and the
momentum mismatch of the D0 with the spectator nucleons of the 3He can
be of the order of 550 MeV/c, equivalent to an energy of 80 MeV for the
D, small compared with the scale of the binding (& 200 MeV). With an
estimate of σ ' 10− 20 nb for p̄p→ D̄0D0 production [321,322] one would
expect several thousand events per day for the background of the proposed
reaction [323]. A narrow peak could be visible on top of this background
corresponding to the DNN bound state formation.

Another possibility is the high-energy π induced reaction. An analogous
reaction is π−d → D−D+np → D−[DNN ] where the relevant elementary
process is π−N → D+D−N . Since the DN pair in the DNN system is
strongly clustering as the Λ∗

c , the reaction π−d → D−Λ∗
cn → D−[DNN ] is

also another candidate. The elementary reaction π−p→ D−Λ∗
c is relevant in

this case. Such reactions may be realized in the high-momentum beamline
project at J-PARC.

A different strategy is to look for the formation of the quasi-bound state
in the heavy ion collisions. It has been shown that the hadronic molecular
states with charm quark are abundantly produced at RHIC and LHC [324,
325]. Although a deeply bound DNN state has smaller production yield,
it can also be produced via coalescence of the Λ∗

cN with much smaller
binding. A peak structure of the DNN state may be seen, for instance, in
the invariant mass spectrum of the Λcπ

−p or Λcp final state.

2.2.10 Conclusions

We have used two methods to investigate the DNN system with I = 1/2.
Both the FCA for the Faddeev equations and the second one employs the
variational approach with hadronic potentials in coordinate space, have
found that the system is bound and rather stable, with a width of about 20-
40 MeV. In both cases, we have found a bound state with an energy around
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3500 MeV in the J = 0 channel. This corresponds to 250 MeV binding from
the DNN threshold. The J = 1 channel is more subtle, and the precise
DN amplitude in the I = 1 channel is important for a robust prediction in
this channel. The mesonic decay width of the quasi-bound state turned out
to be less than 40 MeV.

The small width of the DNN quasi-bound state is advantageous for the
experimental identification. The search for the DNN quasi-bound state can
be done by p̄ induced reaction at FAIR, π− induced reaction at J-PARC,
and relativistic heavy ion collisions at RHIC and LHC.
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2.3 A study of D∗-multi-ρ states

One of the important aims in the study of the strong interaction is to
understand the nature and structure of hadronic resonances. The search
for new resonances is another goal both in theories and experiments. At
low energy, using the input of chiral Lagrangians [151–154, 173] and im-
plementing unitarity in coupled channels, one develops a theoretical tool,
chiral unitarity theory, which explains the two-body interaction very suc-
cessfully [16, 18, 19, 155, 190, 194, 195, 260, 277, 326–328]. For the three-body
interaction, the pioneer work of Ref. [212] combined Faddeev equations and

chiral dynamics and reported several S-wave JP = 1
2

+
resonances which

qualify as two mesons-one baryon molecular states. Furthermore, the FCA
[208, 219–221] to Faddeev equations for multi-ρ(770) states, was given in
Ref. [223], in which the resonances f2(1270), ρ3(1690)(3

−−), f4(2050)(4
++),

ρ5(2350)(5
−−), and f6(2510)(6

++) were explained as basically molecules of
an increasing number of ρ(770) particles with parallel spins. Similarly, it was
also found in Ref. [224] that the resonances K∗

2 (1430), K
∗
3 (1780), K

∗
4 (2045),

K∗
5 (2380) and a new K∗

6 could be understood as molecules made of an in-
creasing number of ρ(770) and one K∗(892) meson.

Using effective Lagrangians of the LHG theory [156,159,163,329] of the
subsection 1.2.2, the ρρ interaction was studied in Ref. [330] with on-shell
factorized BS equations. It was found that the ρρ interaction was attractive
in the isospin zero, spin 0 and 2 channels, particularly in the tensor channel
where it led to the formation of a ρρ quasibound state or molecule that
could be associated to the f2(1270) ( I(JPC) = 0(2++) ). With the same
formalism, the composite systems of light (ρ and ω) and heavy (D∗) vector
mesons were studied in Ref. [331]. In that work, a strong attraction was
found in the isospin, spin channels (I, S) = (1/2, 0), (1/2, 1) and (1/2, 2),
with positive parity, leading to bound ρ(ω)D∗ states, one of them identified
as the D∗

2(2460) ( I(JP ) = 1
2(1

−) ). Therefore, the resonance D∗
2(2460)

was generated as a ρD∗ quasibound state or molecule by the strong and
attractive ρD∗ interaction. As discussed in Ref. [223], because of the large
binding energy per ρ meson in spin 2, it is possible to obtain bound systems
with several ρ mesons as building blocks. As mentioned in Ref. [331], the
ρD∗ interaction is also very strong and can bind the system.

Therefore, in our present work, based on the two-body interaction results
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of Refs. [330, 331], we follow the main ideas of Refs. [223, 224] to search
D∗-multi-ρ resonances in the charm sector. Thus, the main aim in the
present work is, first, to study the three-body interaction of D∗ and two ρ
mesons, for which we have two options, the clusters D∗ − f2(1270)(ρρ) and
ρ − D∗

2(2460)(ρD
∗), in order to see if there are some resonance structures

in the scattering amplitudes. If this is the case, one can predict a not-
yet-discovered D∗

3 resonance, and we could continue our study extending
these ideas to include more ρ mesons as building blocks of the many-body
system. Then we repeat the test in the four-body system and so forth,
which is analogous to the K∗-multi-ρ systems [224].

The D∗-multi-ρ interactions that we investigate in the present work
are listed in Table 2.4, and are explained as follows. First, we need to
investigate the two-body interaction to look for a bound state as the cluster
of the FCA, which will be studied in the next subsection, the ρρ and ρD∗

interactions. For the three-body interaction, we have two options: particle
3 = D∗, cluster or resonance R = f2 (particle 1 = ρ, 2 = ρ) and 3 = ρ,
R = D∗

2 (1 = ρ, 2 = D∗). For four-body, we also have two cases: 3 = f2,
R = D∗

2 (1 = ρ, 2 = D∗) and 3 = D∗
2, R = f2 (1 = ρ, 2 = ρ). For five-body,

3 = D∗, R = f4 (1 = f2, 2 = f2) and 3 = ρ, R = D∗
4 (1 = f2, 2 = D∗

2).
For six-body, 3 = D∗

2, R = f4 (1 = f2, 2 = f2) and 3 = f2, R = D∗
4

(1 = f2, 2 = D∗
2). We describe all these cases in detail below (more details

can be referred to our paper [332]).

Table 2.4: The cases considered in the D∗-multi-ρ interactions.

particles: 3 R (1,2) amplitudes

Two-body ρ D∗ tρD∗

ρ ρ tρρ
Three-body D∗ f2 (ρρ) TD∗−f2

ρ D∗
2 (ρD∗) Tρ−D∗

2

Four-body D∗
2 f2 (ρρ) TD∗

2−f2
f2 D∗

2 (ρD∗) Tf2−D∗
2

Five-body D∗ f4 (f2f2) TD∗−f4
ρ D∗

4 (f2D
∗
2) Tρ−D∗

4

Six-body D∗
2 f4 (f2f2) TD∗

2−f4
f2 D∗

4 (f2D
∗
2) Tf2−D∗

4
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2.3.1 ρρ and ρD∗ two-body interactions

To evaluate the Faddeev equations under the FCA (seen in the formalism in
subsection 1.4.2), we need to search the cluster of the FCA, and input the
two-body scattering amplitudes, corresponding to the third particle colliding
with the two components of the cluster. Thus the starting point of our work
is the two-body ρρ and ρD∗ interactions, which were studied in Refs. [330]
and [331] with the LHG formalism [156,159,163,329] (seen in the discussions
in subsection 1.2.2) and the unitary coupled channels method [16,18,19,155,
190,194,195,260,277,326–328] (seen in the discussions in subsection 1.3.1).
We briefly summarize the model of Refs. [330] and [331] here to explain
how to obtain the unitarized ρρ and ρD∗ scattering amplitudes, evaluating
the ρρ and ρD∗ scattering amplitudes with the coupled channels unitary
approach, the BS equation in coupled channels, seen in subsection 1.3.1.
The details can be seen in Refs. [330,331].

To construct the three-body system we start from the clusters f2(1270)
( I(JPC) = 0(2++) ) and D∗

2(2460) ( I(J
P ) = 1

2(1
−) ) and add to them a

D∗ or a ρ respectively. The new particles are introduced with their spins
aligned with that of the cluster such that the total spin adds one unity.
Thus we only need to take into account the potential of spin S = 2 for ρρ
and ρD∗ interactions,

V (I=0,S=2)
ρρ (s) = −4g2 − 8g2

( 3s

4m2
ρ

− 1
)
,

V (I=2,S=2)
ρρ (s) = 2g2 + 4g2

( 3s

4m2
ρ

− 1
)
,

V
(I=1/2,S=2)
ρD∗(11) (s) = −5

2
g2 − 2

g2

m2
ρ

(k1 + k3) · (k2 + k4)−
1

2

κg2

m2
ρ

(k1 + k4) · (k2 + k3),

V
(I=1/2,S=2)
ρD∗(12) (s) =

√
3

2
g2 +

√
3

2

κg2

m2
ρ

(k1 + k4) · (k2 + k3), (2.25)

V
(I=1/2,S=2)
ρD∗(22) (s) =

1

2
g2 +

1

2

κg2

m2
ρ

(k1 + k4) · (k2 + k3),

V
(I=3/2,S=2)
ρD∗ (s) = 2g2 +

g2

m2
ρ

(k1 + k3) · (k2 + k4) +
κg2

m2
ρ

(k1 + k4) · (k2 + k3),

where g =MV /2fπ, with MV the vector meson mass and fπ the pion decay
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Figure 2.24: Modulus squared of the scattering amplitudes. Left:

|tI=0
ρρ |2, f2(1270); Right: |tI=1/2

ρD∗ |2, D∗
2(2460).

constant. In these equations ki, i = 1, 2, 3, 4 are the initial, (1, 2), and final
(3, 4) momenta of the particles. The quantity κ = m2

ρ/m
2
D∗ appears because

in some transitions one is exchanging a heavy vector instead of a light one.
Note that in isospin I = 1/2 there are two coupled channels, 1 is ρD∗ and
2 is ωD∗.

As mentioned in Refs. [330, 331], we also should take into account the
contribution of the box diagram with two pseudoscalar mesons in the in-
termediate state. We only add the imaginary part of the box diagram
contribution to the potential V , which is not accounted for by the coupled
channels [127,168], and neglect the real part which is very small. Note that
we also take into account the ρ mass distribution by replacing the G func-
tion in the corresponding channel by its convoluted form, which is done by
considering the mass distribution of the ρ mesons in the loop as done in
Refs. [330,331].

Finally, considering the box diagram contribution to the potential V
and the convolution of the ρ mass distribution in the loop function G, we
show the evaluated results of ρρ and ρD∗ scattering amplitudes in Fig. 2.24,
which are consistent with Refs. [330, 331]. The structure of the resonances
f2(1270) and D

∗
2(2460) are clear in the peak of the modulus squared of the

amplitudes. The nonresonant amplitudes t
(I=0,S=2)
ρρ and t

(I=3/2,S=2)
ρD∗ are not

shown here.



96CHAPTER 2. THE STUDY OF THE THREE-BODY INTERACTION

2.3.2 Three-body interaction

For three-body interaction, we have two options of structure: D∗ − f2(ρρ)
and ρ−D∗

2(ρD
∗), which means 3 = D∗, R = f2 (1 = ρ, 2 = ρ) and 3 = ρ,

R = D∗
2 (1 = ρ, 2 = D∗). Thus, to evaluate these scattering amplitudes,

we need as input the t1 and t2 amplitudes of the (3,1) and (3,2) systems,
t1 = t2 = tρD∗ for D∗− f2(ρρ) and t1 = tρρ, t2 = tρD∗ for ρ−D∗

2(ρD
∗). We

should calculate the two-body ρρ and ρD∗ amplitudes.
As mentioned before, the isospin structure of the cluster should be con-

sidered for the t1 and t2 amplitudes. For the case of D∗−f2(ρρ), the cluster
of f2 has isospin I = 0. Therefore the two ρ mesons are in an I = 0 state,
and we have

|ρρ >(0,0)=
1√
3

(
|(1,−1) > +|(−1, 1) > −|(0, 0) >

)
, (2.26)

where |(1,−1) > denote |(I1z , I2z ) > which shows the Iz components of par-
ticles 1 and 2, and |ρρ >(0,0) means |ρρ >(I,Iz). The third particle is a D∗

meson taken |I3z ) >= |12 >. Then we obtain

t1 = tρD∗ =
1

3

(
2t
I=3/2
31 + t

I=1/2
31

)
, t2 = t1. (2.27)

But for the case of ρ − D∗
2(ρD

∗), the situation is different. Because
the isospins of ρ and D∗

2 are Iρ = 1 and ID∗
2
= 1

2 , the total isospin of the

three-body system are Itotal ≡ IρρD∗ = 1
2 or Itotal ≡ IρρD∗ = 3

2 , and then we
have

|ρD∗
2 >

( 1
2
, 1
2
)= |ρρD∗ >( 1

2
, 1
2
)=

√
2

3
|(1,−1

2
) > −

√
1

3
|(0, 1

2
) >,

|ρD∗
2 >

( 3
2
, 1
2
)= |ρρD∗ >( 3

2
, 1
2
)=

√
1

3
|(1,−1

2
) > +

√
2

3
|(0, 1

2
) >,

(2.28)

where we have taken Iz = 1
2 for convenience. Therefore the |ρD∗ > states

inside the D∗
2 for the Iz = −1

2 and Iz = +1
2 are given by

|ρD∗ >( 1
2
,− 1

2
)=

√
1

3
|(0,−1

2
) > −

√
2

3
|(−1,

1

2
) >,

|ρD∗ >( 1
2
, 1
2
)=

√
2

3
|(1,−1

2
) > −

√
1

3
|(0, 1

2
) > .

(2.29)
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Figure 2.25: Modulus squared of the TD∗−f2 and Tρ−D∗
2
scattering ampli-

tudes. Left: Itotal =
1
2 ; Right: Itotal =

3
2 .

For the two possibilities, combining Eqs. (2.28) and (2.29), we obtain

T
(I=1/2)
ρ−D∗

2
: t1 = tρρ =

2

3
t
(I=0)
31 , t2 = tρD∗ =

1

9

(
8t
I=3/2
32 + t

I=1/2
32

)
;

T
(I=3/2)
ρ−D∗

2
: t1 = tρρ =

5

6
t
(I=2)
31 , t2 = tρD∗ =

1

9

(
5t
I=3/2
32 + 4t

I=1/2
32

)
.

(2.30)

We show our results in Fig. 2.25. In Fig. 2.25 (left) we show the modulus

squared of the amplitudes for |T I=1/2
D∗−f2 |

2 and |T I=1/2
ρ−D∗

2
|2, and we find that there

are clear peaks around the energy 2800−2850 MeV which is about 400 MeV
lower than the D∗−f2 threshold. The bindings are large because they scale
with the mass of the mesons and we have now a D∗ interacting with two

ρ mesons. The strength of the peak of |T I=1/2
D∗−f2 |

2 is two times bigger than

for |T I=1/2
ρ−D∗

2
|2, and we see that the D∗ − f2 component is a bit more bound

than the ρ − D∗
2 one. We expect that a real state would be an admixture

of both with a binding in between that of the individual components. In

Fig. 2.25 (right) we show |T I=3/2
ρ−D∗

2
|2, and there is a clear resonant structure

about 3120 MeV, the strength of which is 30 times smaller than that of

|T I=1/2
ρ−D∗

2
|2 in the left figure and less bound. We are concerned with the

lowest lying states and hence we concentrate on the predicted new D∗
3 state

with a structure formed by a mixture of D∗ − f2 and ρ −D∗
2, with a mass

about 2800− 2850 MeV and a width about 60− 100 MeV.
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2.3.3 Four-body interaction

There are also two possibilities in the four-body interaction as we have
shown in Table 2.4: particle 3 = f2, R = D∗

2 (1 = ρ, 2 = D∗) or particle
3 = D∗

2, R = f2 (1 = ρ, 2 = ρ). Because If2 = 0 and ID∗
2
= 1

2 , the

total isospin of the four-body system is only Itotal =
1
2 . In the first case, f2

collides with the D∗
2, the amplitude t1 = tf2ρ = Tρ−f2 has been evaluated in

Ref. [223] and is reproduced in our work, and t2 = tf2D∗ = TD∗−f2 , which
has been evaluated in the former subsection 2.3.2. For the second case,
D∗

2 collides with the f2, and the amplitudes t1 = t2 = tD∗
2ρ

= Tρ−D∗
2
have

been evaluated in the former subsection 2.3.2. We must now consider that
the three-body amplitude Tρ−D∗

2
is also combined with different isospins as

mentioned in subsection 2.3.2. This situation is similar to the case when
the D∗ collides with the f2, because the isospins of both the D∗

2 and D∗ are
I = 1

2 , thus from Eq. (2.27) we have

t1 = TρD∗
2
=

1

3

(
2T

I=3/2
31 + T

I=1/2
31

)
, t2 = t1. (2.31)

The results are shown in Fig. 2.26. The left of Fig. 2.26 is |T I=1/2
D∗

2−f2
|2.

We find that there is a clear peak at an energy of 3200 MeV, the width of

which is about 200 MeV. The right plot of Fig. 2.26 shows |T I=1/2
f2−D∗

2
|2 and

there is a resonant peak around the energy 3075 MeV with a large width

of nearly 400 MeV. The strength of the peak of |T I=1/2
f2−D∗

2
|2 is about two

times bigger than the one of |T I=1/2
D∗

2−f2
|2 and the energy of the peak is more

bound too. But from the former results, subsection 2.3.2, we found that

|T I=1/2
D∗

2−f2
|2 has more strength and is more bound than |T I=1/2

f2−D∗
2
|2. We have

investigated that this occurs because of the contribution of |T I=3/2
ρ−D∗

2
|2, even

though the strength of |T I=3/2
ρ−D∗

2
|2 is much smaller and less bound than the

one of |T I=1/2
ρ−D∗

2
|2 from the former results. When we removed the contribution

of |T I=3/2
ρ−D∗

2
|2 in Eq. (2.31), the strength of the peak was enhanced by a factor

five and was more bound. Therefore, within the uncertainty of the theory,
we find a new D∗

4 resonance, of a mass about 3075−3200 MeV and a width
about 200− 400 MeV.
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Figure 2.26: Modulus squared of the TD∗
2−f2 (left) and Tf2−D∗

2
(right) scat-

tering amplitudes.

2.3.4 Five-body interaction

For the five-body interaction, we also have two options for the cluster, one of
which is the particle f4 studied in Ref. [223] and the other one the resonance
D∗

4 obtained in the four-body interaction, subsection 2.3.3. Thus letting the
third particle (D∗ or ρ) collide with them, we have 3 = D∗, R = f4 (1 =
f2, 2 = f2) or 3 = ρ, R = D∗

4 (1 = f2, 2 = D∗
2). Because the isospin If4 = 0

and ID∗
4
= 1

2 , the total isospin of the five-body system is only Itotal =
1
2 in the

D∗− f4 structure, but Itotal =
1
2 or Itotal =

3
2 in the ρ−D∗

4 structure. Thus
the situation is similar to the three-body interaction discussed before, D∗

(or ρ) collide with f2 (or D∗
2). Therefore in the first case, the D∗ collides

with the f4, and the amplitudes t1 = t2 = tD∗f2 = T
(I=1/2)
D∗−f2 have been

evaluated in subsection 2.3.2. For the second case, the ρ collides with the
D∗

4, which is similar to ρ−D∗
2 in the three-body interaction, thus, we have

T
(I=1/2)
ρ−D∗

4
: t1 = tρf2 = T

(I=1)
31 , t2 = tρD∗

2
= T

I=1/2
32 ;

T
(I=3/2)
ρ−D∗

4
: t1 = tρf2 = T

(I=1)
31 , t2 = tρD∗

2
= T

I=3/2
32 ,

(2.32)

where the T
(I=1)
31 is the same as Tρ−f2 in the subsection 2.3.3 reproducing

the results of Ref. [223], and T
I=1/2
ρ−D∗

2
and T

I=3/2
ρ−D∗

2
have also been evaluated in

subsection 2.3.2.

In Fig. 2.27 we show our results. The left of Fig. 2.27 is |T I=1/2
D∗−f4 |

2 and
we observe a resonant peak around the energy 3375 MeV with a width of less
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tering amplitudes.

than 200 MeV. The right plot of Fig. 2.27 is |T I=1/2
ρ−D∗

4
|2 and |T I=3/2

ρ−D∗
4
|2. We

find that there is a resonant structure in |T I=1/2
ρ−D∗

4
|2 at the energy 3360 MeV,

the width of which is about 400 MeV, and the position is very close to the

one of |T I=1/2
D∗−f4 |

2. But the strength of |T I=1/2
ρ−D∗

4
|2 is one order smaller than

the one |T I=1/2
D∗−f4 |

2. For |T I=3/2
ρ−D∗

4
|2 there is no resonant structure. Therefore,

within uncertainties, we also find a new D∗
5 resonance, with a mass about

3360− 3375 MeV and a width about 200− 400 MeV.

2.3.5 Six-body interaction

Similarly to the five-body interaction, we also have two options of the cluster
for the six-body interaction, the particle f4 studied in Ref. [223] and the
resonance D∗

4 obtained in subsection 2.3.3. Now letting a resonance (D∗
2 or

f2) be the third particle and collide with them, we have 3 = D∗
2, R = f4

(1 = f2, 2 = f2) or 3 = f2, R = D∗
4 (1 = f2, 2 = D∗

2). Because If2 =
If4 = 0 and ID∗

2
= ID∗

4
= 1

2 , the total isospin of the six-body system is only

Itotal =
1
2 . Thus, in the first case, theD∗

2 collides with the f4, the amplitudes

t1 = t2 = tD∗
2f2

= T
(I=1/2)
D∗

2−f2
have been evaluated in subsection 2.3.3. For the

second case, the f2 collides with the D∗
4, the amplitudes t1 = tf2f2 = Tf2−f2

reproduce the results from Ref. [223], and t2 = tf2D∗
2
= Tf2−D∗

2
has been

calculated in subsection 2.3.3.

Our results are shown in Fig. 2.28. The left plot of Fig. 2.28 is |T I=1/2
D∗

2−f4
|2
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where we see a peak around the energy 3775 MeV with a large width of

nearly 400 MeV. The right of Fig. 2.28 is |T I=1/2
f2−D∗

4
|2, and there we find that

there is not a clear peak at the energy 3550 MeV. It looks like the resonant
structure of f2−D∗

4 is not as stable as the D∗
2 − f4 one. From these results,

we could predict a new D∗
6 resonance with more uncertainty, with a mass

of about 3775 MeV and a width about 400 MeV.

2.3.6 Considering the width of the cluster

It should be stated that we have taken into account the width of the ρ
in the evaluation of the amplitudes. This is done through the amplitudes
t̃1, t̃2 which are the input in our T amplitude (see Eq. (1.74)). Let us
take the three body cases of Table 2.4. In one of them we have D∗ − f2(ρρ)
scattering. In this case the D∗ρ amplitude (tρD∗) needed has been evaluated
in [331] and the width of the ρ has been explicitly taken into account in the
calculations by convoluting the the loop function of the D∗ρ intermediate
states in the scattering by the mass distribution of the ρ. However, the f2
width is not explicitly considered. We can do so by replacing MR in Eqs.
(1.77), (1.78) by MR − iΓR

2 . The new results are compared with the old
ones in Fig. 2.29. We can see that the effects are small and barely change
the width of the peak. The fact that FR(q) is normalized to 1 at q = 0
minimizes the effect of this width.

For the second case we have ρ−D∗
2(ρD

∗). In this case we implement the
width of the D∗

2 as before, but in addition we also add an imaginary part
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imρΓρ in the denominator of the ρ propagator in Eq. (1.76). The results
can be seen in Fig. 2.30. Once again we see that the changes are very small.
In this case the exchanged ρ is below threshold and the effect of the ρ width
in the G0(s) function is indeed very small.

Thus, the important effects from the ρ width are taken into account in
the amplitudes t̃i and are an important factor for the width of the states
that we obtain.

2.3.7 Discussion

At this point we would like to comment on the relationship and possible
mixing with states of qq̄ or other possible quark configurations. A valid ap-
proach is to start from a seed of qq̄ (quenched approximation) and unitarize
this seed with coupled channels of meson-meson (or other possible configura-
tions). For the scalar mesons it is found that meson-meson components take
over and the original qq̄ component becomes of minor importance [333–336].
The dynamically generated resonance that we deal with corresponds to cases
where the qq̄ components are of minimal relevance. A thorough discussion
of this issue is provided in section IIA of Ref. [337]. Another useful recent
overview is given in Ref. [338], with emphasis on charmed and hidden charm
states.
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The mixture of meson-meson components in mesons or meson-baryon
components in baryons is unavoidable and even the most stable baryon, the
proton, has 36% admixture of πN component as determined from Drell Yan
and deep inelastic process [339–341]. Certainly other baryons will have much
larger meson baryon components, and those where these components are
absolutely dominant qualify as molecular states dynamically generated from
the meson-baryon interaction, the two Λ(1405) states [277] being a good
example of it. As to the possibility of having multiquark components, recent
studies conclude that the clustering of the quarks in hadronic molecules
is advantageous in most cases [342–344]. In our case, by concentrating
on problems where hadron-hadron interaction is very strong and leads to
bound systems, we are choosing cases where the hadronic components will
be dominant, rendering of minor importance quark components which in
quark model would appear at much higher energies.

2.3.8 Conclusions

In the present work, we show the results of our investigation of theD∗-multi-
ρ systems. Our idea is based on the fact that the two-body interactions of
ρρ and ρD∗ in spin S = 2 are so strong as to bind the particles forming
the resonancesf2(1270) [330] and D

∗
2(2460) [331] respectively. So we could

study the many-body D∗-multi-ρ systems in an iterative way, looking at the
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structure of the amplitudes and observing clear peaks that become wider as
the number of ρ mesons increase.

The D∗-multi-ρ states with spins aligned combined to give some new
charmed resonances, D∗

3, D
∗
4, D

∗
5 and D∗

6, which are basically made of one
D∗ meson and an increasing number of ρ(770) mesons and are not found in
the list of PDG [9]. Their masses are predicted around 2800 − 2850 MeV,
3075− 3200 MeV, 3360− 3375 MeV and 3775 MeV respectively. And their
widths are about 60−100 MeV, 200−400 MeV, 200−400 MeV and 400 MeV
respectively. The analogy with the states already known in the strange and
non-strange sector, from the study of multi-ρ systems in Ref. [223] and
the work of Ref. [224] about the K∗-multi-ρ systems, together with the
stronger interaction of the D∗ mesons, make our predictions solid within
the uncertainties admitted.
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2.4 The study of ηKK̄ and η′KK̄ interaction

Understanding the nature and structure of hadronic resonances is a main
topic in high energy physics, which attracts the attention of both theory and
experiment. With the advent of quantum chromodynamics (QCD) and the
standard model, modern hadron physics is developing fast. The traditional
picture for the internal structure of hadrons is that a meson is made of qq̄ and
a baryon of qqq, and quark models describe them well. On the other hand,
with the development of the experiments, some states have been found ex-
perimentally whose properties cannot be explained by the standard way and
may be of more complex structures, like tetraquarks and hybrids including
possible glueballs for mesons, pentaquarks and heptaquarks for the baryons,
or molecular states (see recent reviews in Refs. [345,346]). For the low energy
region where the abnormal states showed up, nonperturbative QCD should
be explored, for example, the ChUA [16, 155], as discussed in the subsec-
tion 1.3.1. Chiral dynamics for meson-meson and meson-baryon interaction
has played an important role in understanding the nature and structure
of hadronic resonances, and it has shown that many known resonances are
generated dynamically as a natural consequence of the hadron-hadron inter-
action. The ChUA has successfully explained both the experimental data for
the light scalar mesons [16, 18, 347, 349] (such as a0(980), f0(980), σ, and
κ [or K∗(800)]) and the light baryons [155, 190, 194, 277, 326, 328, 348],
two Λ(1405), Λ(1670), N∗(1535), ∆(1620), etc. Extrapolation of this dy-
namics to the charm sector has also produced many meson states, as the
D∗
s0(2317), D

∗
0(2400), X(3700), X(3872), etc [93, 259–261, 350], as well as

baryon states like the Λc(2595) [256–258]. More work on the Kπ interaction
is done in Refs. [19, 195, 351], where the S-wave Kπ elastic scattering am-
plitude is evaluated and good agreement with the experimental phase shifts
is obtained. In addition, the scalar resonance κ is generated dynamically,
which is also seen in the final state interaction in some reactions [352].

The three-body interaction is another subject in hadron physics which
is also drawing much attention. In our present work we will use the FCA to
Faddeev equations of the formalism in the subsection 1.4.2 to investigate the
ηKK̄ and η′KK̄ systems. When studied in S-wave, provided the strength
of the interaction allows for it, this systems could give rise to η states. There
are many η excited states, the lowest ones the η(1295), η(1405) and η(1475).
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Since we do not want states too far from threshold, the η(1475) could be
in principle a candidate for the ηKK̄ system. For the η′KK̄ system we
would have to look for an η state around 1930 MeV. There are two η states
around this energy in the Particle Data Group (PDG) [9], the η(1760) and
the η(2225), both far away from the η′KK̄ threshold mass. There is a peak
seen at 1870 MeV in the J/ψ → ηπ+π− in Ref. [353], but its quantum
numbers are not well determined. Similarly, there is another peak seen in
the J/ψ → η′π+π− reaction that peaks around 1836 MeV [X(1835)], with
a large width of about 190 MeV [354]. We shall explore the possibility that
the η′KK̄ could be responsible for any of such states, although we anticipate
that the interaction is too weak to lead to such strongly bound systems.

The ηKK̄ and η′KK̄ systems have been investigated before in Ref. [355],
following the lines of Ref. [253], where it was concluded that the ηKK̄ sys-
tem could be the η(1475) resonance, and the η′KK̄ the X(1835). Yet, in
Ref. [232] it was discussed that the method of Ref. [253] contains some ele-
ment of uncertainty which makes it most opportune to perform calculations
with a different method and contrast the predictions. Certainly, there are
also other options for these resonances using quark models and other ap-
proaches and a detailed discussion on it can be found in the Introduction
of Ref. [355]. In the present work we will explore the possible molecular
structure of these three body systems (which is done in our paper [356]).

2.4.1 KK̄ and ηK (η′K̄) two-body interactions

To evaluate the Faddeev equations under the FCA, we need to define the
two-body cluster and then let the third particle collide with the cluster.
Thus, the starting point of our work is to look for the cluster in the two-
body interactions. Following the formalism of Ref. [16], by taking into
account the chiral dynamics and the unitary coupled channels approach
[16,18,19,155,190,194,195,260,277,326,328,357], we should reproduce the
resonances f0(980) and a0(980) as the cluster of FCA. We briefly summarize
the method of Ref. [16] here.

To calculate the scattering amplitudes with the ChUA of the subsection
1.3.1, the BS equation in coupled channels, with the factorized on shell
potentials [16,194] is used, seen Eq. (1.44). In the present work, the kernel
V is a matrix of the interaction potentials between the channels, given
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by [16]

V I=0
11 (s) = − 1

2f2π
(2s−m2

π), V I=0
12 (s) = −

√
3

4f2π
s, V I=0

22 (s) = − 3

4f2π
s,

V I=1
11 (s) = − 1

3f2π
m2
π, V I=1

12 (s) =

√
6

36f2π
(9s− 8m2

K −m2
π − 3m2

η),

V I=1
22 (s) = − 1

4f2π
s, (2.33)

with fπ the pion decay constant. Note that in isospin I = 0, there are two
coupled channels, 1 is ππ and 2 is KK̄; for I = 1, channel 1 denotes π0η
and 2 as KK̄.

Taking Λ = 1.03 GeV and Λ =
√
q2max +m2

K as done in Ref. [16] for the

loop function G, we get qmax = 903 MeV. Our results are shown in Fig.
2.31. In Fig. 2.31, we produce the resonances of f0(980) and a0(980), which
are consistent with Ref. [16] and form the clusters of the ηKK̄ and η′KK̄
three-body interactions in our present work.

To perform the evaluation of Faddeev equations under the FCA, we
need the calculation of the two-body interaction amplitudes (t̃1 and t̃2) of
ηK and ηK̄ for the ηKK̄ system (η′K and η′K̄ for the η′KK̄ system) which
are investigated in Refs. [19,195,351] as mentioned before. The former input
is needed to construct the form factor of the cluster entering Eq. (1.76).

Next we address the ηK, ηK̄ and η′K, η′K̄ interaction. Since we are
involving the η′, it is convenient to take the three coupled channels πK, ηK
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and η′K, labeled by channel 1, 2 and 3 respectively. Thus, the potentials
are [195]

V
I=1/2
11 (s) = − 1

4f2π
(4s+ 3t− 4m2

π − 4m2
K), (2.34)

V
I=1/2
12 (s) = −

√
2

6f2π
(−3t+ 2m2

K +m2
η), (2.35)

V
I=1/2
13 (s) =

1

12f2π
(−3t+ 3m2

π + 8m2
K +m2

η′), (2.36)

V
I=1/2
22 (s) = − 2

9f2π
(3t−m2

K − 2m2
η), (2.37)

V
I=1/2
23 (s) =

√
2

18f2π
(3t− 3m2

π + 2m2
K −m2

η −m2
η′), (2.38)

V
I=1/2
33 (s) = − 1

36f2π
(3t− 6m2

π + 32m2
K − 2m2

η′), (2.39)

where there is a minus sign difference with Refs. [19,355] in some nondiago-
nal matrix elements resulting from taking different phase conventions 2. As
done in Ref. [195], we take

µ = mK , a(µ) = −1.383, (2.40)

in the loop function for all channels, and we obtain the same results as in
Ref. [195], seen in Fig. 2.32, which agree fairly well with the data except at
the higher energies.

With these parameters, we also find the pole of κ [or K∗(800)], (743.72−
i275.36) MeV, which is consistent with the result of Ref. [195], (0.742 −
i0.273) GeV. Then, using these parameters, we can get the ηK and η′K
scattering amplitudes. Because of charge conjugation symmetry, the ampli-
tudes for ηK̄, η′K̄ are the same as those for ηK, η′K.

2.4.2 ηKK̄ and η′KK̄ three-body interactions

As discussed in the former section, we calculate the ηK and ηK̄ (η′K and
η′K̄) amplitudes using the same parameters, and then we use Eq. (1.75)
to evaluate the three-body amplitude of the ηKK̄ (η′KK̄) system. Also,

2The final scattering amplitudes are the same, as pointed out by J. A. Oller.



2.4. THE STUDY OF ηKK̄ AND η′KK̄ INTERACTION 109

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 700  800  900  1000  1100  1200  1300

δ 
(d

eg
re

es
)

√ s [MeV]

δK π

Bingham

Mercer

Estabrooks

Figure 2.32: The S-wave Kπ phase shifts in isospin I = 1/2. The experi-
ments data are taken from: Mercer [358], Bingham [359], Estabrooks [360].

as discussed in the former section, the Λ′ of Eq. (1.77) can be taken as
qmax = 903 MeV for the cluster of f0(980) or a0(980).

In Fig. 2.33 (left), we can see a clear resonance structure in the modulus
squared of the ηKK̄ scattering amplitude, which is around 1490 MeV, with
the width of about 100 MeV, and about 38 MeV below the threshold of
η f0(980). This result is consistent with the one found in Ref. [355]. From
the PDG [9], this resonance may be the η(1475) of I = 0, with mass 1476±
4 MeV and width 85± 9 MeV. Comparing our results with the PDG, both
the mass and the width are consistent with the experimental values if we
assume 10-15 MeV uncertainties in our calculated results.

Since the masses of the KK̄ bound states f0(980) and a0(980) are the
same and only their isospins are different, the three-body amplitudes of
ηKK̄ and η′KK̄ in our formalism are degenerated in isospin I = 0 and
I = 1. This means that if we predict a bound state for the ηf0(980) system,
we also have the same for ηa0(980). This is so, assuming that the f0(980)
and a0(980) resonances are predominantly KK̄ molecules. But, as we have
discussed, in the construction of the f0(980) resonance we need the ππ and
KK̄ channels, and the ππ is marginal in the structure of the resonance, it
simply provides a decay mode. However, this is not the case for the a0(980)
where the πη channel already plays an important role in the build up of the
resonance. Then a more elaborate, and technically complex, study of the
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Figure 2.33: Modulus squared of the three-body interaction amplitudes.
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η, η′ interacting with this system, would have much contribution from ηη,
which only comes from coupled channels and is very weak, and ηπ which is
also weak. The signal that we get in Fig. 2.33 would be much diluted and
we do not expect an I=1 state.

We also see an obvious peak in Fig. 2.33 (right) for the η′KK̄ interac-
tion. But the mass position of the peak is about 1940 MeV, which is very
close to threshold, 1942 MeV. Therefore, this peak should be an enhance-
ment effect of the threshold, a cusp effect, and we will check it further in
the next section.

2.4.3 Further discussions

We showed the results of our investigation of the ηKK̄ and η′KK̄ systems
in the former section. For the ηKK̄ scattering, we find one resonance struc-
ture in the modulus squared of the amplitude. But, for the other one, the
clear peak of the ηKK̄ amplitude turns into an enhancement effect at the
threshold in the η′KK̄ amplitude, a cusp effect reflecting the cusp of the
t̃1 amplitude, used in Eq. (1.75), at threshold. In all these results we did
not take into account the width of f0(980) as done in the former work. In
the PDG, the width of the f0(980) is 40 to 100 MeV, which is not small
compared to the binding energy found.

As done in the former work, in the last subsection, we can take into
account the width of the f0(980) in the three-body scattering amplitudes,
just by replacing MR in Eqs. (1.77), (1.78) by MR − iΓR

2 . The new results
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are given in Fig. 2.34, where we just take the width as 60 MeV. For the
ηKK̄ amplitude we can see in Fig. 2.34 (left), comparing with Fig. 2.33
(left), that the strength of the amplitude is reduced and the peak position is
still not changed, but the width becomes a little larger (around 120 MeV),
which is in the line with the finding in the last subsection. For the η′KK̄
amplitude, shown in Fig. 2.34 (right), by comparing to Fig. 2.33 (right), we
can see that the strength at the peak is a bit increased and the shape changes
a bit when considering the contribution of the width f0(980). The important
thing, however, is that the shape of the η′KK̄ amplitude continues to be
that of a cusp effect. In summary, as discussed in the last subsection, we
can conclude that the effects of the contribution of the cluster’s width are
small and do not change the relevant features found before.

Next, we want to check the uncertainties in Eq. (1.75) when we make a
small change in the parameters in the evaluation of t̃1. Following Ref. [195],
we can only change a(µ). This parameter was chosen in Ref. [195] to fit
the experimental data of the Kπ phase shifts. Then, we change 50 % up
and down the parameter a(µ) of Eq. (2.40), to a point where the Kπ
phase shifts are not too good, as shown in Fig. 2.35 (left). From Fig. 2.35
(right), we can see that the resonance structure in ηKK̄ scattering is not
changed so much even with these extreme changes in the input, and both
the peak position and the width have practically not changed. This gives us
confidence that the results that we get are rather solid and do not change
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with small variations of the parameters. The same changes only affect in a
minor way the η′KK̄ amplitude and the cusp effect at threshold is the only
relevant feature of the amplitude.

At this point one must comment on the results of [355]. In that work
the interaction of the η with the KK̄ cluster is done as here, although the
formalism seems rather different. There the primary amplitude for the η
interaction with the components of the cluster is evaluated and then the η
and the cluster propagate similarly to the propagation of the meson meson
components in the G function. The caveat is that while the regularization
parameters are fitted to data on meson meson scattering, here one does
not have this information for the scattering of η and f0(980) and one must
make assumptions on how this new loop is regularized. As a consequence,
there is an element of uncertainty and usually what one makes is to assume
that the interaction gives rise to a certain resonance to fix the parameters,
although they are kept within a natural range; there is, hence, not a genuine
prediction. In that work, the ηf0(980) gives rise to the η(1475) as we have
also claimed here. But the η′f0(980) is claimed to produce the X(1835)
resonance, something that our approach does not give.

The difference between the ηKK̄ and η′KK̄ systems could be qualita-
tively understood by recalling that the ηK, together with the πK system,
generate the broad κ resonance, but the η′K amplitude has no structure
around the η′K energies (up to the unavoidable cusp at threshold) and is
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small and smooth around these energies. In order to see how far we are from
creating a resonance structure in the η′KK̄ system, we artificially multiply
V33 of Eq. (2.39) by a factor and look at the η′KK̄ amplitude. We must
multiply by a factor four the V33 potential to see the peak move a bit ( by
about 6 MeV ) below the threshold. Since the uncertainties of the model
are by no means that large (we can accept about 20 % uncertainties in
the potentials), the former exercise tells us about the cusp character of the
η′KK̄ amplitude is quite a stable result and we cannot associate a physical
η state to it.

We should comment on the paper [255], where using the Faddeev ap-
proach in the version of Ref. [212], one peak in |T |2 for πKK̄ is found
around 1400 MeV, which is associated to the π(1300). It is mentioned there
that the ηKK̄ system is also investigated and no clear signal is seen. The
coupled channels approach used there contains πK and ηK but not η′K.
We have checked that removing the η′K channel does not change qualita-
tively the ηKK̄ amplitude, although the distribution of |T |2 in energy has
a broader shape. Consideration of the η′K channel makes the energy distri-
bution a little sharper. The fact that no clear peak for the ηKK̄ amplitude
appears is somewhat unexpected, since one usually gets qualitative agree-
ment between the FCA and the Faddeev calculations for bound states. For
instance, the three body K̄NK scattering amplitude was calculated using
the FCA to the Faddeev equations in Ref. [225] and the results of that work
are in good agreement with the other theoretical works [229,230] evaluated
using variational and Faddeev approaches, respectively. The same can be
said when one studies the K̄NN system in the FCA [228] or in Faddeev
calculations [301], or variational calculations [272]. The DNN system is an-
other case of agreement between the FCA and variational calculation [310].
We state the present situation and call for further calculations of the ηKK̄
system using different approaches in order to clarify the situation.

2.4.4 Conclusions

In our work, we study the three-body systems of ηKK̄ and η′KK̄, by using
the fixed center approximation to the Faddeev equations. The clusters of
f0(980) for the fixed center approximation is successfully reproduced by the
chiral unitary approach. With this approach, the experimental S-wave Kπ
phase shifts of isospin I = 1/2 are also well fitted. For the three-body scat-
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tering we find a resonant structure in the ηKK̄ scattering amplitude, which
may correspond to the η(1475) state for I = 0. This finding is consistent
with the result of Ref. [355]. We also make an estimation of our theoretical
uncertainties for this state by taking into account the contribution of the
cluster’s width and reasonable changes in the free parameters, and we get
stable results. As for the η′KK̄ scattering, we only get an enhancement
effect at the threshold in the modulus squared of the interaction amplitude
and we can not claim that this can be associated to any resonance.
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2.5 The investigation of the ρKK̄ system

One of the most important aims of hadron physics is getting a better un-
derstanding of the strong interaction through the study of hadronic reso-
nances. Besides the constituent quark model, recently the rich spectrum
of hadronic resonances is studied actively from various viewpoints. Among
them, hadronic molecules, dynamically generated states through the hadronic
interaction, attracts plenty of attention. At low energies, the dynamics
of light hadrons can be described in terms of chiral symmetry [151–154,
160, 161, 173]. By using the leading order of the chiral Lagrangians as in-
put, a powerful tool, the chiral unitary approach, implementing unitarity
in coupled channels, has been developed and it has provided great suc-
cess in describing many resonances for meson-meson or meson-baryon sys-
tems [16,18,19,155,190,194,260,277,326–328].

In order to explore multi-hadron systems, the application of the FCA to
Faddeev equations has been implemented [208, 218–222]. Under the condi-
tion where the cluster structure in three-body systems is not varied so much
against the collision of the other particle, that approximation will work fine,
as discussed in Refs. [223,224,227,232]. More discussions can be seen in the
subsection 1.4.2.

In the present work, we study the ρKK̄ system in the sector IG(JPC) =
1+(1−−) within the FCA to obtain the ρ(1700) resonance. Namely, a pair of
KK̄ is assumed to form the scalar cluster, the f0(980) resonance. Since the
KK̄ component in f0(980) is found to be dominant [16], this assumption
seems to work well. The amplitude needed in the present work is the ρK
unitarized scattering amplitude. In Ref. [164], interactions including vector
mesons are reviewed. In order to obtain the ρK amplitude, we follow the
schemes given by Refs. [362, 363] and extend them to the isospin I = 3/2
sector.

2.5.1 The two-body ρK unitarized amplitude

To implement the Faddeev equation within the FCA, we need the two-body
unitarized amplitude. Namely in the present case of the ρKK̄ system, the
ρK (ρK̄) unitarized amplitude is necessary. In the previous work [362,363],
the vector-pseudoscalar interaction in the sector with strangeness S = 1
and isospin I = 1/2 was studied within the framework of the chiral unitary
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approach and that interaction was shown to generate two resonance poles
corresponding to the K1(1270) resonance. This work has been extended in
the recent work of Ref. [364] including the effect of higher order terms. It is
found there that the introduction of the new terms barely affects the results
of the lowest order Lagrangians. Here we are going to follow the scheme of
Refs. [362,363] and pick up only the essence for simplicity.

Following the BS approach, we have the V P two-body scattering ampli-
tude as

T = [1 + V Ĝ]−1(−V )~ε · ~ε′, (2.41)

where V is an interaction kernel which will be discussed later, Ĝ is (1 +
1
3
q2l
M2

l
)G being a diagonal matrix and ~ε(~ε′) represents a polarization vector

of the incoming (outgoing) vector-meson. We also take the dimensional
regularization for the G function, seen in Eq. (1.46), and also found in our
paper [365].

Before the derivation of the V P interaction, it is worth referring to a
finite width of the vector mesons in the loop function. In Ref. [363], the
effect of the propagation of unstable particles is taken into account in terms
of the Lehmann representation. That is done with the dispersion relation
with its imaginary part

D(s) =

∫ ∞

sth

dsV

(
− 1

π

)
ImD(sV )

s− sV + iε
, (2.42)

where sth stands for the square of the threshold energy. Now the spectral
function is taken as

ImD(sV ) = Im

{
1

sV −M2
V + iMV ΓV

}
, (2.43)

where the width ΓV is assumed to be a constant physical value. Substituting
Eqs. (2.42) and (2.43) into the original loop function Eq. (1.46), we have

G̃l(
√
s) =

1

Cl

∫ (Ml+2Γl)
2

(Ml−2Γl)2
dsVGl(

√
s,
√
sV ,ml)

×
(
− 1

π

)
Im

{
1

sV −M2
l + iMlΓl

}
, (2.44)
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with the normalization for the lth component

Cl =

∫ (Ml+2Γl)
2

(Ml−2Γl)2
dsV ×

(
− 1

π

)
Im

{
1

sV −M2
l + iMlΓl

}
,

(2.45)

with ml, Ml, Γl, the mass of the pseudoscalar meson, mass of the vector
and width of the vector respectively. Replacing Gl by G̃l in Eq. (2.41), we
include the width effect of vector mesons.

We do the convolution for the ρ and K∗. In order to strictly respect the
analytical properties of the amplitude, the integral of Eq. (2.44) should fill
up all the space available for the decay of the ρ and the K∗ and thus the
lower limit should be (2mπ)

2 for the ρ and (mπ +mK)2 for the K∗. This
is important to have the branch points at the proper place, as discussed
in Ref. [366]. Also, the width should not be constant but should be energy
dependent. Later, we shall come back to make improvements on the present
prescription which is often used in the literature [362].

In order to obtain the V P interaction kernel in terms of the SU(3)
chiral symmetry, we start from the following Lagrangian of Eq. (1.28).
In the WCCWZ approach [160, 161, 367], this Lagrangian stems from a
nonlinear realization of chiral symmetry. Expanding Eq. (1.28) up to two
pseudoscalar fields, we have the leading order contribution of the four point
V V PP interaction Lagrangian

LV V PP = − 1

4f2
〈[V µ, ∂νVµ] [P, ∂νP ]〉 . (2.46)

From Eq. (2.46), the V P potential projected over s-wave, can be obtained
as

Vij(s) = −~ε · ~ε
′

8f2
Cij
[
3s− (M2

i +m2
i +M2

j +m2
j )

−1

s
(M2

i −m2
i )(M

2
j −m2

j )

]
, (2.47)

where the index i(j) represents the V P channel of the incoming (outgoing)
particles. The coefficients Cij in Eq. (2.47) for the I = 1/2 sector and the
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I = 3/2 sector are given in Refs. [362, 363]. In order to have an appro-
priate unitarized amplitude, we use the following parameter set chosen to
reproduce K1(1270) in Ref. [363]

µ = 900 MeV, a(µ) = −1.85, f = 115 MeV. (2.48)

In Ref. [362], two poles were obtained for the K1(1270) which were
further studied in Ref. [363], where it was shown that available experimental
information gives support to the existence of these two poles. In Ref. [363]
the two poles were found at 1195−i123 MeV and 1289−i73 MeV. The second
pole, corresponding to a narrower state, was shown to couple strongly to
ρK, while the first pole coupled strongly to K∗π and not so much to ρK.
In the formalism that we study, the ρK system is allowed to decay into
K∗π, but we do not propagate further these particles. Although a coupled
channel approach with FCA is possible, we find it unnecessary for the study
of the ρKK̄ system. Indeed, while the coupling of the higher resonance to
ρK is gρK = 4821 MeV, the coupling to K∗π is gK∗π = 1401 MeV. Since the
ρK → ρK amplitude goes as g2ρK and the K∗π → K∗π as g2K∗π, it is clear
that processes involving the ρK amplitude will dominate the amplitude and
in the multiple scattering we just consider ρK rescattering.

2.5.2 The ρKK̄ three-body scattering

Once the unitarized ρK amplitude is obtained, let us go to the ρKK̄ three-
body system. As mentioned above, we study this system by solving the
Faddeev equation within the FCA of the formalism in the subsection 1.4.2.

In the present work, the particles 1, 2 and 3 correspond to K, K̄ and
ρ respectively, and thus t = t1 = t2. Therefore, from now on we will not
specify the particle 1 or 2, and use the Eq. (1.75) to evaluate the three-body

amplitude. From Ref. [16], we take qmax =
√

Λ2 −m2
K and Λ = 1030 MeV

for getting the f0(980) from the KK̄ cluster, thus, it is the same cutoff
for the form factor, seen Eq. (1.77). Note that in the region q > 2qmax,
Ff0 vanishes identically. Therefore the integration in Eq. (1.76) has a limit
2qmax. In Fig. 2.36, the form factor for the f0(980) resonance and the G0

function are shown, respectively. In the form factor the strong suppression
of high energy momentum is seen and the threshold effect appears in the
G0 function.
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Figure 2.36: The results of form factor (left) and the G0 function (right).

At the end of this section, we refer to the conversion of the basis of the
unitarized amplitude t. Since the ρ[KK̄]I=0 system is studied in the sector
I(JP ) = 1(1−), now we focus on the scattering in the Iz = +1 channel,
ρ+[KK̄]I=0. With the phase convention, we have

|KK̄〉I=0 = − 1√
2

(∣∣K+K−〉+ ∣∣K0K̄0
〉)
. (2.49)

Following the same phase convention, we have

t =
〈
ρ+
∣∣⊗ 〈[KK̄]I=0

∣∣ t̂ρK ∣∣[KK̄]I=0

〉
⊗
∣∣ρ+〉

=
1

2

(〈
ρ+K+K−∣∣+ 〈ρ+K0K̄0

∣∣) t̂ρK ×
(∣∣ρ+K+K−〉+ ∣∣ρ+K0K̄0

〉)
=

1

2

(〈
ρ+K+

∣∣ t̂ρK ∣∣ρ+K+
〉
+
〈
ρ+K0

∣∣ t̂ρK ∣∣ρ+K0
〉)
, (2.50)

where K̄ acts as a spectator. Therefore the interaction kernel is given as a
mixture of different isospin sectors

t =
1

3

(
2t
I=3/2
ρK + t

I=1/2
ρK

)
, (2.51)

where tρK is the ρK unitarized scattering amplitude given by Eq. (2.41).

2.5.3 Results

Now we have the ρKK̄ three-body amplitude within the FCA. To see the
effect of the multiple scattering, the full amplitude is compared with the
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single scattering amplitude T = 2t̃. Furthermore, as discussed in the previ-
ous work [363], the inclusion of the vector meson width is found to be much
important. Therefore, we also consider the width of the ρ, Γρ ∼ 150 MeV,
in the G0 function. By using the following replacement for the ρ propagator
in Eq. (1.76)

1

q02 − ~q2 −m2
ρ + iε

→ 1

q02 − ~q2 −m2
ρ + imρΓρ

, (2.52)

we include the ρ width into the G0 function. Once again, the use of the
constant ρ width can spoil precise analytical properties tied to the unstable
ρ, as discussed in Ref. [366], but we shall see later on that the strict use of
the ρ spectral function has about the same effect.

In Fig. 2.37, the ρ+[KK̄]I=0 amplitude is shown and there one can see
that a peak appears in each case. In the single scattering amplitude, the
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Figure 2.37: The ρKK̄ amplitude where “single”, “full”, “full + Γρ” denote
the amplitude of the single scattering, full scattering, full scattering with
the ρ width effect, respectively.

peak exists around the threshold of ρ and f0(980). Through the multiple
scattering, the peak position shifts lower while the width is getting smaller
because the ρf0(980) channel becomes closed. With the ρ width effect, that
peak is getting much wider while the shift of the peak position is not so
large. The masses (or a peak position in the amplitude) and full widths
at half maximum of the dynamically generated state are listed with the
experimental data in Table. 2.5, where the amplitudes are given by the
single scattering, the full scattering and the full scattering with the ρ width
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effect respectively. Compared with the experimental data, the consideration
of the ρ width is found to be important.

Table 2.5: The masses and widths of dynamically generated states.

single full full + Γρ PDG [9]

Mass (MeV) 1777.9 1734.8 1748.0 1720 ± 20
Width (MeV) 144.4 63.7 160.8 250 ± 100

As shown above, the present study seems to work for generating the
resonance which might correspond to ρ(1700). In addition, we consider the
width of the f0(980) too. The KK̄ component in the f0(980) resonance is
found to be dominant while the decay width into the ππ channel is not so
small. Therefore we consider the inclusion of the width into our framework.
In order to keep the FCA, here we give a naive prescription that the eigen-
value of the KK̄ system is now a complex value. Namely the mass of the
cluster Mf0 in Eqs. (1.77) and (1.78) is replaced by Mf0 − iΓf0/2. Then
the form factor becomes a complex function which might represent the ef-
fect of the wave function of the unstable cluster. The amplitude with the
f0(980) and ρ width effect is shown in Fig. 2.38 and the masses and widths
of the dynamically generated state are listed in Table 2.6. Taking into
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Figure 2.38: The ρKK̄ amplitude with the ρ and f0(980) width effect,
taking Γf0 as 0, 40, 70 and 100 MeV, respectively.

account the ambiguity of the f0(980) width, as a value of Γf0 , a maximum
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Table 2.6: The masses and widths of dynamically generated states with the
ρ and f0(980) width effects. (in MeV)

Γf0 = 0 Γf0 = 40 Γf0 = 70 Γf0 = 100

Mass 1748.0 1743.6 1739.2 1734.8
Width 160.8 216.4 227.2 224.6

and minimum value of the experimental data and their average are taken.
It is shown that the inclusion of the f0(980) width induces a suppression of
the magnitude of the peak and the peak becomes broader as the width of
the f0(980) increases. Furthermore it is also a remarkable feature that the
peak position is not so affected by this prescription. By taking Γf0 = 70
MeV which is between 40 MeV and 100 MeV as quoted in the PDG [9],
we find the mass at 1739 MeV and the width of 227 MeV (see Table 2.6),
which agrees very well with the experimental properties of the ρ(1700) (see
Table 2.5).

2.5.4 Peaks in the three-body scattering amplitude

We find it interesting to discuss here the meaning of Eq. (1.75) and of
Fig. 2.37. Eq. (1.75) bears resemblance to the BS equation for two inter-
acting particles that leads to bound states or resonances

T =
V

1− V G
. (2.53)

There are however some differences. In general V is a smooth function
of the energy and poles of the T matrix appear for 1− V G = 0. One might
correspondingly think that the poles of the three body system come from
a zero in the denominator of Eq. (1.75), 1 − t̃G0 = 0, but this is not the
case. The difference of Eq. (1.75) with Eq. (2.53) with a smooth potential
is that t̃(

√
s′) already has a pole corresponding to a dynamically generated

K1 resonance [362, 363]. In this case the situation is similar to the one of
the BS equation in the presence of a genuine resonance, which is taken into
account by means of a CDD pole [368]. To clarify situation let us just take
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V of Eq. (2.53) that contains a CDD pole as

V =
g2

s− sc
. (2.54)

Then, the T matrix of Eq. (2.53) can be recast as

T =
1

V −1 −G
=

1
s−sc
g2

−G
=

g2

s− sc − g2G
, (2.55)

which develops a pole at s = sc+g
2G. The coupling of the CDD pole to the

interacting components shifts the position of the original CDD pole. Here,
we have a similar situation. For the discussion purpose one can approximate
t̃(
√
s′) by its pole term and then

t̃(
√
s′) ∼ g̃2

s′ − sK
, (2.56)

with sK , the mass squared of the K1 state. Then

T (
√
s) = 2

g̃2

s′ − sK − g̃2G0(
√
s)
, (2.57)

and thus, the multiple scattering of the ρ with K and K̄, shifts the position
of the original ρK pole. This is what is seen in Fig. 2.37. The single term t̃
already gives rise to a resonant structure, but the multiple scattering of the
ρ shifts the peak to lower energies and produces a more bound three body
system.

It is also worthwhile to discuss these results from the physical point of
view. What we see in Fig. 2.37 is similar to what happens with the binding
of atomic molecules. The subject is discussed in Quantum Mechanics books
using two attractive δ functions in just one dimension [369]. If the two δ
functions are separated one binds a particle with either of the δ potentials.
This would correspond to our results with just the numerator in Eq. (1.75).
The interesting thing to observe is that the two δ potentials bind a particle
even in this case. Here, we can say that, even without multiple scattering
of the ρ, the KK̄ρ system already appears bound if the ρK system binds
the K1, although this has to be seen in the context where the ρ has a mass
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distribution and there are decay channels. In our case, with the attractive
KK̄ interaction, the formation of the molecule is further supported.

What we observe in Fig. 2.37 is exactly this situation. With just the sin-
gle scattering we already get a peak, which corresponds to the bound state
of ρK (or ρK̄) in the presence of another K̄ (K). Allowing the interaction
of the ρ with the two K, the ρ can orbit around the two K centers and
produces an extra binding in the system, reflected by the peak that appears
at lower energies. This corresponds to the case where the two δ functions
are closer, such that the particle can orbit around the two centers of the
potential.

The points made before need still a further discussion. In the case that
there is a resonance of the external particle with one of the clusters, the cross
section in the impulse approximation will show this peak. The experimental
π deuteron cross section [374] shows clearly a peak corresponding to the
formation of a ∆(1232) from the πN scattering. Can we interpret this in a
similar way to the ρKK̄ system? There are obvious differences: we cannot
claim that we have obtained a πN bound state in addition to the second
nucleon. Also the peak seen in the experiment does not indicate a further
binding of the ∆ with the second nucleon, and can be interpreted as a ∆N
propagating on shell. Actually, this kind of discussion has been raised in
the Literature, and the boundK−pp system that is obtained theoretically in
many works [228,271,301,302] is reinterpreted in Ref. [320] as a bound state
of a Λ(1405) and a nucleon. Conversely, from our calculations we observe
that the rescattering of the ρ with the second kaon leads to extra attraction
that allows us to interpret the result as the formation of a K1K̄ bound state
from the perspective of Ref. [320] and the discussion of the molecule done
before. We see that, in any case, a bound ρKK̄ state, more bound than a
K1K̄ system propagating on shell, appears in our approach.

2.5.5 Inclusion of the vector meson width

Next we come back to the discussion on improvements concerning the con-
sideration of the ρ width.

In Eq. (2.44) we took a range of mρ± 2Γ in the range of the ρ invariant
mass to construct the G̃ function. This leaves out some phase space for
ρ → ππ, which begins at mV = 2mπ. Increasing 2Γ to 3Γ practically
accounts for all the phase space and we can compare the results obtained.



2.5. THE INVESTIGATION OF THE ρKK̄ SYSTEM 125

We do the same for the K∗. At the same time we consider now the energy
dependence of the width. For later use we define the on-shell momentum q̄
of two particles a and b at the energy

√
s of center mass frame

qcm(
√
s,ma,mb) =

λ1/2(s,m2
a,m

2
b)

2
√
s

, (2.58)

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx
and masses of particles, ma,mb. With the nominal width Γphys (e. g.,

Γphys
ρ ∼ 150 MeV), we utilize the following width in the spectral function of

Eq. (2.44)

Γ̃l = Γphys
l

(
ql
qonl

)3

, (2.59)

where the momenta used are

qρ = qcm(
√
sV ,mπ,mπ)θ(

√
sV − 2mπ),

qonρ = qcm(mρ,mπ,mπ), (2.60)

for the ρ, and

qK∗ = q̄(
√
sV ,mπ,mK)θ(

√
sV −mπ −mK),

qonK∗ = q̄(mK∗ ,mπ,mK), (2.61)

for the K∗.

Similarly we reconsider the unstable ρ propagation in the G0 function by
using the Lehmann representation of the ρ propagator instead of the simple
replacement of Eq. (2.52). Hence, Eq. (1.76) is then replaced by

G̃0(
√
s) =

1

Cρ

∫ (mρ+3Γρ)2

(mρ−3Γρ)2
dsVG0(

√
s,
√
sV )

×
(
− 1

π

)
Im

{
1

sV −m2
ρ + imρΓ̃ρ

}

=
1

Cρ2Mf0

∫ (mρ+3Γρ)2

(mρ−3Γρ)2
dsV
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×
∫

d3q

(2π)3
Ff0(q)

1

q02(
√
s,
√
sV )− q2 − sV + iε

×
(
− 1

π

)
Im

{
1

sV −m2
ρ + imρΓ̃ρ

}
, (2.62)

with the normalization Cρ given in Eq. (2.45) with the extended range in the
integration. It should be noted that here we use the energy dependent width,
Γ̃ρ, given by Eq. (2.59). With these ingredients we show the new results
in Fig. 2.39, which compared to Fig. 2.37 shows only small quantitative
differences but does not change the results and conclusions drawn so far.
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Figure 2.39: The ρKK̄ amplitude with the reconsideration of the phase
space in the G and G0 functions.

Step by step, the changes that we see are the following : a) when we
extend the convolution with a range of 3Γ rather than 2Γ and use the
energy dependent width, the pole for the ρK and coupled system changes
from 1282 − i74 MeV to 1298 − i72 MeV; b) on the other hand when we
replace the prescription of Eq. (2.52) to include the ρ width into the G0

function, by the more accurate method of considering the spectral function
of the ρ, then we obtain the results of Table 2.7, replacing tables 2.5 and 2.6.
There has been a reduction of the binding by 10 MeV and of the width by
20 MeV. The changes done, however, have a bigger effect when, in addition,
we consider the width of the f0(980) in the form factor of the cluster. A
reduction of the mass of about 25 MeV takes place, while before it was
about 10 MeV. On the other hand the width is now increased by about
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22 MeV, while before it was increased by about 60 MeV. With the more
accurate prescription to account for the width of the states we predict a
mass of about 1732 MeV and a width of about 161 MeV. Both numbers are
compatible within errors with those in the PDG.

Table 2.7: The masses and widths of dynamically generated states with the
improvement of the phase space and the f0 width, Γf0 = 70. (in MeV)

single full full + Γρ full+ Γρ + Γf0
Mass 1802.6 1749.2 1758.0 1732.4
Width 150.0 39.9 139.8 161.4

Another aspect that we should consider is the application of the FCA
in a situation when the particle that rescatters is heavier than the one of
the constituents of the cluster. The use of the FCA in that case can be
unrealistic when one studies the three body system at energies above the
threshold of the three particle mass. This was the case of the φKK̄ system
at energies around 2170 MeV, almost 170 MeV above the φKK̄ threshold,
as shown in Ref. [232]. The reason is that the φ has then enough energy to
excite the KK̄ system breaking it and spoiling the basic starting point of
the FCA. The full Faddeev calculations, however, produce a resonant state
which was identified with φ(2170) in Ref. [75]. Yet, if we have a three body
system which is bound, the scattering particle has now no available energy
for the excitation of the cluster and the FCA becomes meaningful again.
This was shown in the study of the DNN system discussed before, where
theNN was the cluster and theD made the multiple scattering [310]. There
the ratio of the masses is mD/mN ∼ 2, ever bigger than mρ/mK = 1.56.

Another relevant information comes from the study of theNKK̄ system,
which is very close to the one studied here, with N heavier than the ρ.
This system was studied in Ref. [226] using the FCA and the results were
similar to those obtained by Faddeev equation in Ref. [229], leading to a N∗

resonance around 1920 MeV for which experimental support could already
be seen in the γp→ K∗Λ cross section around this energy [375].

We can also invoke different arguments. It is known that the FCA ne-
glects specific steps where the KK̄ would interact in between some initial
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and final ρK(ρK̄) interactions. The corrections are known as recoil correc-
tions, and have been studied in the literature [370–372]. In Ref. [372] they
are studied for the K̄NN system and found to go as (mK/mN )

1/2, leading
in that case to corrections of the order of 10− 15 % of the main term. Tak-
ing this as an indication of the size of the corrections for the case of ρKK̄,
where (mρ/mK)

1/2 is 1.7 times larger than (mK/mN )
1/2, we could expect

corrections of the order of 17− 25 %. Admitting about 30 % corrections to
the main term in multiple scattering, which leads to the shift of the peak
in Fig. 2.37 by about 40 MeV, we would get a correction of about 12 MeV,
an uncertainty that must be certainly admitted in our approach and which
is still smaller than the experimental uncertainty in the experimental mass
of the ρ(1700).

Finally, we would like to say some words about the possible poles in the
complex plane associated to the peak of Fig. 2.37. The analytical structure
of the G function for stable particles, with the cusp at threshold, leads to
poles or resonances in the complex plane. If one of the particles can itself
decay into two other particles, like the ρ into ππ, the analytical structure
gets complicated with branch points which are studied in detail in Ref. [366].
The poles can still appear or not and the structure in the real axis can not be
trivially associated to the particular singularities of the new amplitude [366].
Sometimes poles still appear like in Ref. [362] and other times they disappear
like in Ref. [373]. The analytical structure of the three body T -matrix of
Eq. (1.75) is then further complicated by the analytical structure ofG0 in the
denominator and the further need to account for the width of the unstable ρ
particle. This is the reason why in former works of the FCA poles were not
searched for. After all, the only thing that is physical is the amplitude in the
real axis and the peaks that they produce, which is what the experimentalist
observe. In this particular case the ρ(1700) is experimentally claimed from
broad peaks in cross sections of different experiments [9]. It should also be
mentioned that the main decay mode is ρππ, as would also come from our
model when the f0(980) decays into ππ.

2.5.6 Conclusion

Through the present paper, we construct the ρKK̄ three-body amplitude
by means of the FCA. In our framework, a pair of KK̄ is considered to form
a scalar meson cluster f0(980), based on Ref. [16]. We use the ρK unitarized
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amplitude provided by Refs. [362, 363] which respects chiral symmetry. In
the three-body amplitude, we have a peak at the energy around 1732 MeV
rather independent of the width of the f0(980). Besides, it is seen that the
inclusion of the ρ and f0(980) width makes the peak wider and gives a good
agreement with the experimental data of the ρ(1700), both for the position
and the width. Since the ρ decays into ππ mostly, the above results might
be related to the dominant decay mode of the ρ(1700), ρππ and 4π. Our
approach to the ρKK̄ system provides the description of the ρ(1700) as a
dynamically generated state and then we conclude that the building block
of the ρ(1700) resonance are the ρ and f0(980).
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Chapter 3

HQSS in heavy hadronic
states

In the section Sec. 1.5, we have discussed about this subject. Now, along
this line, we explore the ChUA, and combine the heavy quark spin symmetry
(HQSS) and the local hidden gauge (LHG) symmetry, to investigate the
hidden charm baryon coupled channels interaction, then, extrapolate to the
hidden beauty sectors, hidden beauty baryons and hidden beauty mesons.
With one more step, we also make an incursion in the open beauty and open
charm sectors with these two combinations.

The LHG model is a good representation of QCD at low energies. In
the pseudoscalar sector it contains the lowest order chiral Lagrangian [376,
377] and, in addition, the hidden gauge Lagrangian provides the interaction
between vectors and their coupling to pseudoscalars, seen in the subsection
1.2.2. It implements the vector meson dominance hypothesis of Sakurai [378]
and, within this assumption, it also provides the second order Lagrangian for
pseudoscalar-pseudoscalar interaction of [377], as shown in Ref. [161]. The
use of the LHG Lagrangian in connection with ChUA allows to study vector
meson interactions in the intermediate energy range. This is the case for the
ρρ interaction, from where one obtains the f2(1270) and f0(1370) resonances
[330] and its extension to the interactions of vectors of the ρ nonet [379], from
where the f0(1710), f

′
2(1525) and K∗

2 (1430) were dynamically generated.
The properties of the resonances obtained are shown to be consistent with
the radiative decay to two photons [380] and to two-photon and one photon-

131
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one vector meson in Ref. [337]. Similarly, consistency with experiment has
been shown in J/ψ → φ(ω)R [381], with R any of the resonances of Ref.
[379], and in J/ψ radiative decays in Ref. [382]. The extension of these
ideas to the charm and hidden charm sector have also shown that some of
the excited D states and X,Y,Z states recently reported could be explained
as molecules involving charm mesons [331,383–388].

The extension of the LHG approach to the baryon sector has also been
tackled: the interaction of vector mesons with the decuplet of baryons is
studied in Ref. [389] and with the octet of baryons in Ref. [390]. In both
cases some dynamically generated resonances are obtained which can be
associated to reported resonances in the PDG [9]. One step forward in
this direction is the consideration of vector-baryon and pseudoscalar-baryon
simultaneously in the interaction, which has been done in Ref. [391]. A
thorough work in this direction has also been done in Refs. [392–394]. A
review of the hidden gauge approach for vector-baryon and vector-nucleus
interaction can be seen in Ref. [395].

As discussed in section Sec. 1.5, an element missing in principle in
these works is the consideration of HQSS [233–236], which should be a
good symmetry when working with mesons and baryons with charm. Work
along these lines was done in Refs. [237, 238, 396, 397], where an extended
Weinberg-Tomozawa (WT) interaction to four flavors is derived. The model
for four flavors includes all basic hadrons (pseudoscalar and vector mesons,

and 1
2

+
and 3

2

+
baryons) and it reduces to the WT interaction in the sector

where Goldstone bosons are involved, while it incorporates HQSS in the
sector where charm quarks participate. Charmed and strange baryons are
studied in Ref. [238], where among other results, a HQSS doublet is associ-
ated to the three stars Ξc(2790) and Ξc(2815) pair of resonances. Moreover,
the model derived in Ref. [238] also accommodates naturally the three stars
charmed resonances Λc(2595) and Λc(2625). The Λc(2595) was previously
dynamically generated in other schemes based on t-channel vector-meson-
exchange models [256,257,406,407], but in Ref. [238], as first pointed out in
Ref. [237], a large (dominant) ND∗ component in its structure was claimed.
This is in sharp contrast with the findings of the former references, where
it was generated mostly as one ND bound state, since the ND∗ channel
was not considered in the coupled channels space. The work of Ref. [398]
takes advantage of the underlying spin-flavor extended WT structure of the
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couplings of the model of Refs. [237,238] and it is used to study odd parity
bottom-flavored baryon resonances by replacing a c−quark by a b−quark.
Two resonances Λb(5912) and Λb(5920), which are HQSS partners, are pre-
dicted in Ref. [398] and turn out to be in excellent agreement with the two
narrow baryon resonances with beauty recently observed by the LHCb Col-
laboration [399]. Finally, in Ref. [397] the model of Ref. [238] is extended to
the hidden charm sector, where seven odd parity N−like and three ∆−like
states with masses around 4 GeV, most of them as bound states, are pre-
dicted, which are almost degenerate in mass. However, the HQSS does not
determine the potential, simply puts some constraints in it, so the determi-
nation in the works of [237, 238, 396–398] is made assuming extra elements
of SU(8) spin-isospin symmetry.

The work with baryons along these lines has run parallel to work in the
meson sector [246, 247, 400–402]. In these works, an Effective Field Theory
(EFT) that implements leading order (LO) HQSS constrains is constructed
and its consequences are derived. The scheme, however, neither relies on
SU(4) symmetry nor on spin symmetry in the light sector. Many dynami-
cally generated resonances are obtained as HQSS partners of the X(3872),
Zb(10610), and the Zb(10650), some of which can be associated to known
resonances, but most are predictions. Our works along these line can be
seen below.

3.1 The study of hidden charm baryons

Now we investigate hidden charm baryons which come from the interaction
of mesons with baryons, with the system containing a cc̄ component. This
can come from pseudoscalar-baryon or vector-baryon interactions, which
was faced in Refs. [127, 168] and relatively narrow N∗ and Λ∗ resonances
were predicted around 4.3 GeV with an extrapolation to SU(4) of the LHG
dynamics used for SU(3) [156,159,163].

Work in the charm sector for meson-baryon interaction has been done
along different lines, which share similarities with the LHG approach [256,
403–405]. A different approach is done in Ref. [406], where one uses the
analogy of the work of the K̄N interaction and replaces a s-quark by the
c-quark. As mentioned in Ref. [257], while the potentials obtained are fine
with this prescription, in the coupled channel approach one is missing chan-
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nels that mix charm and strangeness in that approach. In Refs. [257, 407]
the work of Ref. [403] is retaken and appropriate modifications are done
in the potentials and the regularization scheme. Similar work is also done
by the Jülich group in Refs. [408–410]. All these works share the dynam-
ical generation of the Λc(2595), which comes mostly from the interaction
of the DN channel. Some hidden charm baryonic states are also generated
in Ref. [256], albeit with a binding of the order of 1000 MeV, difficult to
accommodate with the generated potentials as discussed in Refs. [127,168].

In the present work we use the LHG approach and introduce D∗ and the
members of the 20-plet of the ∆, as demanded by HQSS, but the dynamics
linking the different pseudoscalar-baryon and vector-baryon states is taken
from the hidden gauge approach. We look again in the hidden charm baryon
sector, where the matrix elements obtained with the dynamics of the LHG
approach respect the HQSS for the dominant terms in the mass of the heavy
quarks, something that was not known so far.

3.1.1 Lowest order HQSS constraints

We study baryons with hidden charm and I = 1/2, 3/2, J = 1/2, 3/2, 5/2.
We take as coupled channels states with ηc, J/ψ and a N or a ∆, and states
with D̄, D̄∗ and Λc, Σc or Σ

∗
c . Attending to the spin quantum number we

have thus 17 orthogonal states in the physical basis. Thus, we have the
following space states sorted by the different I, J quantum numbers.

1) J = 1/2, I = 1/2

ηcN, J/ψN, D̄Λc, D̄Σc, D̄
∗Λc, D̄

∗Σc, D̄
∗Σ∗

c .

2) J = 1/2, I = 3/2

J/ψ∆, D̄Σc, D̄
∗Σc, D̄

∗Σ∗
c .

3) J = 3/2, I = 1/2

J/ψN, D̄∗Λc, D̄
∗Σc, D̄Σ∗

c , D̄
∗Σ∗

c .

4) J = 3/2, I = 3/2

ηc∆, J/ψ∆, D̄
∗Σc, D̄Σ∗

c , D̄
∗Σ∗

c .

5) J = 5/2, I = 1/2
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D̄∗Σ∗
c .

6) J = 5/2, I = 3/2

J/ψ∆, D̄∗Σ∗
c .

Next, we will introduce a different basis, that we will call HQSS basis, for
which it is straightforward to implement the LO HQSS constraints. Thus,
in present case, the 17 orthogonal states in the HQSS basis are given by

• |Scc̄ = 0, L = 1
2 ; J = 1

2

〉
(`M=0, `B= 1

2 )
, |Scc̄ = 0, L = 1

2 ; J = 1
2

〉
(`M=1/2, `B=0)

,

|Scc̄ = 0, L = 1
2 ; J = 1

2

〉
(`M=1/2, `B=1)

• |Scc̄ = 1, L = 1
2 ; J = 1

2

〉
(`M=0, `B= 1

2 )
, |Scc̄ = 1, L = 1

2 ; J = 1
2

〉
(`M=1/2, `B=0)

,

|Scc̄ = 1, L = 1
2 ; J = 1

2

〉
(`M=1/2, `B=1)

• |Scc̄ = 1, L = 1
2 ; J = 3

2

〉
(`M=0, `B= 1

2 )
, |Scc̄ = 1, L = 1

2 ; J = 3
2

〉
(`M=1/2, `B=0)

,

|Scc̄ = 1, L = 1
2 ; J = 3

2

〉
(`M=1/2, `B=1)

• |Scc̄ = 0, L = 3
2 ; J = 3

2

〉
(`M=0, `B= 3

2 )
, |Scc̄ = 0, L = 3

2 ; J = 3
2

〉
(`M=1/2, `B=1)

• |Scc̄ = 1, L = 3
2 ; J = 1

2

〉
(`M=0, `B= 3

2 )
, |Scc̄ = 1, L = 3

2 ; J = 1
2

〉
(`M=1/2, `B=1)

• |Scc̄ = 1, L = 3
2 ; J = 3

2

〉
(`M=0, `B= 3

2 )
, |Scc̄ = 1, L = 3

2 ; J = 3
2

〉
(`M=1/2, `B=1)

• |Scc̄ = 1, L = 3
2 ; J = 5

2

〉
(`M=0, `B= 3

2 )
, |Scc̄ = 1, L = 3

2 ; J = 5
2

〉
(`M=1/2, `B=1)

where, J is the total spin of the meson-baryon system; L, total spin of the
light quarks system; Scc̄, total spin of the cc̄ subsystem; `M , total spin of
the light quarks in the meson; and `B, total spin of the light quarks in the
baryon. Note that we assume that all orbital angular momenta are zero,
since we are dealing with ground state baryons. The approximate HQSS of
QCD leads to important simplifications when the HQSS basis is used:

(`′M ,`′B)

〈
S′
cc̄, L′; J ′, α′|Ĥ|Scc̄, L; J, α

〉
(`M ,`B)

= δαα′δJJ ′δS′
cc̄Scc̄

δLL′
〈
`′M`

′
BL;α||Ĥ||`M`BL;α

〉
,

(3.1)
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where α stands for other quantum numbers (isospin and hypercharge), which
are conserved by QCD. Note that the reduced matrix elements do not de-
pend on Scc̄, because QCD dynamics is invariant under separate spin rota-
tions of the charm quark and antiquark. Thus, in a given α sector, we have
a total of nine unknown low energy constants (LEC’s):

• Three LEC’s associated to L = 3/2

λα1 =
〈
`′M = 0, `′B =

3

2
, L = 3/2;α||Ĥ||`M = 0, `B =

3

2
, L = 3/2;α

〉
λα2 =

〈
`′M = 1/2, `′B = 1, L = 3/2;α||Ĥ||`M = 1/2, `B = 1, L = 3/2;α

〉
λα12 =

〈
`′M = 0, `′B =

3

2
, L = 3/2;α||Ĥ||`M = 1/2, `B = 1, L = 3/2;α

〉
• Six LEC’s associated to L = 1/2

µα1 =
〈
`′M = 0, `′B =

1

2
, L = 1/2;α||Ĥ||`M = 0, `B =

1

2
, L = 1/2;α

〉
µα2 =

〈
`′M = 1/2, `′B = 0, L = 1/2;α||Ĥ||`M = 1/2, `B = 0, L = 1/2;α

〉
µα3 =

〈
`′M = 1/2, `′B = 1, L = 1/2;α||Ĥ||`M = 1/2, `B = 1, L = 1/2;α

〉
µα12 =

〈
`′M = 0, `′B =

1

2
, L = 1/2;α||Ĥ||`M = 1/2, `B = 0, L = 1/2;α

〉
µα13 =

〈
`′M = 0, `′B =

1

2
, L = 1/2;α||Ĥ||`M = 1/2, `B = 1, L = 1/2;α

〉
µα23 =

〈
`′M = 1/2, `′B = 0, L = 1/2;α||Ĥ||`M = 1/2, `B = 1, L = 1/2;α

〉
This means that in the HQSS basis, the Ĥ is a block diagonal matrix,
i.e, up to O(ΛQCD/mQ) corrections, Ĥ = Diag(µα, µα, µα, λα, λα, λα, λα),
where µα and λα are symmetric matrices of dimension 3 and 2, respectively.

To exploit Eq. (3.1), one should express hidden charm uncoupled meson–
baryon states in terms of the HQSS basis. For those states composed of
hidden charm mesons (`M = 0) the relations are trivial,

|ηcN ;J =
1

2

〉
= |Scc̄ = 0, L =

1

2
; J =

1

2

〉
(`M=0, `B= 1

2
)

|ηc∆; J =
3

2

〉
= |Scc̄ = 0, L =

3

2
; J =

3

2

〉
(`M=0, `B= 3

2
)

|JΨN ;J =
1

2

〉
= |Scc̄ = 1, L =

1

2
; J =

1

2

〉
(`M=0, `B= 1

2
)
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j1 j2

S L

Figure 3.1: Diagrams for the 9-j coefficients evaluation.

|JΨN ;J =
3

2

〉
= |Scc̄ = 1, L =

1

2
; J =

3

2

〉
(`M=0, `B= 1

2
)

|JΨ∆; J =
1

2

〉
= |Scc̄ = 1, L =

3

2
; J =

1

2

〉
(`M=0, `B= 3

2
)

|JΨ∆; J =
3

2

〉
= |Scc̄ = 1, L =

3

2
; J =

3

2

〉
(`M=0, `B= 3

2
)

|JΨ∆; J =
5

2

〉
= |Scc̄ = 1, L =

3

2
; J =

5

2

〉
(`M=0, `B= 3

2
)

(3.2)

while for the other states, one needs to use 9-j symbols.

The 9-j symbols are used to relate two basis where the angular momen-
tums are coupled in a different way. Taking two particles with ~l1, ~s1 and
~l2, ~s2, we can combine them to ~j1, ~j2 and finally ~j1, ~j2 to total ~J . Alter-
natively we can couple ~l1, ~l2 to ~L, ~s1, ~s2 to ~S, and then ~L, ~S to total ~J .
These two bases are related as [411]

|l1s1j1; l2s2j2; JM
〉
=
∑
S,L

[(2S + 1)(2L+ 1)(2j1 + 1)(2j2 + 1)]1/2

×


l1 l2 L
s1 s2 S
j1 j2 J

 |l1l2L; s1s2S; JM
〉
,

(3.3)

where the symbol {} stands for the 9-j coefficients.

As an example take a meson(M)-baryon(B) state of the type D̄(∗)Bc and
look at the recombination scheme on Fig. 3.1. Thus in this case we have
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the correspondence,

generic: l1 l2 s1 s2 j1 j2 L S J

HQSS: `M (
1

2
) `B

1

2

1

2
JM (0, 1) JB(

1

2
,
3

2
) L Scc̄ J(

1

2
,
3

2
,
5

2
) .

with JM and JB the total spin of the meson and baryon respectively. Then
one easily finds the physical states expressed by the HQSS basis, for example
(more details seen our paper [412])

|D̄Λc
〉

=
1

2
|Scc̄ = 0, L =

1

2
; J =

1

2

〉
(`M=1/2, `B=0)

+

√
3

2
|Scc̄ = 1, L =

1

2
; J =

1

2

〉
(`M=1/2, `B=0)

, (3.4)

|D̄Σc
〉

=
1

2
|Scc̄ = 0, L =

1

2
; J =

1

2

〉
(`M=1/2, `B=1)

− 1

2
√
3
|Scc̄ = 1, L =

1

2
; J =

1

2

〉
(`M=1/2, `B=1)

+

√
2

3
|Scc̄ = 1, L =

3

2
; J =

1

2

〉
(`M=1/2, `B=1)

, (3.5)

Ignoring hidden strange channels, we find the following interactions, taking
J = 1/2, I = 1/2 and J = 1/2, I = 3/2 for example:

• J = 1/2, I = 1/2
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• J = 1/2, I = 3/2

JΨ∆ D̄Σc D̄∗Σc D̄∗Σ∗
c

λ1

√
2
3λ12

√
2λ12
3 −λ12

3√
2
3λ12

1
3(2λ2 + µ3)

2(λ2−µ3)
3
√
3

1
3

√
2
3(µ3 − λ2)

√
2λ12
3

2(λ2−µ3)
3
√
3

1
9(2λ2 + 7µ3)

1
9

√
2(µ3 − λ2)

−λ12
3

1
3

√
2
3(µ3 − λ2)

1
9

√
2(µ3 − λ2)

1
9(λ2 + 8µ3)


I=3/2

(3.7)

Note, once more, that µ and λ only depend on isospin and are independent
of J .

In the present work, there is a total of 7 (6µ′s and λ2) independent LEC’s
for I = 1/2, while for I = 3/2, we have 4 (3λ′s and µ3) LEC’s. Thus, when
one neglects open and hidden strange channels, we have a total of 11 LEC’s.
The extension of the WT model, using SU(8) spin-flavor symmetry [397],
provides predictions for all these LEC’s. Namely,1

I = 1/2 → µ1 = 0, µ2 = µ3 = 1, µ12 = −µ13 =
√
6, µ23 = −3, λ2 = −2;

I = 3/2 → µ3 = −2, λ1 = 0, λ12 = 2
√
3, λ2 = 4, (3.8)

up to an overall 1
4f2

(k0+k′0) factor, being k0 and k′0 the center mass energies
of the incoming and outgoing mesons. The extension of the LHG approach
to the charm sector provides different values, as we discuss below.

3.1.2 Review of the LHG formalism

We make a short review of the formalism of the hidden gauge interaction
for vector mesons which we have discussed in the subsection 1.2.2.

The philosophy of the LHG in the meson-baryon sector is that the inter-
action is driven by the exchange of vector mesons, as depicted in Fig. 3.2.
Eqs. (1.33) and (1.34) provide the upper vertex of these Feyman diagrams.

1We thank L. L. Salcedo.



3.1. THE STUDY OF HIDDEN CHARM BARYONS 141

P P

B B(a)

V(q)

V V

B B(b)

V(q)

Figure 3.2: Diagrams obtained in the effective chiral Lagrangians for inter-
action of pseudoscalar [a] or vector [b] mesons with the octet or decuplet of
baryons.

It was shown in Ref. [390] that the vertices of Eqs. (1.33) and (1.34) give
rise to the same expression in the limit of small three momenta of the vector
mesons compared to their mass, a limit which is also taken in our calcula-
tions. The lower vertex when the baryons belong to the octet of SU(3) is
given in terms of the Lagrangian of Eq. (1.38). In the charm sector the lower
vertex V BB does not have such a simple representation as in SU(3) and in
practice one evaluates the matrix elements using SU(4) symmetry by means
of Clebsch-Gordan coefficients and reduced matrix elements [127,168].

The γµ matrix of the V BB vertex (see Eq. (1.38)) gets simplified in
the approach, where we neglect the three momenta versus the mass of the
particles (in this case the baryon). Thus, only the γ0 becomes relevant,
which can be taken as unity within the baryon states of positive energy that
we consider. Then the transition potential corresponding to the diagram of
Fig. 3.2(b) is given by

Vij = −Cij
1

4f2
(k0 + k′0) ~ε ~ε ′, (3.9)

where k0, k′0 are the energies of the incoming and outgoing vector mesons,
and Cij numerical coefficients evaluated as described above. The expression
is the same for the pseudoscalar baryon matrix elements for the same quark
content of pseudoscalar and vector mesons, omitting the ~ε ~ε ′ factor.

The scattering matrix is evaluated by solving the coupled channels BS
equation in the on shell factorization approach, Eq. (1.44), seen in the
subsection 1.3.1. The iteration of diagrams produced by the BS equation
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in the case of the vector mesons keeps the ~ε ~ε ′ factor in each of the terms.
Hence, the factor ~ε ~ε ′ appearing in the potential V factorizes also in the
T matrix for the external vector mesons. A consequence of this is that
the interaction is spin independent and one finds degenerate states having
JP = 1/2− and JP = 3/2−. In the present work, with HQSS constraints, we
shall include in the coupled channels dynamics, the pseudoscalars, vectors,
baryons of spin J = 1/2 and J = 3/2, seen in Eqs. (3.6) and (3.7).

3.1.3 Evaluation of the HQSS LEC’s in the LHG approach

Let us examine first the I = 1/2 sector. As an example let us take D̄Λc →
D̄Λc and D̄

∗Λc → D̄∗Λc. These two interactions are equal as we discussed.
This is in agreement with the general HQSS constraints explicited in Eq.
(3.6) for J = 1/2, I = 1/2, where both matrix elements are equal to the
LEC’s µ2. So we see that the HQSS is respected there by the LHG results.
In addition the interactions of D̄Σc → D̄Σc and D̄∗Σc → D̄∗Σc are also
equal. This does not contradict Eq. (3.6), it simply forces

1

3
(2λ2 + µ3) =

1

9
(2λ2 + 7µ3), (3.10)

which has as a solution,
λ2 = µ3. (3.11)

This has as a consequence that the matrix element of D̄∗Σ∗
c → D̄∗Σ∗

c is
also equal to λ2. The evaluation of this later matrix element using SU(4)
Clebsch-Gordan coefficients also gives the same result as the one of D̄∗Σc →
D̄∗Σc. Once again we can see that the constraints of HQSS are fulfilled by
the hidden gauge formalism, only that it gives us λ2 = µ3, which is a result
different to the one obtained in the approach of Ref. [397] (see Eq. (3.8)).

Let us look at the coefficient µ1. It is related to the ηcN → ηcN or
J/ψN → J/ψN matrix elements. In this case with the diagram of Fig. 3.3,
since ηc or J/ψ have cc̄, there is no vector that can be exchanged in Fig.
3.3 and hence this leads to

µ1 = 0. (3.12)

This also occurs in the approach of Ref. [397] and it is a consequence of
the OZI rule, that is implemented in both schemes. Let us now look at the
µ12 parameter. This enters in ηcN → D̄Λc transition which is depicted the
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N N N N

ηc ηc J/ψ J/ψ

Figure 3.3: Diagrams for the ηcN → ηcN and J/ψN → J/ψN interactions.
No vector meson exchanged is allowed.

N Λc N Σc

ηc D̄ ηc D̄ ηc

N

D̄∗

Λc

DD∗D∗

a) b) c)

Figure 3.4: Diagrams for the ηcN → D̄Λc, D̄Σc, D̄
∗Λc interaction.

diagram of Fig. 3.4 a). Within the hidden gauge model, the diagram forces
the exchange of a D∗ and is subleading in the mQ counting (O(m−2

Q )). In
the limit ofmQ → ∞ this term would vanish. We, however, keep it and take
it from Refs. [127,168]. Yet, because it is subleading we shall not expect the
LO HQSS restrictions to hold. We also evaluate the diagram of Fig. 3.4 b),
and using again SU(4) symmetry for the D∗NΣc vertex (see Refs. [127,168])
we find that

µ13
2

= −µ12
2

⇒ µ13 = −µ12, (3.13)

which also occurs in Ref. [397].

As to the transition from ηcN → D̄∗Λc, they are mediated by the ex-
change of a D meson, see Fig. 3.4 c). This term is doubly suppressed
because of the D propagator and because of the Yukawa coupling, ~σ · ~q, in
DNΛc vertex, where the three momentum is small compared with mD. In
Eq. (3.6) we see that this term is proportional to µ12, showing again that the
LO HQSS constraints does not hold for these subleading terms in the mQ

counting. In practice keeping this term, and those for ηcN → D̄∗Σc, D̄
∗Σ∗

c

or ignoring them has no practical repercussion on the final results.

With the dynamics of the LHG approach only the pion exchange in the
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(a) (b)

D̄ D̄D̄
∗

D̄
∗

Λc Λc
Λc Σc

π π

Figure 3.5: Diagrams for the pion exchange in the transition of D̄, D̄∗.
Panels (a) and (b) correspond to the D̄Λc → D̄∗Λc and D̄Λc → D̄∗Σc
transitions, respectively.

t-channel is allowed in this case, see Fig. 3.5. The D̄Λc → D̄∗Λc transition
is zero because the π exchange is zero in the πΛcΛc vertex. This agrees with
the result of the matrix of Eqs. (3.6). However the transition D̄Λc → D̄∗Σc
is not null and we evaluate it here.

The πΛcΣc vertex can be obtained by analogy to the πΛΣ vertex in
SU(3) (exchanging c and s quark) and using the Lagrangian,

L =
1

2
D〈B̄γµγ5{uµ, B}〉+ 1

2
F 〈B̄γµγ5[uµ, B]〉, (3.14)

where uµ = iu†∂µUu
†, u2 = U = ei

√
2φ/f with D = 0.80, F = 0.46 from

Ref. [313]. The D̄D̄∗π vertex is evaluated from Eq. (1.34). We find at the
end projecting over s-wave,

−it = 1√
6

MV

2f

2

5

D + F

2f
~q 2 ~σ · ~ε i

q0 2 − ~q 2 −m2
π

, (3.15)

with ~q the momentum transfer.
One can also prove that the matrix element of ~σ · ~ε is

√
3 [391]. If we

compare this contribution of this diagram with that of the D̄Λc → D̄Λc
transition from Refs. [127,168], we find a contribution of the order of 7%. If
one looks at diagonal matrix elements in the final scattering T-matrix, the
non diagonal terms of the transition potentials come squared and then we
can safely neglect this contribution. Thus we take

µ23 = 0. (3.16)

Note that the transitions D̄Σc → D̄∗Σc, D̄
∗Σ∗

c also require the pion ex-
change and should be taken zero. This is consistent with the matrix of Eq.
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(3.6) since these matrix elements are proportional to λ2 − µ3 but we saw
before that λ2 = µ3.

When evaluating the pion exchange mechanism in the V B → V B tran-
sition one has to consider the equivalent contact term that in the case of
γN → πN scattering is known as the Kroll Ruderman term. Explicit ex-
pressions to obtain it can be found from Refs. [391–394] and is of the same
order of magnitude as the pion exchange term, with usually destructive
interference.

With this exercise we have proved that the dynamics of the LHG ap-
proach is fully consistent with the HQSS requirements for the matrix of Eq.
(3.6). The values for the parameters that we obtain from Refs. [127, 168],
together with those determined here, are

µ2 =
1

4f2
(k0 + k′0), µ3 = − 1

4f2
(k0 + k′0),

µ12 = −
√
6

m2
ρ

p2D∗ −m2
D∗

1

4f2
(k0 + k′0),

µ1 = 0, µ23 = 0, λ2 = µ3, µ13 = −µ12.

(3.17)

µ12 is small, of the order of 15%. But we keep it since this term is the
only one that allows the scattering ηcN → ηcN (J/ψN → J/ψN) through
intermediate inelastic states. As we discussed before, µ and λ only depend
on isospin and are independent of spin J , therefore, Eq. (3.17) is general
for all isospin I = 1/2 sectors with different J .

The matrix of Eq. (3.7) for J = 1/2, I = 3/2 is equally analyzed. We
find

λ1 = 0. (3.18)

Then λ12 is also suppressed since it requires again the exchange of a D
meson, see Fig. 3.6. Once again, since the D̄Σc → D̄Σc transition is
equivalent to D̄∗Σc → D̄∗Σc. This implies that

1

3
(2λ2 + µ3) =

1

9
(2λ2 + 7µ3), (3.19)

from where we conclude again that

λ2 = µ3. (3.20)
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∆ Σc

J/ψ D̄

D

Figure 3.6: Diagrams for the J/ψ∆ → D̄Σc interaction.

Once again the D̄Σc → D̄∗Σc, D̄Σ∗
c transitions involve pion exchange and

we find them negligible, which is compatible with the HQSS requirement
since µ3 − λ2 = 0. The values that we obtain with this isospin combination
are then

λ12 = 3
√
3

m2
ρ

p2D∗ −m2
D∗

1

4f2
(k0 + k′0),

µ3 = 2
1

4f2
(k0 + k′0), λ2 = µ3, λ1 = 0,

(3.21)

which is general for all isospin I = 3/2 sectors.

3.1.4 Results

We use the BS equation of Eq. (1.44) in coupled channels to evaluate the
scattering amplitudes. We take the usual dimensional regularization formula
[194] of Eq. (1.46) for the G function. This formula avoids an undesired
behaviour at large energies when one uses a cut off method with a small cut
off [195]. As done in Refs. [127, 168], we take µ = 1000 MeV, a(µ) = −2.3
for the parameters in Eq. (1.46), which are the only free parameters in
our present study. We solve the BS equation of Eq. (1.44) in coupled
channels and look for poles in the second Riemann sheet when there are
open channels, or in the first Riemann sheet when one has stable bound
states (see [168,362] for details).

Let
√
sp be the complex energy where a pole appears. Close to a pole

the amplitude behaves as

Tij =
gigj√
s−√

sp
. (3.22)
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Figure 3.7: The results of the J = 1/2, I = 3/2 sector. (a): The squared
amplitudes of three channels except for J/ψ∆ channel. (b): The real parts
of G function in D̄∗Σ∗

c channel.

where gi is the coupling of the resonance to the i channel. As one can see in
Eq. (3.22), gigj is the residue of Tij at the pole. For a diagonal transitions
we have (for meson-baryon interaction)

g2i = lim√
s→√

sp
Tii (

√
s−√

sp). (3.23)

The determination of the couplings gives us an idea of the structure of the
states found, since according to [95, 205], the couplings are related to the
wave function at the origin for each channel.

Let us begin with the J = 1/2, I = 3/2 sector. We can see in Eq.
(3.21) that the large potentials are repulsive. So, we should not expect any
bound states or resonances. Yet, technically we find bound states in the first
Riemann sheet, as one can see in Fig. 3.7(a) for different channels. However,
inspection of the energies tell us that these are states bound by about 250
MeV, a large number for our intuition, even more when we started from
a repulsive potential. The reason for this, which forces us to reject these
poles on physical grounds, is that the G function below threshold turns out
to be positive for large binding energies (see Fig. 3.7(b) and discussions in
Ref. [128]), contradicting what we would have for the G function evaluated
with any cut off, or in Quantum Mechanics with a given range. These poles
are then discarded and, thus, we do not find bound states or resonances
in I = 3/2 in our approach. On the other hand, the WT extended model
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Figure 3.8: The squared amplitudes of the J = 1/2, I = 1/2 sector.

of Ref. [397] predicts µ3 = −2, which leads to three odd parity ∆−like
resonances with masses around 4 GeV. In addition, two other states show
up as cusps very close to the ∆J/ψ threshold, and their real existence would
be unclear.

Our results for the J = 1/2, I = 1/2 sector are shown in Fig. 3.8. From
the squared amplitudes of |T |2, we can find three clear peaks with non zero
width around the energy range 4200 ∼ 4500 MeV, which are not far away
below the thresholds of D̄Σc, D̄

∗Σc, D̄
∗Σ∗

c respectively. The relatively small
width of about 40 MeV of these states allows to distinguish them clearly.
We have checked that in the energy ranges where these peaks appear, the
real parts of the loop function G, Eq. (1.45), are negative in these channels.
Thus these peaks are acceptable as physical ones. Then, we look for the
poles corresponding to these peaks in the second Riemann sheet, and find
the poles at (4261.87 + i17.84) MeV, (4410.13 + i29.44) MeV, (4481.35 +
i28.91) MeV. The couplings to the various coupled channels for these poles
are given in Table 3.1. From Table 3.1 we can see that the first pole,
(4261.87+ i17.84) MeV, couples mostly to D̄Σc. It could be considered like
a D̄Σc bound state which, however, decays into the open channels ηcN and
J/ψN . The D̄Σc threshold is at 4320.8 MeV and, thus, the D̄Σc state is
bound by about 58 MeV. The second pole couples most strongly to D̄∗Σc.
In this channel the threshold is 4462.2 MeV and thus we have a state bound
by about 52 MeV, much in line with what one expects from heavy quark
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Figure 3.9: The results of |T |2 for the J = 3/2, I = 1/2 sector. To the right
the two small peaks of the left figure magnified.

symmetry comparing this with the former state. This state decays mostly
into the ηcN and J/ψN channels again. These two states correspond to
those reported in Refs. [127, 168], and also the first one, D̄Σc state, is con-
sistent with the results using different models [201,202]. In our work, we get
one more new baryon state, (4481.35+ i28.91) MeV, with total momentum
J = 1/2, which couples mostly to D̄∗Σ∗

c . Since in Refs. [127,168] one did not
include the baryons of JP = 3/2+, their consideration here leads to a new
resonance. The threshold for the D̄∗Σ∗

c channel is 4526.7 MeV and, hence,
the state can be considered as a D̄∗Σ∗

c bound state by about 46 MeV, which
decays mostly in ηcN and J/ψN .

For the J = 3/2, I = 1/2 sector, we show our results in Fig. 3.9.
From the results of |T |2, we can also see three clear peaks around the
range 4300 ∼ 4500 MeV, which are not far away below the thresholds of
D̄Σ∗

c , D̄
∗Σc, D̄

∗Σ∗
c respectively. The strength of the second peak is 17

times bigger than the other two and the widths are small enough to allow
the peaks to show up clearly. We have also checked that in these chan-
nels the real parts of the propagator G, Eq. (1.45), are acceptable too.
So, these are our predictions for the new baryon states with total momen-
tum J = 3/2. We search the poles in the second Riemann sheet, and find
(4334.45 + i19.41) MeV, (4417.04 + i4.11) MeV, (4481.04 + i17.38) MeV.
The couplings to each coupled channel corresponding to these poles are
listed in Table 3.2. From Table 3.2, we find that the first pole, (4334.45 +
i19.41) MeV, couples most strongly to the channel D̄Σ∗

c and corresponds to
a D̄Σ∗

c state, bound by 51 MeV with respect to its threshold of 4385.3 MeV,
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Figure 3.10: The results of |T |2 for the J = 5/2, I = 1/2 sector.

decaying essentially into J/ψN . The state corresponding to the big peak in
Fig. 3.9 (left) couples mostly to D̄∗Σc, it is bound by 45 MeV with respect
to the threshold of this channel, 4462.2 MeV and decays mostly into J/ψN .
The third state with J = 3/2, I = 1/2 couples mostly to D̄∗Σ∗

c , is bound
by 45 MeV with respect to the threshold of this channel, 4526.7 MeV and
also decays mostly into J/ψN .

Finally, we also find a new bound state of D̄∗Σ∗
c around (4487.10 +

i0) MeV in the J = 5/2, I = 1/2 sector, seen in Fig. 3.10. As we can see
in the figure, the state has no width, as it corresponds to a single channel,
D̄∗Σ∗

c . It is then a bound state in this channel. The pole appears in the
first Riemann sheet and the state is bound by about 40 MeV with respect
to the D̄∗Σ∗

c threshold.

3.1.5 HQSS and SU(4) symmetry breaking

The results obtained in the former sections rely upon exact HQSS and SU(4)
symmetries. We expect some breaking of these symmetries and we study
uncertainties of the results tied to these sources.

Yet, when one talks about SU(3) or SU(4) breaking one must be more
specific on what magnitude one is talking about. The different masses of
the quarks or mesons and baryons associated to the group multiplets are
largely responsible for the symmetry breaking of some magnitudes. There is
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a clear example of a large SU(3) breaking which is tied to the unitarization
and not to elementary vertices [277,419]: when the masses in the two octets
are taken as the physical ones the octet splits into two branches and the
singlet moves its position, thus, one of the two octets becomes the Λ(1670)
while the other one gives rise to the second Λ(1405) pole at 1420 MeV.
This example is telling us that the SU(3) (or SU(4)) symmetry should be
assumed in elementary vertices where the masses do not play a role, while
one should be ready to accept large breaking in some physical magnitudes
where the different scales in the masses are bound to have an effect. A
further discussion along these lines can be seen in section II.D of Ref. [168],
and uncertainties related to SU(4) breaking are also discussed in section V
of Ref. [331].

Contrary to some expectations that SU(4) symmetry should be badly
broken by a much larger amount than SU(3), when applied to elementary
couplings it works better than expected, as one can see in radiative decays
and associated processes [165].

But we want to be more specific here and we concentrate on the vertices
that appear in our theory. In the LHG approach the leading term in the me-
son baryon interaction is provided by the mechanism of Fig. 3.2, exchanging
light vector mesons. We will concentrate on the DDρ vertex for which there
are evaluations using the Dyson-Schwinger Equation [413] and QCD lattice
gauge simulations [414]. The coupling gDDρ is obtained in Ref. [413] with
the value gDDρ ' 5 and in [414], with the value gDDρ ' 4.9, which contrasts
with the SU(4) value of gDDρ = gKKρ ' 2 obtained in Ref. [408].

One might think that the use of this new coupling, increasing consid-
erably the strength of the potential, will change drastically the results ob-
tained. One can guess that changes would not be so drastic, because, si-
multaneously with this large coupling, a form factor arises and one has an
effective coupling

FDDρ(~q
2) ≡ gDDρF̃ (~q

2), F̃ (~q 2) =
Λ2

Λ2 + ~q 2
, (3.24)

with Λ ' 0.7 GeV, which softens the interaction in the loops. We can
actually see the effects of such new couplings in the binding energy in our
problem. For this purpose we choose one of the cases, J = 1/2, I = 1/2
(for the other cases the effects are similar). Then, following Ref. [206], we
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Figure 3.11: The results of squared amplitudes for the J = 1/2, I = 1/2
sector: (a) With qmax = 820 MeV; (b) With qmax = 820 MeV but with the
modified potential of Eq. (3.25).

change a bit the present formalism to incorporate the form factor F̃ (~q 2) of
Eq. (3.24). We assume that the lower vertex BBρ does not change with
respect to the one we have. This exercise is sufficient to have a feeling of
the uncertainties that we have for adhering to SU(3) or SU(4) symmetry.
Then we use Eq. (1.44) to obtain the T̃ matrix but, according to Ref. [206],
now we have

V → Ṽ ≡
gDDρ(new)

gDDρ(SU(4))
V,

G→ G̃ =

∫
d3~q

(2π)3
F̃ 2(~q 2)

ωP + ωB
2ωP ωB

2MB

P 0 2 − (ωP + ωB)2 + iε
,

(3.25)

with ωP , ωB, MB, P
0 the relativitic energy of the pseudoscalar, baryon,

mass of the baryon and total energy of the system, respectively. To imple-
ment the form factor we have to use an explicit momentum integration for
G̃ in Eq. (3.25), instead of the dimensional regularization formula used so
far. For this purpose we find first the cut off qmax, in the integration, such
that the results are similar to those found with dimensional regularization.
This qmax is found around qmax = 820 MeV, similar to what was used in
Refs. [127,168].

The results with the modified potential can be seen in Fig. 3.11, compared
to those obtained using qmax = 820 MeV with no modification of the poten-
tial (this is obtained using G̃ in Eq. (3.25) with F̃ (~q 2) = 1). The same three
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peaks in |T |2 appear now, albeit with different strength and at different en-
ergies. Since our only concern is to see if there are bound states and have an
estimate on the binding energy, we can see that this is indeed the case, and
the binding energies are changed, but within the same order of magnitude. If
we compare the results in Fig. 3.11 with those of dimensional regularization
of Fig. 3.8, we can see that the lower and higher peaks have both changed
by about 12 MeV. The middle one has changed by a similar amount but in
opposite direction (this is consequence of interference of coupled channels).
What we see is that we have differences of ±(10 ∼ 15) MeV in the bindings
from using different regularization methods on the loop function. We must
accept these as systematic uncertainties of our approach.

If now we compare the two figures (a) and (b) in Fig. 3.11, we can see
that the effect of using the increased gDDρ coupling and the form factor
simultaneously is an increase of the binding by 12 ∼ 14 MeV for the lower
and upper states (the small side structure in the upper peak comes from a
numerical artifact of no physical meaning), and the middle one is shifted
by 36 MeV, but compared to the results of dimensional regularization by
21 MeV. The changes obtained from this source are of the same order of
magnitude as changes from using two different regularization methods.

The other issue we want to discuss is the effect on the breaking of the
HQSS. While being a result of QCD for the dominant term in mQ, the ques-
tion is how relevant numerically can be the subleading corrections, terms
of O(m0

Q) in the potential in our formalism. One estimate can be provided
by the relevance of the contact terms in the vector-vector interaction in
the LHG approach. These terms are indeed one order lower in mQ in the
potential and hence subdominant. Yet, numerically they correspond to cor-
rections of the order of 20 % in the charm sector. In the beauty sector the
corrections are much smaller, and HQSS is assumed to be very accurate
there. The 20 % violation of this symmetry in the charm sector is in line
with findings in lattice QCD, or the Dyson-Schwinger equation. Indeed, in
Ref. [414] it is found that gDDρ ' 4.90 while gD∗D∗ρ ' 5.42. Similar break-
ings are found in the D or D∗ decay constants (fD, fD∗) in Ref. [415] from
QCD lattice gauge calculations, comparing gDsDK and gBsBK in Ref. [416],
evaluated with the Dyson-Schwinger equations, in the QCD lattice evalua-
tion of the D∗0 magnetic moment [417], or in the QCD sum rule evaluation
of the DDρ and D∗D∗ρ couplings [418].
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Figure 3.12: The results of squared amplitudes for the J = 1/2, I = 1/2
sector, which have a modified factor to the potentials. Left: 1.20×V ; Right:
0.80× V .

In view of these findings we perform an exercise as the former one,
evaluating the T matrix with the interaction used in the former chapter
multiplied by 1.20 or 0.80 respectively. The results can be seen in Fig. 3.12
for J = 1/2, I = 1/2. We can see that with respect to the results with
weight unity in the potential, the results with 1.20 × V lead to a binding
increased by about 15 MeV, while those with 0.80 × V produce smaller
bindings, with energies shifted by about 20 MeV. The former exercises
have shown that the changes produced by using different couplings obtained
in other approaches to QCD, with a certain amount of SU(4) or HQSS
breaking, induce changes of the order of 20−30 MeV in bindings estimated
in our approach to be of the order of 50 MeV. These uncertainties are in
line with other systematic uncertainties that we must also admit from our
partial ignorance in the scale of regularization in the loops. Yet, with all
these uncertainties admitted, the binding of the states remains as a solid
conclusion.

3.1.6 Discussion

The results reported in Ref. [397] show a certain parallelism with those
found here. There, seven odd parity N−like states were also found (three
with spin 1/2 and 3/2 and a further one with spin 5/2). Moreover, the

dynamics of these resonances is strongly influenced by the D̄(∗)Σ
(∗)
c com-

ponents, as it is the case here. Their masses, however, are quite, differ-
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ent, since those found in Ref. [397] lie in the region of 4 GeV, being thus
significantly lighter than those found in our work. Besides differences of
dynamical origin that can help to understand these changes in the posi-
tion of the masses, there exists a major difference among both approaches
in what concerns the renormalization of the loop function, G(s), in the
coupled channels space. The baryon-meson propagator is logarithmically
ultraviolet divergent, thus, the loop needed to be renormalized. Here, we
use Eq. (1.46) with a scale µ = 1000 MeV and the subtraction constant
a(µ) = −2.3, as done in Refs. [127,168]. However in Ref. [397], a subtraction
point regularization is chosen such that Gii(s) = 0 at a certain energy point,
which was first proposed in Refs. [256, 405] and it was successfully used in
Refs. [419,420] for three light flavors and in the open charm (bottom) stud-
ies carried out in Refs. [237, 238, 396] ( [398]). Indeed, a significant part of
the differences between the masses of the resonances found here and those
reported in Ref. [397] can be attributed to the different renormalization
procedure followed in both works. We would like to finish this discussion
just stressing again that, ignoring the difference in the mass positions, the
isospin 1/2 states found in this work have a clear resemblance with those
reported in Ref. [397].

3.1.7 Conclusions

In the present work we have addressed a relevant topic which is to show
the consistency of the dynamics of the LHG Lagrangians extrapolated to
SU(4) with the LO constraints of HQSS. Once again the requirements of
HQSS demanded that we put together pseudoscalar and vector mesons, as
well as baryons with J = 1/2, 3/2, from which we can obtain the transition
potentials between the different meson-baryon channels in different combi-
nations of spin and isospin. After this, we evaluated these matrix elements
using the dynamics of the LHG approach and found them to fulfil all the
relationships of LO HQSS. We found seven states with different energies or
different spin-isospin quantum numbers. Yet, the fact that the interaction
that we had for vector-baryon factorizes as ε · ε′ produces matrix elements
which are degenerate in the different spins allowed by the meson-baryon
combinations. Hence, up to some different mixing with subleading chan-
nels, we found a very approximate degeneracy in the states that qualify as
quasibound D̄∗B. In view of this, the seven states that we found could
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be more easily classified as four basic states corresponding to a quasibound
D̄Σc state which appears in J = 1/2, a D̄Σ∗

c state in J = 3/2, a D̄∗Σc
state which appears nearly degenerate in J = 1/2, 3/2 and a D̄∗Σ∗

c state
which appears nearly degenerate in J = 1/2, 3/2, 5/2. All the states are
bound with about 50 MeV with respect to the corresponding D̄B thresholds
and the width, except for the J = 5/2 state, is also of the same order of
magnitude. The J = 5/2 state which appears in the single D̄∗Σ∗

c channel
has the peculiarity that it has zero width in the space of states chosen. All
the states found appear in I = 1/2 and we found no states in I = 3/2. We
have also made some exercise estimating uncertainties from the breaking
of SU(4) and HQSS. While they introduce indeed changes in the binding
energies, the results on the appearance of the bound states are stable under
these changes, as well as the order of magnitude of the binding, with binding
energies that can increase by 30−50 %.
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3.2 The study of hidden beauty baryons

Under the SU(3) symmetry, the LHG Lagrangian with the coupled chan-
nel unitary approach can explain the structure, properties and dynamics
of many states which are confirmed in the PDG [9]. With this formalism,
the ρρ interaction is studied in Ref. [330], and provides a natural explana-
tion of the meson states f0(1370) and f2(1270) and one obtains the masses
and widths of the two particles in fair agreement with experimental results.
Along the same line, the work of Ref. [379] successfully finds 11 states in
the vector meson-vector meson interaction, five of which are identified as
f0(1370), f0(1710), f2(1270), f2(1525), and K

∗
2 (1430), reported in the PDG

and regarded as molecular states, and the other ones are predictions. One
of the predicted states h1 [IG(JPC) = 0−(1+−)] around 1800 MeV finds
support from a posterior BES experiment on the J/ψ → ηK∗0K̄∗0 [421]
as discussed in Refs. [422–424]. An extension of this method to the case
of the nonet of vectors interacting with the decuplet baryons is done in
Refs. [389, 425], dynamically generating some resonances found in PDG.
Turning to the vector nonet-baryon octet interactions, there are results ob-
tained about JP = 1/2−, 3/2− particles in the work of Ref. [390]. Extension
of these ideas to incorporate simultaneously pseudoscalar mesons, vector
mesons and baryons is done in Refs. [391–394]. The meson-meson interac-
tion with charm is studied in [331, 383, 384], which dynamically generates
the particles D∗

2(2460), X(3940), Z(3930), X(4160) and D∗
s2(2573). For

the meson-baryon interaction, the works [127, 168] extrapolate the hidden
gauge formalism with the coupled channel approach to the hidden charm
sector, and dynamically generate some narrowN∗ and Λ∗ resonances around
4.3 GeV, not listed in the PDG. Analogously, the work of Ref. [128] extends
this later formalism to the hidden beauty sector and also predicts several
N∗ and Λ∗ states with narrow width and energies around 11 GeV.

On the other hand, in the heavy quark sectors there is another symmetry,
heavy quark spin-flavour symmetry as stated in Refs. [233–236] (seen in the
section Sec. 1.5), or only HQSS as described in Ref. [401], which predicts an
η′cf0(980) bound state, suggested as the spin-doublet partner of the Y (4660)
theoretically proposed as a ψ′f0(980) bound state in Ref. [426]. Incorporat-
ing the HQSS and the effective field theory, the charmed meson-antimeson
system is investigated in Refs. [246, 247, 400, 427], predicting six hidden
charm states as HQSS partners of the DD̄∗ bound state, X(3872), two of
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which are assumed to be X(3915), a D∗D̄∗ molecular state, and Y (4140),
a D∗

sD̄
∗
s molecular state. In Refs. [237, 238, 396–398] an SU(8) spin-flavour

symmetry is invoked, within the framework of the unitary coupled channel
approach for the meson-baryon interactions, and some charmed and strange
baryon resonances are produced dynamically in their theoretical models. A
step forward in this direction is given in the former work (Ref. [412]) com-
bining the LHG formalism and HQSS, and using a unitary coupled channel
method, making a prediction of four hidden charm states with relatively
small widths. In the present work, we extrapolate this later approach to
the hidden beauty sector. We also propose a natural way to regularize the
loops which removes ambiguities encountered in other works [128].

3.2.1 HQSS and LHG Formalism

Following the former work (Ref. [412]), seen in last section, we extrapolate
the formalism to the hidden beauty sector by just changing the D̄ meson to
a B meson and c̄-quark to b̄-quark. Therefore we can study baryons with
hidden beauty with isospin I = 1/2, 3/2, and spin J = 1/2, 3/2, 5/2. We
take as coupled channels states with ηb, Υ and a N or a ∆, and states with
B, B∗ and Λb, Σb or Σ

∗
b . For the different I, J quantum numbers we have

the following space states.

1) J = 1/2, I = 1/2

ηbN, ΥN, BΛb, BΣb, B
∗Λb, B

∗Σb, B
∗Σ∗

b .

2) J = 1/2, I = 3/2

Υ∆, BΣb, B
∗Σb, B

∗Σ∗
b .

3) J = 3/2, I = 1/2

ΥN, B∗Λb, B
∗Σb, BΣ∗

b , B
∗Σ∗

b .

4) J = 3/2, I = 3/2

ηb∆, Υ∆, B∗Σb, BΣ∗
b , B

∗Σ∗
b .

5) J = 5/2, I = 1/2

B∗Σ∗
b .
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6) J = 5/2, I = 3/2

Υ∆, B∗Σ∗
b .

Following the results of former work (Ref. [412]), we extrapolate the
LHG formalism to the beauty sector as done in Ref. [128]. Thus, combining
these matrix elements with the HQSS requirements, for the matrix elements
of Eq. (3.6) in the J = 1/2, I = 1/2 sector, just replacing the D̄ meson to
a B meson and c̄-quark to b̄-quark, we analogously obtain the values for the
parameters of the low energy constants for J = 1/2, I = 1/2 (more details
seen in our paper [428]),

µ2 =
1

4f2
(k0 + k′0), µ3 = − 1

4f2
(k0 + k′0),

µ12 = −
√
6

g2

p2B∗ −m2
B∗

(k0 + k′0),

µ1 = 0, µ23 = 0, λ2 = µ3, µ13 = −µ12,

(3.26)

where pB∗ is the four momentum of B∗ in the V V V or PPV vertex (which
will be discussed later). Thus, µ12 is small because of the much heavier B∗

exchanged. But we keep it since this term is the only one that allows the
scattering ηbN → ηbN (ΥN → ΥN) through intermediate inelastic states.
Similarly, the matrix of Eq. (3.7) for J = 1/2, I = 3/2 now for beauty
sector is given by

λ12 = 3
√
3

g2

p2B∗ −m2
B∗

(k0 + k′0),

µ3 = 2
1

4f2
(k0 + k′0), λ2 = µ3, λ1 = 0.

(3.27)

Because the coefficients µIi , µ
I
ij and λIm, λ

I
mn are isospin dependent but

J independent, the results of Eq. (3.26) are also the same for all I = 1/2
sectors. The other I = 3/2 sectors share the same parameters as Eq. (3.27).

Although we have used coefficients using SU(4), we could have equally
obtained them using only SU(3) relationships, invoking the spectator char-
acter of the heavy quarks. This means that we treat u, d, s quarks as
light quarks and use SU(3) to obtain couplings in this sector. By using the
spectator hypothesis for the s or c and b quarks we would obtain the DDρ,
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BBρ couplings equal to the KKρ. This coupling is g in our approach which
is taken as mV /2fπ, with mV ≈ mρ, hence g ≈ 4.14. With this coupling one
reproduces the chiral Lagrangians in the light sector by exchanging vector
mesons. The spectator hypothesis is challenged in Ref. [413], where they
quote a value of gDDρ ≈ 5. This should be compared with gππρ/2 = 3 used
in Refs. [408, 429], or 4.14 that we use here. One should also note that in
Ref. [413] they propose in addition an extra form factor

F (~q ) =
Λ2

Λ2 + |~q |2
; Λ ≈ 0.7 GeV. (3.28)

The value of gDDρ ≈ 5 would also agree with results obtained in sum rules
in Ref. [414], gDDρ ≈ 4.84. On the other hand, by using also sum rules
in the light cone in Ref. [430] (after caring about factors in the definition)
they get gDDρ = 3.81/2 ≈ 1.9 with differs appreciably from the other values.
In this same paper and in Ref. [431], they also report a value for gBBρ =√
2 × 1.89 ≈ 2.67 (after adapting to our normalization). We can see a

difference of almost a factor 1.5 with respect to our value. To estimate
uncertainties we shall assume uncertainties in the non zero diagonal terms
of the interaction of about a factor 1.5 up and down. Larger uncertainties
might appear in the non diagonal terms involving the exchange of a B∗.
This affects the µ12, λ12 terms of Eqs. (3.26), (3.27). Here we must admit
larger uncertainties from the SU(4) symmetry used (or implicit SU(3) if we
use the analogy of b quarks with s quarks). We shall substitute g2 in Eqs.
(3.26), (3.27) by gmmB∗ for the mesonic vertex times gbbB∗ for the baryonic
vertex. We will accept that gmmB∗ in this case can be either a factor of two
larger or smaller than the central SU(4) value (this should include possible
changes in gbbB∗ too).

As we mentioned, the π exchange is subdominant in the heavy quark
mass counting and we disregard those terms. One might think of two pion
exchange. In the present case, two pion exchange in the scalar isoscalar
sector (σ exchange) would not contribute for the non diagonal terms of the
interaction, and only induce minor change in the non zero diagonal terms.
From the picture of the σ, or two uncorrelated π exchange of Ref. [432], the
diagonal ηbN and ΥN interaction would be OZI forbidden and one can also
neglect it.
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Figure 3.13: ReG as a function of
√
s for qmax = 745.5 MeV/c.

3.2.2 The coupled channel approach

The scattering matrix is evaluated by solving the coupled channels BS equa-
tion in the on shell factorization approach, Eq. (1.44), seen in the subsection
1.3.1.

Normally, in the low energy the two regularization methods for the loop
function G, seen the discussions in the subsection 1.3.1, are compatible and
there are relationships between these free parameters, a(µ), µ and qmax (seen
Eq. (52) of Ref. [196]). At higher energies, as discussed in Ref. [128], there
are large differences even not far away from threshold (see Fig. 2 of Ref.
[128]). The cut-off method for the heavy hadrons has obvious deficiencies if
the cut off chosen is of the order of the on shell momenta of the propagating
pair in the loop function. This can be seen to happen in Fig. 3.13 for
about 100 MeV of excitation, where the G function artificially blows up.
On the other hand, the use of G in dimensional regularization has its own
problems, since matching it to the cut-off formula at threshold develops
positive values below threshold, leading to the unphysical generation of
states with a repulsive potential when 1 − GV = 0. The cut-off method,
however, does not show this pathology since G < 0 below threshold. A
satisfactory solution to both problems is accomplished if one uses the cut
off regularization but in addition considers the ~q dependence of the vector
meson propagator in the t-channel, which provides a physical regularization
factor.
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Recalling that p0 is small for large values of ~p in the heavy sector, one
can take

1

p2 −m2
V

=
1

p0 2 − ~p 2 −m2
V

≈ 1

−~p 2 −m2
V

= − 1

~p 2 +m2
V

. (3.29)

For lower momentum transfers one can take the approximation, ~p 2 ∼ 0,
and then Eq. (3.29) becomes −1/m2

V , which can be factorized outside the
loop and give rise to the potential of Eq. (3.9). In the heavy quark sector,
~p can be larger than mV and the ~p dependence of Eq. (3.29) must be taken
into account.

We, thus, improve our formalism to solve this problem. As discussed
in section VII of Ref. [95], also in the subsection 1.3.2, we can introduce a
form factor to the potential,

V (~q ′, ~q ) = 〈~q ′|V̂ |~q 〉 ≡ v f(~q ′)f(~q ), (3.30)

writing it in a separable form. As shown in Ref. [95] and the subsection
1.3.2, the T matrix also factorizes like Eq. (3.30) and one has

T (~q, ~q ′) = 〈~q |T̂ |~q ′〉 ≡ t f(~q )f(~q ′), (3.31)

and then the Lippmann-Schwinger equation (BS equation now) becomes

t = [1− v G]−1 v, (3.32)

but now

G(s) =

∫
d3~q

(2π)3
f2(~q )

ωP + ωB
2ωP ωB

2MB

P 0 2 − (ωP + ωB)2 + iε
. (3.33)

Once again we can put the integral equation as an algebraic equation [155].
Note that Eq. (3.32) has the same format as Eq. (1.44) (and Eq. (1.55)),
but, the matrices t, v are defined by Eqs. (3.30) and (3.31), and the loop
function G(s) is changed by Eq. (3.33) which absorbs a momentum depen-
dent form factor from the factorized potential. Then, the kernel v is still
the same as discussed in the last subsection 3.2.1.
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Figure 3.14: Feymann diagram for the transition BΣb → BΣb with one
loop.

3.2.3 Application to the heavy quark sector

In the present work, we focus on the beauty sector involving much higher en-
ergy than the light quark sector, even than the charm sector. As mentioned
in the former subsection 3.2.2, because of the large value of the momentum
~q running in the loop, we should consider the ~q dependence of the vector
exchange. For this we use the formalism discussed in the former section.

First, for the channels involving the light vector mesons exchange, such
as BΣb channel, the problem is that the potential has a factor which does
not depend on ~q but just on ~k − ~q, as shown in Fig. 3.14. However, we
should keep in mind that while ~q in the loop can be larger than mV , we
only study states close to threshold where the external momenta are small.
Thus, we have

f(~k )f(~q ) ≡
m2
V

(~k − ~q )2 +m2
V

'
m2
V

~q 2 +m2
V

, (3.34)

which defines

f(~q ) =
m2
V

~q 2 +m2
V

, f(~k ) ' 1. (3.35)

For the main potential related to the light vector meson exchange, this form
factor should be incorporated into the new G function, Eq. (3.33), thus,
there is a factor f2(~q ) in the integral. With the implementation of the form
factor in Eq. (3.33) the function G becomes convergent. In Fig. 3.15, we
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Figure 3.15: The real and imaginary parts of G function with Eq. (1.47)
(Gn) and Eq. (3.33) (Gf ).

compare the new results for ReG and ImG with the new prescription with
the sharp cut-off results with qmax = 800 MeV/C used in Ref. [128]. As we
can see, both ReG and ImG are reduced in the new approach which leads
to smaller binding of the states.

As we have seen, we have kept in Eq. (3.26) the term µ12, related to the
exchange of a heavy vector. This appears in diagrams of multiple scattering
like those shown in Fig. 3.16 (in the figure B means B or B∗ meson).
Fig. 3.16(a) would produce some small ηbN → ηbN amplitude, which is
not allowed directly since µ1 = 0 (see Eq. (3.26)). However, we are more
interested in terms of the type of 3.16(b), also small but which contribute to
the width of the states, since the mass of the intermediate state is smaller
than the external one. Because of this, we pay some special attention to it
and investigate the form factor involved in this case related to the exchange
of the heavy vector.

To determine the new form factor, f̃(~q ), we should come back to the
transition potential µ12 of Eq. (3.26), which takes into account the heavy
B∗ exchange propagator,

1

p2B∗ −m2
B∗
. (3.36)

If we calculate the four momentum p2B∗ by taking on shell approximation,
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N(p) N(p′)
Σb(P − q)
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Vh(q − k′)Vh(k − q)

(a)

B(k) B(k′)

Σb(p) Σb(p
′)
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Vh(q − k′)Vh(k − q)

(b)

Figure 3.16: Diagram for the transitions coupled with ηbN channel in the
loop.

we have

p2B∗ = (pηb − pB)
2 ' m2

ηb
+m2

B − 2EηbEB, (3.37)

where the on shell energies of the particles are given by

Eηb =
s+m2

ηb
−m2

N

2
√
s

; EB =
s+m2

B −m2
Σb

2
√
s

. (3.38)

Once again, we take into account that in the loop one can exchange large
momenta with small energy transfer. Therefore, we can consider that the
energy is the same but there will be an off shell momentum running. Thus,
we take

p2B∗ = (pηb − pB)
2 = (Eηb −EB)

2− (~pηb − ~pB)
2 ' (Eηb −EB)

2− ~q 2, (3.39)

where we have taken the external momentum ~pB ≈ 0 as before and ~pηb = ~q.
Hence, for the transition potential of Eqs. (3.26) and (3.27) we shall use
the on shell expression, Eqs. (3.36) and (3.37), as in the charm sector, but
now in the ηbN channel we should use a form factor in the loop function,

f̃(~q ) =
m2
B∗ − (Eηb − EB)

2

m2
B∗ − (Eηb − EB)2 + ~q 2

, (3.40)

where the on shell energies, Eηb and EB, are given by Eq. (3.38). In practice,
for EB we take average masses of b-baryons and then have a unique form
factor f̃(~q ).
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Figure 3.17: The squared amplitudes of the J = 1/2, I = 1/2 sector.

3.2.4 Results

In our formalism we use the BS equation of Eq. (3.32) in coupled channels
to evaluate the scattering amplitudes, where the G function for the meson-
baryon interaction is given by Eq. (3.33). We first search the resonance
peak in the scattering amplitudes and then look for poles in the second
Riemann sheet when there are open channels, or in the first Riemann sheet
when one has stable bound states (see [168,362] for details).

For open channels the second Riemann sheet is obtained in our case by
changing

GI → GII = GI +
i

4π

qcm√
s
f(q2cm)

2, (3.41)

where qcm is defined after Eq. (1.46), and given by Eq. (2.58). Besides, the
couplings are defined as before, seen Eq. (3.23).

Similarly to the charm sector before, in all I = 3/2 channels we have
repulsive potentials as can be seen in Eq. (3.27). So, we should not expect
any bound states or resonances.

Next we show the results for the J = 1/2, I = 1/2 sector in Fig. 3.17.
There are three clear peaks with non zero width in the range 10950 ∼
11050 MeV in the squared amplitudes of |T |2. These peaks are below the
thresholds of BΣb, B

∗Σb, B
∗Σ∗

b respectively. From Eq. (3.26), we know
that the potentials of these channels are attractive, and the energy ranges
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where these peaks appear are reasonable. In Fig. 3.15, one can see that
the real parts of the loop function G, Eq. (3.33), are negative below the
threshold. Thus these peaks are acceptable as physical ones. We look for the
poles corresponding to these peaks in the second Riemann sheet, and find
the poles at (10960.68+ i6.15) MeV, (11002.31+ i12.85) MeV, (11022.77+
i13.77) MeV. We can see that the width of the first pole is about 12 MeV,
and the last two ones have a width of about 25 ∼ 28 MeV, which is two times
bigger than the first one. The couplings to the various coupled channels for
these poles are given in Table 3.3. From the couplings in Table 3.3, the
first pole, (10960.68+ i6.15) MeV, couples mostly to BΣb, with a threshold
of 11092.81 MeV. So, it could be considered like a BΣb bound state with
a binding energy about 133 MeV, which is small compared to the mass of
BΣb. The second pole, (11002.31 + i12.85) MeV, couples most strongly to
B∗Σb and thus, is still bound by about 136 MeV below the B∗Σb threshold,
11138.60 MeV. Finally, the third pole, (11022.77 + i13.77) MeV, couples
mostly to B∗Σ∗

b . It has a binding energy of 136 MeV with respected to
the B∗Σ∗

b threshold, 11158.80 MeV. We can see that the binding energies
of the three poles are similar, close to 130 MeV. We can also see that
all the three bound states decay mostly into the open channels ηbN and
ΥN , and couple most strongly to some other BYb channels. Note that
the former two states correspond to those reported in Ref. [128], which are
(11052 + i0.69) MeV for the BΣb bound state and (11100 + i0.66) MeV
for the B∗Σb bound state. The difference in the binding energies with the
results of Ref. [128] are at most of 90 MeV, but the uncertainties in Ref. [128]
had a range within this magnitude. The widths obtained in Ref. [128] are
smaller but there are more open channels in our approach and we also do
not have restrictions from using a small cut-off as used in Ref. [128] in some
cases. Note that in the BΣb decay to ηbN the on shell momentum is about
1300 MeV/c and will be missed if a smaller cut-off is chosen to regularize
G. The small width obtained in Ref. [128] comes mostly from decay to
light channels Refs. [127,168] that we neglect here. Their results show that
because of higher energy in the beauty sector, these light channels have a
small influence on the two bound states decay width. In our present work,
we include two open channels constrained by the HQSS, ηbN and ΥN , which
play an important role for the the decay width. This is why we get a wider
decay width.
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Figure 3.18: The results of |T |2 for the J = 3/2, I = 1/2 sector.

In Fig. 3.18 we show our results for the J = 3/2, I = 1/2 sector.
From the results of |T |2, we can also see three clear peaks around the range
10950 ∼ 11050 MeV, which are about 130 MeV below the thresholds of
BΣ∗

b , B
∗Σb, B

∗Σ∗
b respectively. The strength of the second peak is about

10 times bigger than the other two and the widths are small enough to
allow the peaks to show up clearly. In the second Riemann sheet, we find
the poles at (10981.01 + i6.94) MeV, (11006.12 + i2.13) MeV, (11021.70 +
i8.45) MeV, showing that the widths are about 14 MeV, 4 MeV, 17 MeV
respectively. We list the couplings to each coupled channel corresponding
to these poles in Table 3.4. One can see from Table 3.4, that the first
pole, (10981.01+i6.94) MeV, couples most strongly to the channel BΣ∗

b and
corresponds to a BΣ∗

b state, bound by 132 MeV with respect to its threshold
of 11113.02 MeV. The state, (11006.12 + i2.13) MeV, corresponding to the
big peak in the middle of Fig. 3.18, with small width, couples mostly to
B∗Σb. Thus, it is bound by 132 MeV with respect to the threshold of
the B∗Σb channel, 11138.60 MeV. The third one, (11021.70 + i8.45) MeV,
couples mostly to B∗Σ∗

b , and is bound by 137 MeV with respect to the
threshold of this channel, 11158.80 MeV. Also, we can find that all the
three states decay essentially into ΥN channel, couple very weakly to the
B∗Λb channel, and couple more strongly to the other channels.
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Figure 3.19: The results of |T |2 for the J = 5/2, I = 1/2 sector.

As shown in Fig. 3.19, we also search for a new state in the J = 5/2, I =
1/2 sector, which is a bound state of B∗Σ∗

b around (11026.10 + i0) MeV.
From Fig. 3.19, we can see that, this state has no width, as it corresponds
to a single channel, B∗Σ∗

b . Then it is a bound state of this channel and has
no other channels to decay. Therefore we can look for the pole in the first
Riemann sheet with zero width. One can see that the state is bound by
about 133 MeV with respect to the B∗Σ∗

b threshold.

3.2.5 Discussion

We have seen that our procedure to regularize the loops allows sufficiently
large momenta to get the imaginary part of the loops of the decay channels.
Thus, technically we get a good estimate of the width of the states. Yet, we
would like to make some estimate for the uncertainties in the masses and
widths of the states obtained.

In a first step we introduce a sharp cut off of qmax = 800 MeV, as sug-
gested in Ref. [128], in addition to the natural form factors from vector
exchange that we have. Because of the caveat about the imaginary parts,
we only look at the real parts. We observe that systematically the states
are less bound. They are now bound by about 50 MeV. The experimental
finding of some of the states predicted would allow us to be more refined
on the regularization procedure, but for the time being we can accept the
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differences in the binding energies as uncertainties of our theoretical ap-
proach. We thus conclude that the states found would be bound by about
50− 130 MeV and the widths are of the order of 4− 28 MeV.

Finally we would like to evaluate other uncertainties tied to possible
changes in the input parameters of the potential. As we discussed at the
end of subsection 3.2.1, we will look for changes that come from increasing
or decreasing by 50 % de diagonal terms of the potential, or by a factor of
two up and down µ12 and λ12. We summarize the results for the energies
of three states in Tables 3.5 and 3.6.

Table 3.5: The poles corresponding to J = 1/2, I = 1/2 sector when the
diagonal potentials are changed by a factor.

Vdig/1.5 Vdig Vdig 1.5

11022.00 + i2.58 10960.68 + i6.15 10877.41 + i17.15

11032.73 + i4.32 11002.31 + i12.85 10897.55 + i18.50

11076.37 + i9.59 11022.77 + i13.77 10905.00 + i17.62

Table 3.6: The poles corresponding to J = 1/2, I = 1/2 sector when the
non diagonal potentials are changed by a factor.

(µ12/2, λ12/2) (µ12, λ12) (2µ12, 2λ12)

10960.51 + i1.39 10960.68 + i6.15 10974.87 + i9.22

11005.13 + i3.12 11002.31 + i12.85 11005.44 + i54.00

11025.31 + i3.37 11022.77 + i13.77 11033.50 + i54.00

As we can see in Tables 3.5 and 3.6, the results for the bindings and
widths change with the changes made. The changes in the diagonal poten-
tials induce changes in the binding. Increasing the potential by 50 % makes
the binding increase by about 60− 90 MeV, while by dividing it by 1.5 re-
duces the binding in about 50− 70 MeV. It is interesting to note that even
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if we divide the diagonal potential by a factor four we still get weak bound
states, which tells us that the prediction on the bound states is rather solid,
even if we have large uncertainties about the binding energy.

The widths of these states are also changed with the former changes in
the potential. However, the changes are more apparent when we multiply
or divide by two the nondiagonal terms of the potential. In this case the
binding does not change much, but the widths are roughly multiplied or
divided by a factor of four. Even with these uncertainties the widths that
we obtain are below 110 MeV.

3.2.6 Conclusions

In the present work we investigate the hidden beauty sector by combining
the dynamics of the LHG Lagrangians extrapolated to SU(4) with the con-
straints of HQSS. We also benefit from the high energies of the problem and
find a natural way to regularize the loops using the range provided by the
light vector masses, whose exchange in the t-channel provide the source of
the interaction in the LHG approach.

After our investigation, we find seven new states of N∗ with hidden
beauty. All these states are different since they correspond to different
energies or different total spin J , and some of them appear at about the
same energy with the same channel but different J , which are analogous to
those found in our former work on hidden charm. Thus, they are degenerate
states that we get in J = 1/2, 3/2 for B∗Σb and J = 1/2, 3/2, 5/2 for
B∗Σ∗

b . From this perspective, we report our results as claiming that we get
four bound states with about 50 − 130 MeV binding and isospin I = 1/2,
corresponding to BΣb with J = 1/2, BΣ∗

b with J = 3/2, B∗Σb degenerated
with J = 1/2, 3/2 and B∗Σ∗

b degenerated with J = 1/2, 3/2, 5/2. Note
that the two states of BΣb, B

∗Σb with J = 1/2, I = 1/2 are consistent with
the ones reported in Ref. [128]. Besides, we found no states in I = 3/2. We
also estimated uncertainties in binding energies, which were of the order of
±70 MeV, but found that the bound state character of the states obtained
was rather stable. For the width we obtained values around 4 − 28 MeV
with uncertainties of about ±70

20 MeV.
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3.3 The study of hidden beauty meson molecules

The world of heavy quarks, charm and beauty, is experiencing a fast devel-
opment, with a plethora of new states being found in facilities as BABAR,
CLEO, BELLE, BES [433–436]. The states capturing more attention are
those that do not fit within the standard picture of mesons as qq̄ or baryons
as qqq, and which require more complex structures, like tetraquarks, molecules,
or hybrids, and so on. The field of meson molecules in the charm sector has
been much studied [90,93,247,259–261,350,426,429,437–450] and many of
the observed states with hidden charm and open charm are shown to be
consistent with the molecule interpretation. The work on the charm sector
is gradually moving to the beauty sector and there are works dealing with
b or hidden b meson molecules built up from other mesons containing some
b quark [427, 442, 444, 445, 451–458]. The recent discovery of the hidden
beauty Zb(10610) and Zb(10650) states in three charge states [114,459,460],
and hence with isospin I=1, has brought a new stimulus to the molecular
idea [427,442,444,456,458], since they cannot be bb̄ quarkonium states.

One of the elements that has allowed progress in the heavy quark sector is
the implementation of the HQSS (seen in the section Sec. 1.5), as discussed
before. However, the HQSS does not determine the interaction, simply puts
some constraints in it, and to proceed further to make predictions one must
rely upon some experimental information or use models. In this sense, the
work of Ref. [427] uses properties from the X(3872) resonance, which is
assumed to be a DD̄∗ − cc molecule, and extrapolates this information to
make predictions of BB̄∗ − cc molecules.

An alternative approach to using empirical data to constrain the inter-
action is the use of some dynamical model. The use of chiral Lagrangians
has been a common thing in this kind of works, but its extension to the
heavy quark sector is not straightforward. Conversely, the use of the LHG
Lagrangians has allowed much progress in the heavy sector, which intro-
duces pseudoscalar and vector mesons as building blocks, and provides the
same information as the chiral Lagrangians (seen in the subsection 1.2.1)
up to next to leading order under the assumption of vector meson domi-
nance [378], and additionally introduces explicitly vector mesons and their
interaction in the theory.

In the former works, we found that the LHG approach respects HQSS
and this is quite relevant since it allows one to be more predictive. Thus, in
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the present work, we tackle the interaction of BB̄, BB̄∗ and B∗B̄∗ in the
hidden beauty sector and make predictions for bound states.

3.3.1 HQSS Formalism

Following the former work (Ref. [412]) for hidden charm baryons, we extrap-
olate the formalism to the hidden beauty sector for the mesons. Therefore
we can study mesons with hidden beauty with isospin I = 0, 1, and spin
J = 0, 1, 2. We take as coupled channels states with B, B∗, Bs, B

∗
s and

their corresponding antiparticles. For the different I, J quantum numbers
we have the following space states.

1) J = 0, I = 0

BB̄, BsB̄s, B
∗B̄∗, B∗

s B̄
∗
s .

2) J = 0, I = 1

BB̄, B∗B̄∗.

3) J = 1, I = 0

BB̄∗ (B∗B̄), BsB̄
∗
s (B∗

s B̄s), B
∗B̄∗, B∗

s B̄
∗
s .

4) J = 1, I = 1

BB̄∗ (B∗B̄), B∗B̄∗.

5) J = 2, I = 0

B∗B̄∗, B∗
s B̄

∗
s .

6) J = 2, I = 1

B∗B̄∗.

With different spin quantum number there are 12 orthogonal states (of
which 6 are having hidden strangeness) in the physical basis for I = 0. For
I = 1 there are only 6 states since the hidden strangeness states have I = 0.
Next we will introduce a HQSS basis, for which it is straightforward to
implement the lowest order HQSS constraints. Thus, we have 12 orthogonal
states in the physical basis, given by
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• |Sbb̄ = 0, L = 0 ; J = 0
〉
, |Sbb̄ = 0, L = 0 ; J = 0

〉
s
,

• |Sbb̄ = 0, L = 1 ; J = 1
〉
, |Sbb̄ = 0, L = 1 ; J = 1

〉
s
,

• |Sbb̄ = 1, L = 0 ; J = 1
〉
, |Sbb̄ = 1, L = 0 ; J = 1

〉
s
,

• |Sbb̄ = 1, L = 1 ; J = 0
〉
, |Sbb̄ = 1, L = 1 ; J = 0

〉
s
,

• |Sbb̄ = 1, L = 1 ; J = 1
〉
, |Sbb̄ = 1, L = 1 ; J = 1

〉
s
,

• |Sbb̄ = 1, L = 1 ; J = 2
〉
, |Sbb̄ = 1, L = 1 ; J = 2

〉
s
,

where, J is total spin of the hidden beauty meson system; L, total spin of the
light quarks system; Sbb̄, total spin of the bb̄ subsystem; and the subindex s
means that the light quarks are strange. Note that we study ground state
mesons, which means that all orbital angular momenta are zero.

In order to take into account the HQSS it is interesting to use the heavy
quark basis in which the spins are rearranged such as to combine the spin
of the bb̄ quarks into Sbb̄ since the matrix elements do not depend on this
spin. One classifies the HQSS in terms of ~Sbb̄,

~L and ~J . The conservation
of ~Sbb̄ and

~J leads to the conservation of ~L = ~J − ~Sbb̄ and then in the HQSS
basis the matrix elements fulfil (Similar to Eq. (3.1))〈
S′
bb̄, L

′;J ′, α′|HQCD|Sbb̄, L; J, α
〉
= δαα′δJJ ′δS′

bb̄
Sbb̄
δLL′

〈
L;α||HQCD||L;α

〉
.

(3.42)
Thus, in a given α sector, we have a total of six unknown LEC’s:

• Three LEC’s associated to L = 0

λα0 =
〈
L = 0;α||HQCD||L = 0;α

〉
(3.43)

λα0s = s

〈
L = 0;α||HQCD||L = 0;α

〉
s

(3.44)

λα0m =
〈
L = 0;α||HQCD||L = 0;α

〉
s

(3.45)

• Three LEC’s associated to L = 1

λα1 =
〈
L = 1;α||HQCD||L = 1;α

〉
(3.46)

λα1s = s

〈
L = 1;α||HQCD||L = 1;α

〉
s

(3.47)

λα1m =
〈
L = 1;α||HQCD||L = 1;α

〉
s

(3.48)
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ū

s1 l1

j1

S L

b̄ u

j2

l2s2

b

Figure 3.20: Diagrams for the calculation of 9-j coefficients.

Therefore in the HQSS basis, the HQCD is a block diagonal matrix.
To exploit Eq. (3.42), one should express hidden beauty uncoupled

meson-meson states in terms of the HQSS basis. Therefore, one needs to
use 9-j symbols, seen in Eq. (3.3).

As an example take a meson(M)-antimeson(M̄) state of the typeB(∗)B̄(∗)

and look at the recombination scheme on Fig. 3.20. Thus, in this case we
have the correspondence,

generic: l1 l2 s1 s2 j1 j2 L S J

HQSS:
1

2

1

2

1

2

1

2
JM (0, 1) JM̄ (0, 1) L(0, 1) Sbb̄(0, 1) J(0, 1, 2) .

with JM and JM̄ the total spin of the meson and antimeson respectively.
Next, similar to the former work of hidden charm, we can expand the
physical states by the HQSS basis (more details can be referred to our
paper [461]). Then, we can evaluate the transition matrix elements be-
tween the physical states with LEC’s by involving the HQSS basis. Using
Eqs. (3.42)−(3.48) we obtain the transition matrix elements in the physical
basis, as below

• J = 0, I = 0



B
B̄

B
∗ B̄

∗
B
s
B̄
s

B
∗ sB̄

∗ s
             

1 4
λ
0
+

3 4
λ
1

−
√
3 4
λ
0
+

√
3 4
λ
1

1 4
λ
0
m
+

3 4
λ
1
m

−
√
3 4
λ
0
m
+

√
3 4
λ
1
m

−
√
3 4
λ
0
+

√
3 4
λ
1

3 4
λ
0
+

1 4
λ
1

−
√
3 4
λ
0
m
+

√
3 4
λ
1
m

3 4
λ
0
m
+

1 4
λ
1
m

1 4
λ
0
m
+

3 4
λ
1
m

−
√
3 4
λ
0
m
+

√
3 4
λ
1
m

1 4
λ
0
s
+

3 4
λ
1
s

−
√
3 4
λ
0
s
+

√
3 4
λ
1
s

−
√
3 4
λ
0
m
+

√
3 4
λ
1
m

3 4
λ
0
m
+

1 4
λ
1
m

−
√
3 4
λ
0
s
+

√
3 4
λ
1
s

3 4
λ
0
s
+

1 4
λ
1
s

              I
=
0

(3
.4
9
)
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• J = 1(C = −), I = 0

BB̄∗ B∗B̄∗ BsB̄
∗
s B∗

s B̄
∗
s

1
2(λ0 + λ1)

1
2(−λ0 + λ1)

1
2(λ0m + λ1m)

1
2(−λ0m + λ1m)

1
2(−λ0 + λ1)

1
2(λ0 + λ1)

1
2(−λ0m + λ1m)

1
2(λ0m + λ1m)

1
2(λ0m + λ1m)

1
2(−λ0m + λ1m)

1
2(λ0s + λ1s)

1
2(−λ0s + λ1s)

1
2(−λ0m + λ1m)

1
2(λ0m + λ1m)

1
2(−λ0s + λ1s)

1
2(λ0s + λ1s)


I=0

(3.50)

• J = 1(C = +), I = 0

BB̄∗ BsB̄
∗
s λ1 λ1m

λ1m λ1s


I=0

(3.51)

• J = 2, I = 0

B∗B̄∗ B∗
s B̄

∗
s λ1 λ1m

λ1m λ1s


I=0

(3.52)

For I = 1 one removes the Bs, B
∗
s states in the former Eqs. (3.49)−(3.52).

The coefficients λIi , λ
I
is and λIim (i = 0, 1) are the six unknown LEC’s of

HQSS, which depend on isospin and can be related using SU(3) flavour
symmetry. The values of these coefficients are also dependent on the model
used. As done in the former works before, we also determine them by using
the LHG approach.
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P (V )

P (V )P (V )

P (V )

V, P

Figure 3.21: Diagrams for interaction of pseudoscalar or vector mesons with
themselves by means of meson exchange.

B∗(k3, ǫ3)

B̄∗(k4, ǫ4)B̄∗(k2, ǫ2)

B(k1)

V (kex, ǫex)

B∗(k1, ǫ1) B∗(k3, ǫ3)

B̄∗(k2, ǫ2) B̄∗(k4, ǫ4)

V (kex, ǫex)

LPV V

LV V V LV V V

LV V V

(b)(a)

Figure 3.22: Diagrams for interactions of BB̄∗ → B∗B̄∗ and B∗B̄∗ → B∗B̄∗.

3.3.2 Calculation of the LEC’s with the LHG formalism

The formalism of the LHG and the Lagrangians can be seen the subsec-
tion 1.2.2. Starting from these Lagrangians, the PP → PP , PV → PV ,
V V → V V , PP → V V and PV → V V interactions can be obtained us-
ing the Feynman diagrams by exchanging a vector meson or a pseudoscalar
depending on the case, as depicted in Fig. 3.21.

With lowest order HQSS constraints, the six unknown LEC’s of λIi ,
λIis and λIim (i = 0, 1) are spin independent. Therefore, we can determine
them with the hidden gauge approach by some selected channels, taking the
transitions BB̄∗ → B∗B̄∗ and B∗B̄∗ → B∗B̄∗ for example, shown in Fig.
3.22. In the upper vertex of Fig. 3.22 (a), using Eq. (1.37), we can have

tPV V ' εµναβ k3µ ε3ν k
ex
α εexβ . (3.53)

For the lower vertex of Fig. 3.22 (a), using Eq. (1.33), we obtain

tV V V =
g√
2
(k2 + k4)µ ε2ν ε

ν
4 ε

µ
ex. (3.54)

Thus, from these results, we can estimate the magnitude of the amplitude
for BB̄∗ → B∗B̄∗. Working relatively close to threshold, as is our case, the
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external momenta are small, which means that ~k3 ≈ 0 and then only the
µ = 0 component of Eq. (3.53) contributes, k03 ≈ mB∗ . Thus,

tPV V ∼ εijkmB∗ ε3i k
ex
j εexk , (3.55)

which implies that the momentum of the exchange vector is only spatial.
Next, for the transition of BB̄∗ → B∗B̄∗, we can find

tBB̄∗→B∗B̄∗ ∼ εijkmB∗ ε3i k
ex
j (k2 + k4)k ε2ν ε

ν
4 ∼ k2l mB∗ , (3.56)

where k2l is the magnitude of an external three momenta and is small. On
the other hand, for the Fig. 3.22 (b), the transition of B∗B̄∗ → B∗B̄∗, we
can easily get

tB∗B̄∗→B∗B̄∗ ' (k1 + k3) · (k2 + k4) ε1µ ε
µ
3 ε2ν ε

ν
4 ∼ 4m2

B∗ , (3.57)

where we take an approximation of k0i ≈ mB∗ (i = 1, 2, 3, 4). Comparing
with Eqs. (3.56) and (3.57), we can conclude that the contribution of the
transition of Fig. 3.22 (a) is anomalous and subleading and then, we can
take tBB̄∗→B∗B̄∗ ≈ 0, which is indeed the case if the actual evaluation is
done. In the leading order in the mQ counting where B and B∗ have the
same mass, the term would go to zero. Therefore, we obtain

tBB̄∗→B∗B̄∗ =
1

2
(−λ0 + λ1) ≈ 0,

=⇒ λ0 = λ1.
(3.58)

Analogously, we have

λ0s = λ1s, λ0m = λ1m. (3.59)

So, one can see that some non diagonal elements of Eqs. (3.49)−(3.52) are
zero in our hidden gauge model.

We can repeat the same arguments in cases where the exchange of a
pseudoscalar is allowed, like V V → PP (see Fig. 3.21) for the case of
B∗B̄∗ → BB̄. In this case we can exchange a pion. We need the vertices
of Eq. (1.34) and we find an interaction for the vertices B∗, B̄∗ close to
threshold of the type

t ≈ 2 ~pB ~ε 2 ~pB̄ ~ε
′

(mB∗ −mB)2 − ~p 2
B −m2

π

. (3.60)



184 CHAPTER 3. HQSS IN HEAVY HADRONIC STATES

Since ~pB ≈ 690 MeV/c and (mB∗ −mB) = 45 MeV, the term ~p 2
B dominates

in the denominator and the order of magnitude in Eq. (3.60) is of the order
of 4, to be compared with Eq. (3.57), which, considering the vector exchange
propagator, is of order 4m2

B∗/m2
ρ. There is more than a factor 50 difference

in the interaction considering the angle dependence of Eq. (3.60). In the
case of BB̄∗ → BB̄∗ we can also have pion exchange, but at threshold
the three momentum is zero and the pion exchange interaction is further
suppressed. Although these derivations are done for the tree level diagram,
in loops the terms will survive, but the exercise done is sufficient to show
that these terms are subleading in the heavy quark mass counting. An
important consequence of this is that in our approach the B and B∗ do
not mix and then we get states for BB̄, BB̄∗ and B∗B̄∗ independently, but
coupled to the corresponding channels with Bs, B

∗
s .

The subleading character of pion exchange seems to contrast with the
large amount of work done assuming the dynamics of pion exchange [89,90,
437,439,440,442–445,451,462–465]. One indication of the weakness of this
potential can be seen in the fact that while in some works the mechanism is
enough to bind for instance the X(3872) as a DD̄∗ state [437, 439, 440], in
other works one reaches the opposite conclusion [462,463]. The comparison
of our work with other work where pion exchange is taken into account is
better done with the works of Refs. [442–445, 451, 454] where, in addition
to pion exchange, other exchanges are taken into account as σ, η and in
particular, vector meson exchange as we have done here. Yet, the conclu-
sions seem to be different than here, indicating a weaker strength for the
vector exchange than we find here. In part this is due to cancellations in
particular channels (see our discussion below concerning I = 1 states), but
there is a general stronger reason that we discuss now. Indeed, form factors
introduced in the vertices in Refs. [442,451,454], produce a dynamics from
vector meson exchange that is drastically weaker than that provided by the
chiral Lagrangians, which we would like to respect in our work.

Since the LEC’s are dependent on the isospin, we should take into
account the isospin structure of the states. Thus, we can easily derive
λI=0
1 , λI=1

1 for B∗B̄∗ → B∗B̄∗ by exchanging ρ, ω using Eq. (1.33), ignor-
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ing possible terms with Υ exchange which are negligible, and we find

λI=0
1 = tI=0

B∗B̄∗→B∗B̄∗ =
1

4
g2(

3

m2
ρ

+
1

m2
ω

)(4m2
B∗ − 3s), (3.61)

λI=1
1 = tI=1

B∗B̄∗→B∗B̄∗ =
1

4
g2(− 1

m2
ρ

+
1

m2
ω

)(4m2
B∗ − 3s). (3.62)

We are also neglecting here the contact terms of the vector vector interac-
tions of the hidden gauge approach. These terms are of order (mV /mB∗)2

with respect to the vector meson exchange terms [383], and hence negligible.
In the charm sector they are small but not negligible (of the order of 20 %)
and they are kept in Ref. [383].

By taking mρ ≈ mω = mV in Eqs. (3.61) and (3.62), we get a general
result,

λI=0
1 =

1

4
g2(

3

m2
ρ

+
1

m2
ω

)(m2
1 +m2

2 +m2
3 +m2

4 − 3s), (3.63)

λI=1
1 = 0. (3.64)

Similarly, taking the interactions of B∗
s B̄

∗
s → B∗

s B̄
∗
s and B∗B̄∗ → B∗

s B̄
∗
s ,

which now require φ and K∗ exchange, we also get

λI=0
1s =

1

2
g2

1

m2
φ

(m2
1 +m2

2 +m2
3 +m2

4 − 3s), (3.65)

λI=1
1s = 0, (3.66)

λI=0
1m =

1√
2
g2

1

m2
K∗

(m2
1 +m2

2 +m2
3 +m2

4 − 3s), (3.67)

λI=1
1m = 0, (3.68)

This is a peculiar finding of the hidden gauge approach, which gives a null
interaction in the I = 1 sector. This would be in contradiction with the
finding of the Zb(10610) and Zb(10650) resonances which appear very close
to the BB̄∗ and B∗B̄∗ thresholds, such that, assuming they are molecular
states, it implies that the interaction is weak or subdominant, as we are
finding. In models where λ0, λ1 are fitted to some data, as in Ref. [247],
one can get I = 1 bound states.

Since we are getting an I = 1 zero potential in the limit of mρ = mω,
this is one case where the subleading interaction of pseudoscalar exchange,
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B
+(ub̄)

B̄
0(d̄b)B̄

0(d̄b)

B
+(ub̄)

Figure 3.23: Diagrams for interactions of B+B̄0 → B+B̄0.

as considered in Refs. [442, 444, 445], might be relevant. Yet, it is a more
subtle issue than usually acknowledged. Indeed, consider a B+B̄0 → B+B̄0

interaction, as depicted in Fig. 3.23. We can see that if we exchange a light
meson as (qq̄) object, we start from the upper vertex with a uū, but in the
lower vertex we should absorb a dd̄. This violates the OZI rule and will
be forbidden with usual Lagrangians. Indeed, one can see that here and
in Ref. [442] the ρ and ω contribution cancel when these masses are equal.
The same should happen with the pseudoscalar exchange and one should
have an exact cancellation when π, η, η′ are exchanged assuming the same
masses. Conversely, for large exchanged momenta where q > m, we should
find an exact cancellation. In Ref. [442] π and η are explicitly considered
and indeed the cancellation for pseudoscalars does not appear. The same
can be said about the σ-exchange, unless the σ is considered as a tetraquark
or a molecular state. This is why the LHG approach gives zero interaction
in I = 1, and one needs to get further insight into this problem in future
works 2.

3.3.3 The coupled channel approach for the heavy quark sec-
tor

The scattering matrix is evaluated by solving the coupled channels BS equa-
tion Eq. (1.44), seen in the subsection 1.3.1.

At higher energies for the beauty sector, as discussed in the former work
(Ref. [428]) and Ref. [128], there are large differences even not far away from
threshold. This is because, for heavy mesons one can accommodate large

2Very recently this problem has been retaken in Refs. [107, 466], where the exchanges
of heavy vectors are found to lead to very weakly bound states of DD̄∗ and D∗D̄∗



3.3. THE STUDY OF HIDDEN BEAUTY MESON MOLECULES 187

momentum transfers with small energy, and cut offs of reasonable range,
of the order of 500 − 1000 MeV, already produce distorted G functions at
excitation energies of the order of 100 MeV. On the other hand, for ener-
gies below threshold the cut off method always gives G negative, while the
dimensional regularization can produce G positive, leading to an unwanted
result of bound states with repulsive potentials (see discussion in the former
work [428]).

We are interested in bound states, so, we will rely upon the cut off
method. Then it is useful to recall how the on shell BS equation that we
use here are derived with a Quantum Mechanical approach. This is done
in Ref. [95] and also discussed in the former work (Ref. [428]). Following
the former work, we should introduce a form factor to the potential V , seen
Eqs. (3.30−3.32), but now

G(s) =

∫
d3~q

(2π)3
f2(~q )

ω1 + ω2

2ω1 ω2

1

P 0 2 − (ω1 + ω2)2 + iε
. (3.69)

Thus, the loop function G(s) of Eq. (3.69) absorbs a momentum dependent
form factor from the factorized potential. A form factor f(~q ) that appears
in our approach is discussed in the former work, seen Eq. (3.35), and comes
from the light vector meson exchange. It is obtained from the vector me-
son propagator keeping the three momentum exchange, ignoring the energy
exchange. This allows us to keep for v the same potentials that we have
used before, and the effect of the form factor of Eq. (3.35) is absorbed in
the G function, Eq. (3.69), that now becomes convergent. Certainly, for
dynamical reasons, or just to account for missing channels in the approach,
one still has some freedom in qmax which we shall use in the results section.

Note that the introduction of qmax in the G function, is equivalent to
multiplying the form factor f(~q) by the step function θ(qmax − q). The
potential in coordinate space can be obtained by Fourier transforming Eq.
(3.30). A smaller cut off would imply a wider potential and a more spread
wave function. The spread of the wave function would be relevant when
discussing the variation of the couplings as one changes the cut off (see
also [95]).

An important parameter in the analysis is the cutoff used to regularize
the loop functions. In the heavy quark limit, the value of qmax should be
independent of quark flavor. To see this, note that in the heavy quark limit,
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the binding energy of states is independent of the heavy quark mass. In
terms of the t matrix, this means that the position of the poles of the t
matrix with respect to the threshold should be independent of the heavy
quark mass, i.e., vG should scale as m0

Q in the heavy quark limit. Since the

potential v scales as m2
Q in the heavy quark limit (as discussed in section

Sec. 3.1), the G function should scale as m−2
Q to cancel the mQ dependence

of the potential v. In the definition of the G function, Eq. (1.47), if one
makes the following approximations:

1

(P 0)2 − (w1 + w2)2 + iε
' 1

4BmQ
, (3.70)

where B is the binding energy and taking approximation wi ' mQ, the G
function can be estimated as

G ' 1

4Bm2
Q

∫
q<qmax

d3q

(2π)3
f(q2)2. (3.71)

Since G has to scale as m−2
Q in the heavy quark limit, the integral has to

scale as m0
Q, and hence qmax should be flavor independent in the heavy

quark limit.
The molecules appear as the poles of the t matrix given in Eq. (3.32).

The coupling of a given resonance of mass mR to the ith channel can be
obtained through (for meson-meson interaction):

g2i = lim
s→m2

r

(s−m2
R)tii. (3.72)

Instead of taking this limit, which would require a high precision determi-
nation of mR, the limit can be expressed as a loop integral in the complex
s plane:

g2i =
1

2πi

∮
tiids (3.73)

where the integral is over a closed path in the complex s plane around the
pole at s = m2

R and not crossing the branch cuts.

3.3.4 Results and discussion

Requiring that the presented formalism predicts a bound state of mass 3720
MeV, as found in Ref. [261], when the B meson masses are replaced by the
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analogous D meson masses, yields the value qmax = 415 MeV. Assuming
that this cutoff is independent of the heavy flavor, the same value is used in
the B-meson sector. To estimate the errors due to variation of this cutoff,
the spectrum is also analyzed using twice this value: qmax = 830 MeV. These
values are also consistent with the typical scales proposed in Ref. [427].

In principle, by exchanging K∗ mesons, the hidden strange sector is
coupled to the non-strange one. When discussing coupled channels with
such a small cut off for coupled channels with different masses, some tech-
nical details are in order. If we study bound states of BB̄ and we add the
BsB̄s channel, the G function for BsB̄s in the energy region around the BB̄
threshold is negligible and then the effect of the BsB̄s coupled channel is
washed away.

The reverse has technical problems. If we investigate a possible state
around the BsB̄s threshold, separated by 180 MeV from the BB̄ threshold,
the BB̄ state would have a momentum of 980 MeV/c, which is bigger than
the cut-off chosen. This means that the G function for BB̄ around the
BsB̄s threshold will be unrealistic with the small cut-off chosen and we
can not use this method. It is better to argue that the BB̄ state will not
influence any possible BsB̄s bound state in the same was as the BsB̄s did
not influence the bound state BB̄. The only difference is that the BsB̄s
bound state could decay to the BB̄ channel, but the disconnection of these
states will make its width also small. We can even estimate this width by
taking ReGBB̄ = 0 around the BsB̄s threshold which we expect on physical
grounds, but keeping ImGBB̄ which can be calculated analytically to be:

ImG = − 1

8π

qcm√
s
f(q2cm)

2 (3.74)

where qcm is defined after Eq. (1.46).

In all the cases analyzed, coupled channels wash away the second pole,
which is dominantly a hidden strange state. This second pole has a weak
strength even in the single channel case. The origin of the lack of a sec-
ond pole in the coupled channel case can be traced back to the potential
v. When the effects of coupled channel analysis are taken into account, the
dominant contribution to the determinant of the potential is proportional
to m4

K∗ −m2
φm

2
ρ with a small correction from the mass difference of the hid-

den strange sector and the non-strange one (see Eqs.(3.63)−(3.68)). Since
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m2
K∗ ' mφmρ, this determinant is very small, hence one of the eigenvalues

is very close to zero. This means that, in the corresponding channel, which
is mostly hidden strange state, the mesons do not interact and hence can
not form a bound state.

In the JPC = 2++ sector, the available channels are the B∗B̄∗ and B∗
s B̄

∗
s .

When the coupled channel effects are taken into account, the t matrix has
a single pole which is located at mR = 10613 MeV (mR = 10469 MeV)
when qmax = 415 MeV (830 MeV). This corresponds to a binding energy of
37 MeV (181 MeV) with respect to the B∗B̄∗ threshold. In Table 3.7 we
present the masses and the couplings of this resonance to various channels
for qmax = 415 MeV and qmax = 830 MeV. It is observed that both the
binding energy and the couplings strongly depend on the value of the cut
off chosen. Increasing the cut off from qmax = 415 MeV to qmax = 830
MeV changes the binding energy by about 140 MeV whereas the couplings
increase by a factor of two. This increase in the couplings is expected since
as one increases the cut off, the potential has larger extent in momentum
space, and hence the wave functions become narrower in coordinate space.
A narrower S-wave wave function necessarily has a larger value at the origin.
Since the couplings are proportional to the wave function at the origin, as
the wave function gets narrower its value at the origin increases and the
coupling grows.

Table 3.7: The couplings to various channels for the poles in the JPC = 2++

channel for qmax = 415 MeV (left panel) and qmax = 830 MeV (right panel),
all units in MeV.

10613 B∗B̄∗ B∗
s B̄

∗
s 10469 B∗B̄∗ B∗

s B̄
∗
s

gi 86168 45864 gi 174393 92843

As mentioned before, we deem the value of the lower cut off more real-
istic, and also in tune with Ref. [427]. The value obtained with qmax = 830
MeV should be considered a generous upper bound.

In Table 3.8, we present the properties of resonances if the coupled
channel effects are ignored. It is seen that the properties of the lighter
resonance changes slightly by the removal of the coupled channel effects.
Its mass increases by 3 MeV (31 MeV) and its coupling to the B∗B̄∗ state
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is reduced by about 5% (10%) if the cut off is taken as qmax = 415 Mev
(830 MeV). Since the coupled channel effects are ignored, this resonance
does not couple to B∗

s B̄
∗
s . In this case, a weakly bound second pole is also

observed in the B∗
s B̄

∗
s channel. This second pole has a binding energy of 2

MeV (18 MeV) when the cut off is taken to be qmax = 415 MeV (830 MeV).
This binding energy is more than ten times smaller than the binding of the
lighter resonance. The coupling of this heavier resonance to B∗

s B̄
∗
s is also

about four times smaller that the coupling of the lighter resonance to the
B∗B̄∗ channel.

Table 3.8: The couplings to various channels for the poles in the JPC = 2++

channel for qmax = 415 MeV (left panel) and qmax = 830 MeV (right panel)
ignoring coupled channels, all units in MeV.

10616 B∗B̄∗ B∗
s B̄

∗
s 10500 B∗B̄∗ B∗

s B̄
∗
s

gi 81595 0 gi 159102 0

10828 B∗B̄∗ B∗
s B̄

∗
s 10812 B∗B̄∗ B∗

s B̄
∗
s

gi 0 19787 gi 0 44102

In a B∗B̄∗ molecule, the vector mesons can also combine to a total
spin 1 (JPC = 1+−) or 0 (JPC = 0++) state. In the heavy quark limit
considered in this work, these channels are degenerate with the total spin 2
state. Hence, their properties are identical to the properties of resonances
shown in Tables 3.7 and 3.8.

Besides the J = 1 combination in the B∗
(s)B̄

∗
(s) channel, there are four

other states with J = 1 formed by B(s)B̄
∗
(s). These states have quantum

number JPC = 1++ and JPC = 1+− and are B(s)B̄
∗
(s)− c.c. and B(s)B̄

∗
(s)+

c.c. respectively. These channels are degenerate in the heavy quark limit.
The properties of resonances in these channels are shown in Tables 3.9 and
3.10. As in the JPC = 2++ channel, if coupled channels are taken into
account, there is only one resonance. This resonance has a binding energy
of 37 MeV (180 MeV) with respect to the BB̄∗ threshold. Compared with
the previous case, the binding energy is found to be degenerate with the
binding energies obtained in the JPC = 2++ channel. Due to the smaller
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mass of the BB̄∗ system compared to the B∗B̄∗, the couplings to various
channels are slightly smaller.3 The results obtained when coupled channel
effects are ignored are presented in Table 3.10. As in the case when coupled
channel effects are taken into account, the binding energies are degenerate
with the corresponding case in JPC = 2++ sector, and the couplings are
slightly reduced.

Table 3.9: The couplings to various channels for the poles in the JPC = 1+−

and JPC = 1++ channels for qmax = 415 MeV (left panel) and qmax = 830
MeV (right panel), all units in MeV.

10568 BB̄∗±c.c. BsB̄
∗
s±c.c. 10425 BB̄∗±c.c. BsB̄

∗
s±c.c.

gi 85433 45560 gi 172908 92232

Table 3.10: The couplings to various channels for the poles in the JPC =
1+− and JPC = 1++ channels for qmax = 415 MeV (left panel) and qmax =
830 MeV (right panel) ignoring coupled channels, all units in MeV.

10571 BB̄∗±c.c. BsB̄
∗
s±c.c. 10455 BB̄∗±c.c. BsB̄

∗
s±c.c.

gi 80884 0 gi 157691 0

10783 BB̄∗±c.c. BsB̄
∗
s±c.c. 10768 BB̄∗±c.c. BsB̄

∗
s±c.c.

gi 0 19611 gi 0 43776

In Tables 3.11 and 3.12, we present our results for the JPC = 0++ sector.
In this sector, the new states are BB̄ and BsB̄s. The similarities that we
observed when comparing the JPC = 2++ and JPC = 1+± sectors also
exists when the JPC = 0++ channel is compared with the previous cases,
i.e. the binding energies are degenerate with the previous cases and due to
the even smaller total mass in the B(s)B̄(s), the couplings are smaller. The

3The couplings are related to the wave function at the origin. Due to the smaller
masses, the wave function spreads more, reducing the value of the wave function at the
origin.
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Table 3.11: The couplings to various channels for the poles in the JPC =
0++ channel for qmax = 415 MeV (left panel) and qmax = 830 MeV (right
panel), all units in MeV.

10523 BB̄. BsB̄s 10380 BB̄ BsB̄s

gi 85045 45257 gi 172046 91591

Table 3.12: The couplings to various channels for the poles in the JPC =
0++ channel for qmax = 415 MeV (left panel) and qmax = 830 MeV (right
panel) ignoring coupled channel effects, all units in MeV.

10526 BB̄. BsB̄s 10410 BB̄ BsB̄s

gi 80528 0 gi 156968 0

10738 BB̄ BsB̄s 10723 BB̄ BsB̄s

gi 0 19441 gi 0 43443

binding obtained here for BB̄ with the small cut off is very similar to the one
obtained in Ref. [445] using the extended chiral quark model, where vector
mesons are allowed to be exchanged between quarks, with clear similarities
with the dynamics of the LHG approach.

Note that the observed degeneracies are consistent with the results ob-
tained in Refs. [91, 246, 247]. In these works, it is shown that in the heavy
quark limit, in the spectrum of molecules of Q̄q and q̄Q where Q is a heavy
quark and q is any other quark, the JPC = 0++, 1++, 2++ and 1+− states
have degenerate binding energies. Furthermore, there are two other states
with JPC = 0++ and 1+− that have degenerate binding energies which are
not necessarily degenerate with the previous four. In our work, we observe
that all six states have degenerate binding energies. These degeneracies can
be observed from Eqs. (3.49)−(3.52).
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3.3.5 Further discussions

From the former section, we find 6 hidden beauty resonances and other 6
possible resonances with hidden beauty-hidden strangeness. In this section
we investigate some of their properties. For shortness of the discussion, we
only take the results of Table 3.11, BB̄ state. Results in other cases are
similar.

Following again Refs. [95, 205, 206], one finds that for a resonance or
bound state, which is dynamically generated by the interaction, the sum
rule

−
∑
i

g2i

[
dGi
dE

]
E=Ep

= 1 (3.75)

is fulfilled, with Ep the position of the pole, and gi is the coupling, defined in
Eq. (3.72). For bound states each term in the sum in Eq. (3.75) is a measure
of the probability, Pi, to find the particular channel in the wave function of
the given state (subtleties appear for the case of resonances in Ref. [467],
but, since this is not the case here, we do not discuss it). For the 0++ state
that couples mostly to BB̄ (see Table 3.11), taking qmax = 415 MeV, we
get PBB̄ = 0.985, which means that the bound state with mass 10523 MeV
is essentially made by BB̄ with a minor BsB̄s component. This state is also
rather stable, taking into account the changes of the free parameters in our
formalism, as showed in Table 3.13, where we take different values of qmax

Table 3.13: The poles in the JPC = 0++ channel when the cut off is changed
(units in MeV).

qmax 450 500 600 700 800

pole 10513 10498 10464 10427 10389

and always get a pole within a certain range of binding energies.

Another property which is interesting to study is the wave function and
radius of the state. According to Eq. (104) of Ref. [205], the wave function
is given by

φ(~r ) =

∫
qmax

d3~p

(2π)3/2
ei~p·~r〈~p |Ψ〉. (3.76)
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Figure 3.24: The wave functions of BB̄ state, Left: qmax = 415 MeV; Right:
qmax = 830 MeV.

Using the wave function in momentum space given in Refs. [95, 205] suited
to our formalism, we obtain after performing the angle integration

φ(~r ) =
1

(2π)3/2
4π

r

1

C

∫
qmax

p dp sin(pr)
Θ(qmax − |~p |)

E − ω1(~p)− ω2(~p )

m2
V

~q 2 +m2
V

,

(3.77)
where r ≡ |~r| and C ≡

√
N is the norm of the wave function, obtained

demanding that
∫
|φ(r)|2d3r = 1. For the BB̄ state, we show its wave

function in Fig. 3.24. The radii are given in the Table 3.14 for two values of
the cut off. These radii are of the same order of magnitude as those found
for related beauty states in Refs. [442,445].

Table 3.14: The radii of the states.

states qmax = 415 MeV qmax = 830 MeV

B∗B̄∗ 1.46 fm 0.72 fm

BB̄∗ 1.46 fm 0.72 fm

BB̄ 1.46 fm 0.72 fm
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3.3.6 Conclusions

In the present work we investigate the hidden beauty sector by combining
the dynamics of the LHG Lagrangians extrapolated to SU(4) with the con-
straints of HQSS. The SU(4) symmetry is broken to SU(3) symmetry by
taking large masses for the mesons containing a b-quark.

It is shown that in the I = 1 sector, the interaction is too weak in the
current approach to form any bound states. In the I = 0 sector, both the
hidden strangeness and non-strange channels are analyzed. The results show
that the binding energies in all the possible JPC channels are degenerate.

When the couplings between the hidden strange and non strange sectors
are ignored, bound states are observed in both sectors. Hence there are a
total of 6 hidden beauty resonances, with binding energies 34 MeV (178
MeV) with respect to the non strange threshold, and 6 hidden beauty-
hidden strange resonances, with binding energies 2 MeV (18 MeV) with
respect to the hidden strange threshold, for a cut off value of qmax = 415
MeV (qmax = 830 MeV). The hidden beauty-hidden strange resonances are
found to be weakly bound.

Our prediction of the existence of resonances close to the the hidden
strange threshold is not robust with respect to the effects of the coupled
channels. When the coupled channel effects are taken into account they
disappear, whereas the masses of the other resonances are only slightly
modified. Hence we predict with confidence the existence of (at least) 6
resonances in the hidden beauty sector, with possible other 6 heavier reso-
nances which are mainly hidden beauty-hidden strange resonances.

The couplings of each resonance to the various channels are also analyzed
and for the lighter resonance in each channel, the couplings are shown to
depend very slightly on the couple channel effects. It is also shown that
the couplings are quite sensitive to the value of the cut off used, hence they
should be taken more as an order of magnitude estimate rather than precise
predictions. When any of these states is experimentally found, the tuning
of the cut off to the observed energies will also allow to be more precise on
the value of these couplings.

Finally, using the Weinberg compositeness condition [204] (Eq. (3.75)),
we determine the probability to find a certain channel in the wave function.
We also determine the radii of the states, which, within the uncertainties of
the approach, are compatible with values obtained in alternative approaches.
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3.4 Baryon states with open beauty

Hadron Physics in the charm and beauty sectors is booming, with mounting
activity in experiments BABAR, CLEO, BELLE, BES, LHCb, CDF [433–
436, 468, 469] and theory [131]. One of the issues that has attracted much
attention is the finding of hadronic states which cannot be interpreted in
the conventional picture of qq̄ for mesons and qqq for baryons. Multiquark
states, hybrids or hadronic molecules have been suggested in several works
[247, 260, 261, 346, 350, 446, 470–474]. The molecular picture stands on firm
grounds once the use of chiral unitary theory in the light quark sector, or
its extension through the LHG approach, has shown that many mesonic
and baryonic resonances are dynamically generated from the interaction
of more elementary hadron components [189, 395]. Concerning baryonic
resonances with charm or hidden charm, work on molecules has been done
in Refs. [127, 168, 238, 256–258, 397, 412, 475], while in the beauty sector,
baryon states with beauty or hidden beauty have also been studied in Refs.
[128,398,428,476].

On the experimental side, Λb excited states have been reported by the
LHCb collaboration in Ref. [399]. Two states, Λb(5912) and Λb(5920) are
found in the experiment, with widths smaller than 0.66 MeV in both cases.
Although no direct spin and parity have been determined, the states are
interpreted as orbitally excited states of the ground state of the Λb(5619)
. One of the states, the Λb(5920), has been confirmed by the CDF collab-
oration in Refs. [477, 478]. The association to the orbitally excited states
of the Λb(5619) seems most natural since predictions of quark models had
been done for these states, as the orbitally excited Λb states with L = 1
and JP = 1/2−, 3/2− [479, 480]. Compared to the observed results, the Λb
masses, including that of the ground state, are only off by about 30-35 MeV.

The closest work in spirit to the present one is that of Ref. [398] where
these states are dynamically generated from the interaction of mesons and
baryons. In Ref. [398] the HQSS is used as an underlying symmetry. Ac-
cording to it, the B, B∗ states are degenerate in the heavy quark limit,
as well as the JP = 1/2+, 3/2+ baryon states, which are then considered
together in a coupled channels approach. An extrapolation of the Weinberg
Tomozawa interaction in the light sector is then used [238, 398], with ele-
ments of an SU(6) spin-isospin symmetry [237]. With suitable choices of
the renormalization scheme for the loops, good agreement with the masses
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of the newly found Λb states is obtained. Our scheme takes advantage of
the former works (Refs. [412, 428, 461]), where it was found that the use of
the extended LHG approach to the heavy quark sector fully respects the
HQSS, but it provided a dynamics different from the one of Ref. [398]. In
particular, the connection between B and B∗ states (or baryon states with
JP = 1/2+, 3/2+) requires pion exchange, or anomalous terms, which are
found subleading in the large heavy quark mass counting, and numerically
small. Similar conclusions are also found in Ref. [427]. In some works [442],
pion exchange is found relevant compared to vector meson exchange (the
dominant terms in the LHG approach), but as discussed in the former work
(Ref. [461]), this is in part due to the use of a type of form factor for vector
mesons, not present when the equivalent chiral amplitudes are constructed,
that suppresses the vector exchange.

3.4.1 Coupled channel formalism

We will look at the states πΣb, πΛb, ηΛb, ηΣb, B̄N which can couple to
I = 0, 1 which we will investigate. Similarly, we shall look at B̄∗N and
πΣ∗

b , ηΣ
∗
b , B̄∆, B̄∗∆, with ∆ ≡ ∆(1232) and Σ∗

b = Σ∗
b(5829), belonging to a

decuplet of 3/2+ states. Since we do not consider states with strangeness or
hidden strangeness, thus, all matrix elements of the interaction are formally
identical (except for the mass or energy dependence) to those found for the
interaction of the analogous states πΣ, πΛ, ηΛ, ηΣ, K̄N , K̄∗N , πΣ∗, ηΣ∗,
K̄∆, K̄∗∆. This interaction has been studied in Ref. [155] and Ref. [481].

The transition potential from channel i to channel j is given by [276]

V = −Cij
1

4f2
(2
√
s−MBi −MBj )

√
MBi + Ei
2MBi

√
MBj + Ej

2MBj

, (3.78)

with f the pion decay constant, MBi , Ei (MBj , Ej) the mass, energy of
baryon of i (j) channel. We take f = fπ = 93 MeV since we exchange light
vector mesons. The Cij coefficients are evaluated in Refs. [155,481] and we
quote them below.

For pseudoscalar mesons and 1/2+ baryons we have the coupled channels
B̄N , πΣb, ηΛb in I = 0 and the Cij coefficients are given in Table 3.15.
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Table 3.15: Cij coefficients for I = 0 and JP = 1/2−.

Cij B̄N πΣb ηΛb

B̄N 3 −
√

3
2

3√
2

πΣb 4 0

ηΛb 0

In I = 1 we have the channels B̄N , πΣb, πΛb, ηΣb and the Cij coefficients
are given in Table 3.16.

Table 3.16: Cij coefficients for I = 1 and JP = 1/2−.

Cij B̄N πΣb πΛb ηΣb

B̄N 1 −1 −
√

3
2 −

√
3
2

πΣb 2 0 0

πΛb 0 0

ηΣb 0

As one can see, the interaction in I = 0 is stronger than that in I = 1
and we have more chances to bind states in I = 0.

As discussed in section Sec. 3.1 (Ref. [412]), the mixing of states con-
taining baryons of the octet (in u, d, b) like Σb and of the decuplet Σ∗

b

require pion exchange for their mixing and this is strongly suppressed in
the heavy quarks sector, hence, we neglect the mixing in a first step, but we
shall come back to it in subsection 3.4.4. Then, if we consider a pseudoscalar
meson and a baryon of the decuplet, we have the results for Cij given in
Tables 3.17 and 3.18 [481]. We note that the strength of the B̄∆ → B̄∆
coefficient is four times bigger than for B̄N → B̄N and thus, we expect
larger bindings in this case. The interaction B̄∆ and coupled channels with
I = 2 is repulsive and we do not consider it.
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Table 3.17: Cij coefficients for I = 0 and JP = 3/2−.

Cij πΣ∗
b

πΣ∗
b 4

Table 3.18: Cij coefficients for I = 1 and JP = 3/2−.

Cij B̄∆ πΣ∗
b ηΣ∗

b

B̄∆ 4 1
√
6

πΣ∗
b 2 0

ηΣ∗
b 0

In coupled channels we will use the BS equation Eq. (1.44), seen in
subsection 1.3.1. In section Sec. 3.2 (Ref. [428]) we warned about potential
dangers of using the dimensional regularization for the G functions (see
also [128]) since for values of the energy below threshold G can soon become
positive and then one can be misled to obtain bound states with a positive
(repulsive) potential when 1 − V G = 0 (see Eq. (1.44) in one channel).
For this reason we also use here the cut off regularization for G given by
Eq. (1.47), with only one free parameter, qmax, the cut-off of the three-
momentum. However, in section Sec. 3.2 (Ref. [428]), we also took into
account the form factor from vector meson exchange, seen in Eq. (3.35), in
which case we would have to replace Eq. (1.47) by

G(s) =

∫
d3~q

(2π)3
f(~q )

ωP + ωB
2ωP ωB

2MB

P 0 2 − (ωP + ωB)2 + iε
, (3.79)

putting the extra f(~q ) factor. We would like to make a comment here since
in section Sec. 3.2 (Ref. [428]) we put f2(~q ). From the practical point of
view, the differences between the two choices are smaller than uncertainties
we will accept from other sources. From the theoretical point of view, while
the first loop implicit in Eq. (1.44), V GV , contains f2(~q ), the terms in the
series go as V GV , V GV GV , V GV GV GV · · · and the ratio of one term to
the other is GV . Hence it is more appropriate to take just the one form
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Figure 3.25: Transition potential from πΣb → B̄N .

factor of the potential V and include it in the G function when integrating
over ~q.

Since the G function in Eq. (1.47) is logarithmically divergent, the
inclusion of f(~q ) in Eq. (3.79) makes it already convergent. Yet we will
put an extra cut off qmax that will serve to fine tune our T matrix and
the binding of the states. We shall fine tune qmax in the integral of Eq.
(1.47) and we shall need values qmax smaller than MV ≈ 780 MeV. Hence,
from the practical point of view we can even neglect the factor f(~q ) and
effectively include its effects with the use of a suited value of qmax.

Besides, in most of the cases, we get energies where all the coupled
channels are closed and, hence, the width is zero. When there are open
channels we look for poles in the second Riemann sheet, which is obtained
by changing the G function as Eq. (1.50) [362].

Before closing this sector we must say two words concerning the tran-
sition πΣb → B̄N . This is depicted in Fig. 3.25. and it is mediated by
B∗ exchange in the extended LHG approach. In the strict large heavy
quark mass counting this term would be neglected because it involves the
exchange of a heavy vector B∗ and its propagator would render this term
negligible. However, although suppressed, it is not so much as one would
expect. Indeed the propagator will be

DB∗ =
1

p2B∗ −m2
B∗

≡ 1

(p0π − p0
B̄
)2 − (~pπ − ~pB̄)

2 −m2
B∗
. (3.80)

Conversely, in a diagonal transition B̄N → B̄N mediated by ρ exchange for
instance we would have

Dρ ≈
1

m2
V

. (3.81)
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Close to B̄N threshold the ratio is

DB∗

Dρ
'

m2
V

(p0π − p0
B̄
)2 − ~p2π −m2

B∗
' 1

4
. (3.82)

Since the non diagonal terms have a smaller importance in the process
than the diagonal ones of the heavy mesons, we simply account for these
transitions multiplying by 1/4 the results obtained from Eq. (3.78) and the
Tables.

3.4.2 First results for I = 0

We first choose the single channel πΣ∗
b in I = 0 and look for the binding

energy. The state with L = 0 (s-wave) has J = 3/2. First we find that with
the normal potential and a wide range of cutoffs (up to 3000 MeV) we do
not find a bound state. We must look at the reason for this in the fact that
the potential is indeed weak. This is so because the potential in Eq. (3.78)
is a relativistic form of k0+k′0 (the sum of the incoming and outgoing pion
energies). The small mass of the π makes its energy small close to threshold
and this potential is subleading with respect to the one of B̄N where the
energies now are those of the B̄.

Next we try to see if increasing the potential by a factor 1.5 or 2 and
varying the cut off we can obtain a reasonable binding. The results are
chosen in Table 3.19. As we can see, we have to increase the potential by a
factor of two and go to very large cutoffs to obtain the desired value of the
binding of the Λb(5920). We might think that and increase by about a factor
1.5 of the potential could be accepted by recalling that such changes appear
in models like Dyson Schwinger approach [413] (see also in section Sec. 3.1,
Ref. [412]). Indeed, with respect to the coupling we would be using here,
the DρD coupling used in Ref. [413], or in Ref. [414] obtained with sum
rules, is about a factor 1.5 bigger. However, in the same work of Ref. [413],
the coupling is accompanied by a form factor which would be equivalent to
a cut off qmax of about 700 MeV. Hence, we cannot invoke simultaneously
an increase of the potential by a factor 2 and a qmax of 3000 MeV, and
the only conclusion is that the πΣ∗

b channel by itself cannot account for the
Λb(5920) state.
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Table 3.19: Energies for πΣ∗
b only channel as a function of V and qmax.

(unit: MeV)

qmax 800 1000 1200 1400 1600 1800 2000 3000

1.5V 5971 5965 5961 5956 5953 5950 5948 5942

2V 5955 5947 5940 5935 5932 5929 5927 5920

Next we repeat the same exercise with the single channel B̄N and show
the results in Table 3.20. What we see in this table is that the binding
grows spectacularly (and unrealistically) for bigger V and qmax. Obviously
the large value of the potential, as we mentioned above, is responsible for
this. At this point we should mention that in the study of the K̄N system
in coupled channels a cut off of 630 MeV was used in Ref. [155]. In the
study of the pseudoscalar mesons with the decuplet of baryons [481] a value
of qmax = 700 MeV was used, while in Ref. [128] in the study of baryons
with hidden beauty a value of qmax = 800 MeV was used. We can also see
in Table 3.19, that changes in V can be accommodated by a change in qmax.
In what follows we shall then use the potential that we get in the approach,
without the extra multiplicative factor, but play with values of qmax around
700 MeV− 850 MeV, in the range of values used in previous works.

Table 3.20: Energies for B̄N only channel as a function of V and qmax.
(unit: MeV)

qmax 700 800 1000 1200 1400 1600 1800 2000

1V 6074 6026 5933 5851 5782 5725 5678 5639

1.5V 5967 5896 5766 5658 5572 5504 5450 5406

2V 5871 5784 5630 5509 5415 5343 5287 5243

As an example we show next the results without form factor of Eq.
(3.35) for B̄N , just changing qmax, as shown in Table 3.21.



204 CHAPTER 3. HQSS IN HEAVY HADRONIC STATES

Table 3.21: Energies for a state of B̄N in I = 0 as a function of qmax. (unit:
MeV)

qmax 700 750 800 850

V 5987.5 5941.6 5893.5 5843.7

Next we introduce the coupled channels that couple to B̄N in I = 0
(see Table 3.15). The results that we obtained for the energy are shown in
Table 3.22.

Table 3.22: Energies for a state in coupled channels B̄N , πΣb, ηΛb in I = 0
as a function of qmax. (unit: MeV)

qmax 700 750 800 850

5935.3 5897.3 5851.4 5802.0
V

6005.8 + i23.8 5988.9 + i26.4 5976.9 + i24.4 5968.0 + i20.5

The results are interesting. We see now that we get two states rather
than one. In order to get a feeling of the meaning of the states we cal-
culate the coupling of those states to the different coupled channels. We
show the results in Table 3.23 for qmax = 800 MeV. We show the values

Table 3.23: The coupling constants to various channels for certain poles in
the J = 1/2, I = 0 sector.

5851.4 + i0 B̄N πΣb ηΛb

gi 16.20 0.96 1.47

giG
II
i −20.55 −16.23 −14.31

5976.9 + i24.4 B̄N πΣb ηΛb

gi 5.88− i0.24 1.52 + i0.75 0.75 + i0.02

giG
II
i −9.60− i0.16 −53.13− i12.34 −9.33− i0.85

of the couplings (g2i is the residue of the matrix element Tii at the pole,
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seen Eq. (3.23)) and of giG
II
i , which, according to Ref. [95], provides the

wave function of the origin in coordinate space, the magnitude that shows
the relevance of the channel in the short range strong interactions. It is
interesting to see that there has been an appreciable mixture of these chan-
nels. The lower energy state that originally was formed from B̄N alone,
now is still dominated by the B̄N channel but with an appreciable mixture
of πΣb and ηΛb. On the other hand, the higher energy state is shown to be
dominated by the πΣb channel. However, the coupling to the B̄N state has
been essential to obtain this state, since the single channel πΣb does not
produce it.

If one compares the energy of the lower energy state in Table 3.22 with
that of the single B̄N channel in Table 3.21, we can see that for qmax =
800 MeV the effect of the coupled channels has been a reduction of about
40 MeV. Hence, even if suppressed, the coupled channels to the B̄N have
a relevant role in the generation of states. In any case, we see that neither
of the states found can qualify as the Λb(5912), Λb(5920). This is also the
case for the higher energy state.

After this, we exploit another possibility, that these Λb states come
from B̄∗N and coupled channels. The B̄∗N can lead to two spins, JP =
1/2−, 3/2− and within the LHG approach the interaction is spin indepen-
dent [390]. Then we would get two degenerate states with spins 1/2 and
3/2. The 8 MeV difference between Λb(5912) and Λb(5920) is small enough
to fit into the category of degenerate. The degeneracy is broken with the
mixture of the V B and P B states, which is done in Refs. [391–393], but
for the heavier mesons this mixture is smaller [412], which can explain the
small difference between the masses of the two states. We shall come back
to this point in the next two subsections.

The binding of B̄N in Table 3.21 for qmax ∼ 750−800 MeV is of the order
of 300 MeV. While this is only 5% of the total energy, it might surprise us
that this amount is about three times bigger than the one obtained in Refs.
[128,428] for hidden beauty baryons (BΣb is the equivalent component), but
this is easy to understand, both qualitatively and quantitatively. Indeed, in
the exchange of light vectors between B̄ and N , the nucleon has three light
quarks, while in the exchange of a light vector between B and Σb, the Σb has
only two light quarks. There are, hence, more chances to exchange a light
vector between B̄N than in BΣb. More quantitatively, if we take I = 0 for
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B̄N we have two components, B̄0(bd̄)n(udd) and B̄−(bū) p(uud). We have
two d quarks from the n to accommodate the exchange of a light qq̄ in the
first component and two u quarks in the second component. If we take BΣb
in I = 1/2, which was found bound in section Sec. 3.2 (Ref. [428]), we have
the components B0(b̄d) Σ+

b (uub) and B+(b̄u)Σ0
b(udb). In the first case we

can not exchange a light qq̄ vector and in the second case there is only one
u quark in the Σ0

b that can accommodate it. The strength of light vector
exchange in B̄N, I = 0, should be much large than in BΣb, I = 1/2. This
is the case in practice since, comparing Table 3.15 of the present paper with
Eqs. (2) and (12) of Ref. [428], we find that the relevant Cij coefficient is
3 for B̄N and 1 for BΣb. As a consequence, we have the about three times
larger binding found here with respect to the one of Refs. [128,428].

3.4.3 Vector-baryon channels

The transitions V B → V B for small momenta of the vector mesons have
formally the same expressions as the corresponding PB → PB substituting
the octet of pseudoscalars by the octet of vectors [390], with only one minor
change to account for the φ and ω SU(3) structure, which is to replace each
η by −

√
2/3 φ or

√
1/3 ω. The case of vector interaction with the decuplet

of baryons is similar [389]. The Tables 3.15, 3.16, 3.18 are changed now
to Tables 3.24, 3.25, 3.26. Once again we penalize with a factor 1/4 the
transitions from a heavy vector to a light vector as we did before for the
pseudoscalar mesons.

Table 3.24: Cij coefficients for B̄∗N and coupled channels for I = 0, and
JP = 1/2−, 3/2−.

Cij B̄∗N ρΣb ωΛb φΛb

B̄∗N 3 −
√

3
2

√
3
2 −

√
3

ρΣb 4 0 0

ωΛb 0 0

φΛb 0
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Table 3.25: Cij coefficients for B̄∗N and coupled channels for I = 1, and
JP = 1/2−, 3/2−.

Cij B̄∗N ρΣb ρΛb ωΣb φΣb

B̄∗N 1 −1 −
√

3
2 −

√
1
2 1

ρΣb 2 0 0 0

ρΛb 0 0 0

ωΣb 0 0

φΣb 0

Table 3.26: Cij coefficients for B̄∗∆ and coupled channels for I = 1, and
JP = 1/2−, 3/2−, 5/2−.

Cij B̄∗∆ ρΣ∗
b ωΣ∗

b φΣ∗
b

B̄∗∆ 4 1
√
2 −2

ρΣ∗
b 2 0 0

ωΣ∗
b 0 0

φΣ∗
b 0

We take again the case of I = 0 of Table 3.24 and show the results that
obtain in Table 3.27 for B̄∗N single channel, and in Table 3.28 for coupled
channels.

Table 3.27: Energies for a state of B̄∗N in I = 0 as a function of qmax.
(unit: MeV)

qmax 700 750 800 850

V 6033.1 5987.2 5939.0 5889.3



208 CHAPTER 3. HQSS IN HEAVY HADRONIC STATES

Table 3.28: Energies for a state in coupled channels B̄∗N , ρΣb, ωΛb, φΛb in
I = 0 as a function of qmax. (unit: MeV)

qmax 700 750 800 850

6019.2 5970.6 5919.8 5867.6
V

6364.6 + i0.8 6333.3 + i0.8 6303.0 + i0.6 6274.1 + i0.3

Once again we see that the consideration of coupled channels leads to
two states. In order to see the meaning of the states we calculate again the
couplings to the different channels for qmax = 800 MeV, and the results are
shown in Table 3.29. There we can see that the state that couples strongly

Table 3.29: The coupling constants to various channels for certain poles in
the J = 1/2, 3/2, I = 0 sector.

5919.8 + i0 B̄∗N ρΣb ωΛb φΛb

gi 16.81 1.04 0.94 1.33

giG
II
i −22.01 −5.46 −6.16 −5.67

6303.0 + i0.6 B̄∗N ρΣb ωΛb φΛb

gi 0.37 + i0.27 5.14 + i0.01 0.15 + i0.01 0.21 + i0.02

giG
II
i −2.73− i0.27 −46.81− i0.13 −2.22− i0.22 −1.50− i0.15

to B̄∗N is the one with lower energy. The higher energy state couples mostly
to ρΣb.

It is interesting to compare the results of Tables 3.21 and 3.27 for the
states that couple mostly to B̄N and B̄∗N . If we calculate with single
channel we find a difference in energies between these two levels of 45 MeV,
the same as between mB∗ and mB. However, when we include the coupled
channels we see some changes. If we compare Tables 3.27 and 3.28 at qmax =
800 MeV, the effect of the coupled channels is a reduction of the mass of
the lower state by about 20 MeV rather than 40 MeV in the case of B̄N .
The difference in the masses of the πΣb or ρΣb is one of the reasons for it,
but also the interaction of these two channels is different. Indeed, the V V V
vertices or PPV vertices go as the sum of the external energies, as we saw,
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N N N

B̄ B̄
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B̄ B̄
∗

π π

Figure 3.26: Diagrammatic representation of the B̄∗N in intermediate state
(left) and the B̄N in intermediate state (right).

but now we have the much larger energy of the ρ instead of the energy of
the π.

3.4.4 Breaking the J = 1/2−, 3/2− degeneracy in the B̄∗N
sector

In this subsection we shall break the degeneracy of the 1/2−, 3/2− states
of the B̄∗N sector. For this purpose we follow the approach of Ref. [391]
and mix states of B̄∗N and B̄N in both sectors. We test first that in the
coupled channels like the B̄∗N sector, the important contribution comes
from B̄∗N → X → B̄∗N , where X stands for the other coupled channels.
The extra interaction of the X channels among themselves is negligible
compared to that of the dominant B̄∗N channel, because of the big value
of the B̄∗ energy entering the interaction. This means that it is sufficient to
evaluate the contribution of the box diagrams of Fig. 3.26, in analogy to the
box diagrams evaluated in Ref. [391], and add this contribution, δV , to the
B̄N or B̄∗N potential. Using the doublets of isospin (B+, B0), (B̄0, −B−)
the Λc state in the B̄N basis is given by

|B̄N, I = 0〉 = 1√
2
(|B̄0n〉+ |B−p〉), (3.83)

and analogously for B̄∗N . The B̄N → B̄∗N transition in I = 0 is given by
the diagrams of Fig. 3.27.

The V P π vertex in SU(3) is given by the Lagrangian of Eq. (1.34),
but, P, V µ are the ordinary meson octet and vector nonet SU(3) matrix of
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n n
n p p n p p

π0
π+ π− π0

B̄0

B̄∗0

B̄0

B̄∗−

B̄−

B̄∗0

B̄−

B̄∗−

+ + +

1

2

Figure 3.27: Diagrammatic representation of the transition B̄N → B̄∗N in
I = 0.

the corresponding fields

P =


π0
√
2
+ η8√

6
π+ K+

π− − π0
√
2
+ η8√

6
K0

K− K̄0 −2η8√
6

 , (3.84)

Vµ =


ρ0√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ


µ

. (3.85)

One can extend the Lagrangian Eq. (1.34) to the SU(4) space, as done in the
former work (Ref. [461]) and in subsection 1.2.2 (or Refs. [127,168]), but it is
unnecessary. It is more intuitive and rigorous to follow the derivation below
(more justification can be referred to our paper [482]), which allows us to
directly connect with the results of heavy quark spin-flavour symmetry [483].
Indeed, all we need to do is to invoke that the leading terms correspond to
light meson exchange, in which case the heavy quark plays the role of a
spectator at the quark level.

Let us then compare the K∗+ → K0π+ and B∗+ → B0π+ transitions
as shown in Fig. 3.28. As we can see in the figure, the transitions are
identical and governed by the light quarks, with the s̄ quark in K∗+ and
b̄ quark in B∗+ playing the role of a spectator. The transition amplitudes
are thus identical at the quark microscopic level, but we must take into
account that when used at the macroscopic level of the K∗+ or B∗+ there
are normalization factors (2ω)−1/2 which are different for the K∗+, K0 or
B∗+, B0 fields. This is taken easily into account by constructing the S
matrix at the macroscopic level. At the microscopic level we have (we
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u s̄
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B
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Figure 3.28: Diagram of the transition K∗+ → K0π+ (left) and B∗+ →
B0π+ (right).

follow Mandl + Shaw normalization of the fields [197])

Smic = 1− it

√
2mL

2EL

√
2m′

L

2E′
L

√
1

2ωπ

1

V3/2
(2π)4δ(Pin − Pout), (3.86)

withmL, EL,m
′
L, E

′
L the masses (constituent) of the incoming and outgoing

light quarks, V the volume of the box where states are normalized to unity,
and ωπ the pion energy. At the macroscopic level we have for the K∗+ and
B∗+

SmacK∗ = 1− itK∗
1√
2ωK∗

1√
2ωK

1√
2ωπ

1

V3/2
(2π)4δ(Pin − Pout),(3.87)

SmacB∗ = 1− itB∗
1√
2ωB∗

1√
2ωB

1√
2ωπ

1

V3/2
(2π)4δ(Pin − Pout). (3.88)

These considerations are common place in the study of three body systems
in the FCA [223, 227]. Eqs. (3.86), (3.87), (3.88) allow one to relate tB∗

and tK∗ with the macroscopic t amplitude, but since we have tK∗ given by
the effective Lagrangian of Eq. (1.34), we can obtain tB∗ in terms of tK∗ by
means

tB∗

tK∗
≡

√
mB∗mB√
mK∗mK

' mB∗

mK∗
. (3.89)

Now we come back to the evaluation of the box diagrams of Fig. 3.26.
The vertex for the I = 0 transition B̄N → B̄∗N of Fig. 3.27, considering
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Figure 3.29: Diagram of the Kroll Ruderman term.
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Figure 3.30: All of the diagrams for the B̄∗N in the intermediate state.

the Yukawa coupling for the πNN vertex is given by

−it = − 3√
2
g
mB∗

mK∗
(q + Pin)µε

µ 1

q2 −m2
π

D + F

2fπ
~σ · ~q, (3.90)

with D = 0.75 and F = 0.51 [313], and since Pin = q+Pout and Pout · ε = 0
plus ε0 ≈ 0, we get effectively

−it = 6√
2
g
mB∗

mK∗
~q · ~ε 1

q2 −m2
π

D + F

2fπ
~σ · ~q. (3.91)

In addition to the pion exchange of Fig. 3.27, we have the Kroll Ruderman
contact term, depicted in Fig. 3.29. Following Refs. [391, 484], in order
to get the Kroll Ruderman term, we must substitute in Eq. (3.90) εµ(q +
Pin)

µ 1
q2−m2

π
~σ · ~q by −~σ · ~q. Then, we must evaluate the diagrams of Fig.

3.30 for the B̄N → B̄∗N → B̄N transition, and we obtain

δV = δV PP + 2δV PC + δV CC , (3.92)

where δV PP stands for the first diagram of Fig. 3.30, 2δV PC for the two
middle diagrams and δV CC for the last one. Then, after performing deriva-
tions, for the B̄N → B̄∗N → B̄N box diagram we only have the J = 1/2
case (more details can be seen in our paper [482]). Thus, we have

J = 1/2 : δV = FAC
( ∂

∂m2
π

I1 + 2 I2 + I3
)

(3.93)
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where

I1 =

∫
d3q

(2π)3
4~q 4 1

2ωB∗(~q )

MN

EN (~q )

Num

Den
,

I2 =

∫
d3q

(2π)3
2~q 2 1

2ωB∗(~q )

MN

EN (~q )

Num

Den
, (3.94)

I3 =

∫
d3q

(2π)3
3

2ωB∗(~q )

MN

EN (~q )

1

P 0
in +K0

in − EN (~q )− ωB∗(~q ) + iε
,

with

FAC =
9

2
g2
(mB∗

mK∗

)2(F +D

2fπ

)2
, (3.95)

Num = K0
in − EN (~q )− 2ωπ(~q )− ωB∗(~q ) + P 0

in, (3.96)

Den = 2ωπ(~q )[P
0
in − ωπ(~q )− ωB∗(~q ) + iε][K0

in − EN (~q )− ωπ(~q ) + iε]

×[P 0
in +K0

in − EN (~q )− ωB∗(~q ) + iε], (3.97)

with P 0
in, K

0
in the incoming B̄, N energies.

For the case of the B̄∗N → B̄N → B̄∗N box diagram, the formula is like
the former one for J = 1/2 exchanging accordingly the masses of B ↔ B∗.
Thus, we have

J = 1/2 : δV = FAC
( ∂

∂m2
π

I ′1 + 2 I ′2 + I ′3
)
, (3.98)

J = 3/2 : δV = FAC
( ∂

∂m2
π

I ′1
)
, (3.99)

where

I ′1 =

∫
d3q

(2π)3
4

3
~q 4 1

2ωB(~q )

MN

EN (~q )

Num

Den
,

I ′2 =

∫
d3q

(2π)3
2~q 2 1

2ωB(~q )

MN

EN (~q )

Num

Den
, (3.100)

I ′3 =

∫
d3q

(2π)3
3

2ωB(~q )

MN

EN (~q )

1

P 0
in +K0

in − EN (~q )− ωB(~q ) + iε
,

with Num, Den having the same expressions but in terms of the proper
energies and masses. In the Yukawa vertex it is customary to include a
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monopole form factor to agree with the NN peripheral partial waves [485]
and thus we introduce a factor

FF (~q ) =
( Λ2

Λ2 + ~q 2

)2
, (3.101)

with Λ ' 1 GeV, which we include in the integrands of Eqs. (3.100), (3.94).
To go to the second Riemann sheet with the box contribution δV , we can

do a similar thing as in Eq. (1.50). Yet, when
√
s is real GIIl ≡ (GIl )

∗ and
this is also the case, quite accurately, when we are close to the real axis. In
view of this, and the small contribution of the intermediate B̄N states to the
width, we use the prescription, δV → (δV )∗ to go to the second Riemann
sheet. In practice, this is equivalent to changing +iε → −iε in the factors
of Den of Eq. (3.97) (more discussions can be seen in our paper [482]).

Once the formalism has been described, we show the results of including
δV in the approach in Tables 3.30, 3.31.

It is interesting to compare the results of Table 3.30 with those of Table
3.28. At 750 MeV the box diagram reduces the mass of the state by about
30 MeV for J = 1/2, and 20 MeV for J = 3/2. We can see that the value
of the masses is rather sensitive to the value qmax used. However, it is
interesting to remark that the splitting of energies between the J = 1/2
and J = 3/2 levels is about 10 MeV, rather independent of the cutoff used.
We can thus see that the mixing of B̄∗N and B̄N states leads naturally to
two states, nearly degenerate in spin, only separated by about 10 MeV, like
the Λb(5912) and Λb(5920). If we fine tune qmax to get the right binding,
we find qmax = 776 MeV, where the energy of the J = 1/2 state is 5910
MeV, and the one of the J = 3/2 state 5920 MeV. We also observe that the
higher energy state, around 6300 MeV, has been practically not affected by
the box diagram, which is most logical since this state couples weakly to
B̄∗N .

For the B̄N state of Table 3.31, comparing it with the results of Table
3.22, the box diagram has reduced the energy by about 50 MeV at qmax =
750 MeV. The upper level energy is increased by about 15 MeV for this
value of qmax.
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3.4.5 Results of I = 1 states

With the cut off obtained to reproduce the mass of the Λb(5912) state
we proceed now to evaluate the states corresponding to Tables 3.16, 3.18,
3.25, 3.26, which are mostly bound states of B̄N (I = 1, JP = 1/2−),
B̄∆(I = 1, JP = 3/2−), B̄∗N (I = 1, JP = 1/2−, 3/2−), B̄∗∆(I =
1, JP = 1/2−, 3/2−, 5/2−). The results can be seen in Tables 3.34, 3.32,
3.35, 3.33 with qmax = 776 MeV, together with the couplings to the different
coupled channels.

Table 3.32: The coupling constants to various channels for certain poles in
the I = 1 sector of B̄∆ and coupled channels.

5971.9 + i0 B̄∆ πΣ∗
b ηΣ∗

b

gi 10.79 0.61 0.85

giG
II
i −10.89 −16.51 −6.69

6073.0 + i77.2 B̄∆ πΣ∗
b ηΣ∗

b

gi 7.67− i5.14 1.43 + i1.36 0.81− i0.36

giG
II
i −9.59 + i4.83 −70.37− i20.89 −7.87 + i2.27

Table 3.33: The coupling constants to various channels for certain poles in
the I = 1 sector of B̄∗∆ and coupled channels.

6049.2 + i0 B̄∗∆ ρΣ∗
b ωΣ∗

b φΣ∗
b

gi 21.14 0.85 1.03 1.46

giG
II
i −22.11 −4.70 −5.66 −5.30

6491.9 + i0 B̄∗∆ ρΣ∗
b ωΣ∗

b φΣ∗
b

gi 0.66 3.76 0.13 0.18

giG
II
i −2.19 −50.69 −1.71 −1.20

With respect to their thresholds, the binding energies for the B̄N chan-
nel are now smaller than for I = 0, as we anticipated in view of the smaller
Cij coefficients, but for B̄∆ the binding is bigger than for the B̄N state, as
discussed earlier. We again see that we get two states in each one of the
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cases, but also notice that there is more mixture of the states than for I = 0.
In the case of the B̄N channels, the lower state is clearly dominated by πΣb.
For the B̄∆ channels, the upper state is dominated by πΣ∗

b . For the B̄∗N
channels, the lower state is dominated by B̄∗N and the higher one by ρΣb.
For the B̄∗∆ channels, the lower state is dominated by B̄∗∆ and the upper
one by ρΣ∗

b .

3.4.6 Box diagram for I = 1 states

We now evaluate the contribution of the box diagram to the I = 1 states
made from B̄N , B̄∗N , B̄∆, B̄∗∆.

a) B̄N , I = 1:

The isospin I = 1 state is now

|B̄N ; I = 1, I3 = 0〉 = 1√
2

(
|B̄0n〉 − |B̄−p〉

)
. (3.102)

The counting of isospin done before can be repeated and we simply find that
a factor 3√

2
gets converted in 1√

2
in the B̄N → B̄∗N transition. We thus get

a factor 9 smaller contribution than for I = 0 from the box and we neglect it.

b) B̄∗N , I = 1:

We have the same suppression factor as before and we also neglect it.

c) B̄∆, I = 1:

The state of B̄∆ with I = 1 is given by

|B̄∆; I = 1, I3 = 1〉 =
√

3

4
|B̄−∆++〉+

√
1

4
|B̄0∆+〉. (3.103)

The diagram under contribution is now in Fig. 3.31. We must also substi-
tute f

mπ
~σ · ~q τλ in the case of nucleons by f∆

mπ

~S∆ · ~q T λ∆, where ~S∆, ~T∆ are
the ordinary spin and isospin matrices of the ∆.

We have [486]

f∆
f

=
4

5
, (where

f

mπ
=
F +D

2f
). (3.104)
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∆ ∆ ∆

B̄ B̄
∗

B̄

π π

Figure 3.31: Diagrammatic representation of the transition of B̄∆ →
B̄∗∆ → B̄∆.

Using the appropriate Clebsch-Gordan coefficient for ~T∆, we find that the
term corresponding the box in diagram Fig. 3.31 is now given by

δV = FAC
∂Ĩ1
∂m2

π

, (3.105)

where

Ĩ1 =
5

9

∫
d3q

(2π)3
4~q 4 1

2ωB∗(~q )

M∆

E∆(~q )

Num

Den
, (3.106)

with Num, Den the expressions of Eqs. (3.96), (3.97) but putting the ap-
propriate masses.

d) B̄∗∆, I = 1:

In this case we proceed as before, and everything is formulated in the
same way but now I ′1 → Ĩ ′1, with

Ĩ ′1 =
5

9

∫
d3q

(2π)3
4

3
~q 4 1

2ωB(~q )

M∆

E∆(~q )

Num

Den
. (3.107)

To reach this formula we have made an average over the spins of the initial
∆, taking the same initial and final third spin component of the ∆. This is
in consonance with the fact that since we have a reduction factor of about
1/2, the splitting of spin levels is now smaller than for B̄∗N and accepting
uncertainties larger than 5 MeV we do not worry about it. Consequently
we do not evaluate the I2, I3, I

′
2, I

′
3 terms that produced the spin splitting.
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∆ N ∆

B̄ B̄
∗

B̄

π π

∆ N ∆

B̄
∗

B̄ B̄
∗

π π

Figure 3.32: Diagrammatic representation of the B̄∗N in intermediate state
(left) and the B̄N in intermediate state (right).

3.4.7 Further decay channels of B̄∆ and B̄∗∆

In this subsection we evaluate the box diagram corresponding to Figs. 3.32.
We thus consider the intermediate B̄N or B̄∗N channels. Should the binding
B̄∆ and B̄∗∆ states be not bigger than the ∆ and N mass differences, there
would provide decay channels of the states. In principle we should also
consider the B̄∆ and B̄∗∆ intermediate states for the B̄N and B̄∗N states,
but, considering the binding, these intermediate states are about 600 MeV
away in energy and we do not consider them. The changes are also simple:
we must substitute

f

mπ
~σ · ~q τλ → fπN∆

mπ

~S · ~q T λ, (3.108)

where now ~S (~T ) is transition spin (isospin) operator from spin (isospin) 3/2
to 1/2, with the normalization for S+

µ in spherical basis

〈3/2M |S+
µ |1/2m〉 = C(1/2 1 3/2; mµM), (3.109)

with C(·) a Clebsch-Gordan coefficient, and we have the property [487]∑
M

Si|M〉〈M |Sj =
2

3
δij − i

1

3
εijkσk, (3.110)

for Si, Sj in cartesian basis. Also from Ref. [487] we take fπN∆/f = 2.25.
For the isospin transition, in addition to the I = 1 B̄∆ state of Eq. (3.103)
we need

|B̄N ; I = 1, I3 = 1〉 = |B̄0p〉. (3.111)
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The π0p∆+ vertex for T λ∆ gives us
√

2/3 and the π+p∆++ gives us (−1)
(recall phase used |π+〉 = −|1, 1〉).

Once again, making the average over ∆ spins as before, we obtain the
results for δV2 given by the same formalism as before, substituting

I1 → Ĩ1 =
8

81

(fπN∆

f

)2 ∫ d3q

(2π)3
4~q 4 1

2ωB∗(~q )

MN

EN (~q )

Num

Den
, (3.112)

for the B̄∆ → B̄∗N → B̄∆ process, and

I ′1 → Ĩ ′1 =
8

81

(fπN∆

f

)2 ∫ d3q

(2π)3
4

3
~q 4 1

2ωB(~q )

MN

EN (~q )

Num

Den
, (3.113)

for the B̄∗∆ → B̄N → B̄∗∆ process, with Num and Den given by Eqs.
(3.96), (3.97), but substituting the masses by the appropriate ones.

We show our results with the contribution of box diagrams, seen in
Figs. 3.31 and 3.32, in Tables 3.36, 3.37 for the B̄∆, B̄∗∆ and their coupled
channels.

Table 3.36: Poles with box diagram in I = 1 sector of B̄∆ and its coupled
channels with qmax = 776 MeV: δV1 is the B̄∗∆ box, δV2 is the B̄∗N box.
(unit: MeV)

no box V + δV1 V + δV2 V + δV1 + δV2

5971.9 + i0 5957.8 + i0 5949.4 + i0 5932.9 + i0

6073.0 + i77.2 6069.1 + i80.7 6066.3 + i81.7 6063.8 + i83.5

Table 3.37: Poles with box diagram in I = 1 sector of B̄∗∆ and its coupled
channels with qmax = 776 MeV: δV1 is the B̄∆ box, δV2 is the B̄N box.
(unit: MeV)

no box V + δV1 V + δV2 V + δV1 + δV2

6049.2 + i0 6039.1 + i0 6032.2 + i0 6022.9 + i0

6491.9 + i0 6491.4 + i0 6493.0 + i1.0 6491.7 + i0.8
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We can see that the effect of the box with B̄∆ or B̄∗∆ intermediate states
is a reduction of the mass of the lower state by bout 10− 15 MeV, with an
extra reduction of a about 15 − 25 MeV from the box with intermediate
B̄N and B̄∗N states. The upper state is not much modified by the box
diagrams.

3.4.8 Summary of the results

Finally, since we have many intermediate results, we summarize here the
final results that we get for the states, with qmax = 776 MeV, which we
used to fix one of the Λb energies. The results are shown in Table 3.38,
where we also write for a quick intuition the main channel of the state.

Table 3.38: Energies and widths of the states obtained and the channels to
which the states couple most strongly.

main channel J I (E, Γ) [MeV] Exp.

B̄N 1/2 0 5820.9, 0 -

πΣb 1/2 0 5969.5, 49.2 -

B̄∗N 1/2 0 5910.7, 0 Λb(5912)

B̄∗N 3/2 0 5920.7, 0 Λb(5920)

ρΣb 1/2 0 6316.6, 2.8 -

ρΣb 3/2 0 6315.7, 3.8 -

B̄N, πΣb 1/2 1 6179.4, 122.8 -

πΣb 1/2 1 6002.8, 132.4 -

B̄∆, πΣ∗
b 3/2 1 5932.9, 0 -

πΣ∗
b 3/2 1 6063.8, 167.0 -

B̄∗N 1/2, 3/2 1 6202.2, 0 -

ρΣb 1/2, 3/2 1 6477.2, 10.0 -

B̄∗∆ 1/2, 3/2, 5/2 1 6022.9, 0 -

ρΣ∗
b 1/2, 3/2, 5/2 1 6491.7, 1.6 -

In summary, we predict 6 states with I = 0, two of them corresponding
to the Λb(5912) and Λb(5920), and 8 states with I = 1. The energies of the



3.4. BARYON STATES WITH OPEN BEAUTY 223

states range from about 5800 MeV to 6500 MeV.

It is interesting to compare the results obtained here with those of Ref.
[398]. In this later work, the same interaction as here is used for the main
diagonal channels, but the transition between different coupled channels is
not obtained through vector or pion exchange as done here, but invoking
a combined SU(6) and HQSS. In Ref. [398] the states of I = 1 are not
investigated but for I = 0 four states are obtained, two of them, with
J = 1/2, 3/2, are also associated to the Λb(5912) and Λb(5920). In spite
of the differences in the input, there are common features in the results.
The two states associated to the Λb(5912) and Λb(5920) exhibit, as here,
a substantial coupling to B̄∗N . There is also a 1/2− state in Ref. [398] at
5797 MeV which we find at 5820 MeV, only 33 MeV higher, and another
state at 6009 MeV that we find at 5969 MeV, 40 MeV below. The mostly
ρΣb state found here at 6316 MeV, basically degenerate in J = 1/2, 3/2,
was either not found or not searched for in Ref. [398] because of its higher
mass. The qualitative agreement between the results of the two approaches
is remarkable and gives further support to the common predictions. In
addition, we have investigated states of I = 1 and we find quite a few, some
of them narrow enough for a clear experimental observation.

3.4.9 Conclusions

In this work we examine the interaction of B̄N , B̄∆, B̄∗N and B̄∗∆ states,
together with their coupled channels, using a mapping from the light meson
sector. The assumption that the heavy quarks act as spectators at the quark
level automatically leads us to the results of the HQSS for pion exchange and
reproduces the results of the Weinberg Tomozawa term, coming from light
vector exchanges in the extended local hidden gauge approach. With this
dynamics we look for states dynamically generated from the interaction and
find two states with nearly zero width, which we associate to the Λb(5912)
and Λb(5920) states. The states couple mostly to B̄∗N , which are degener-
ate. The difference of masses between these two states, with J = 1/2, 3/2
respectively, is due to pion exchange connecting these states to intermediate
B̄N states. In addition to these two Λb states, we find three more states
with I = 0, one of them nearly degenerate in two states of J = 1/2, 3/2.
Furthermore we also find eight more states in I = 1, two of them degenerate
in J = 1/2, 3/2, and other two degenerate in J = 1/2, 3/2, 5/2.
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3.5 Baryon states with open charm

In dealing with hadronic states involving heavy quarks (charm or beauty),
the HQSS [233–236, 483] plays an important role and serves as a guiding
principle to proceed with calculations. HQSS has been applied to calculate
baryon spectra in Refs. [41, 237, 238, 397, 398, 412, 475, 488]. The basic idea
behind these works is to use HQSS to reduce the freedom in the interaction,
which is then written in terms of a few parameters which are adjusted
to some experimental data. Then predictions on spectra of baryons with
charm or beauty, or hidden charm and beauty are made. In Ref. [237]
an SU(8) spin-flavor scheme is used, to account for the spin symmetry, in
order to obtain the interaction, and a coupled channel unitary approach is
implemented to obtain poles in the scattering matrices, which correspond
to the baryon resonance states. In particular the Λc(2595) state is obtained
and shown to couple largely to the D∗N channel. In Ref. [238] the SU(8)
scheme is once again used, but with some symmetry breaking, to match with
an extension of the Weinberg Tomozawa interaction in SU(3). Among other
resonances, the states Λc(2595) (J

P = 1/2−) and Λc(2625) (J
P = 3/2−) are

obtained.

In the charm sector, many works investigate the properties of the par-
ticles with heavy quark [127, 128, 168, 257, 258, 489, 490], such as the Λc
(JP = 1/2−) and Σc (J

P = 3/2−) resonances. Two well known resonances,
the Λc(2595) (JP = 1/2−) and Λc(2625) (JP = 3/2−) states [9], were dy-
namically generated in the coupled channel interaction [237, 238, 257, 258],
with a different explanation for their properties. The Λc(2625) (J

P = 3/2−)
state is mostly tied to the D∗N channel, and the Λc(2595) state has a
more important coupling to the DN channel. In the present work, follow-
ing the former work (Ref. [482]), where the states Λb(5912) and Λb(5920)
(JP = 1/2−, 3/2−) were obtained using a unitary scheme with coupled
channels and the dynamics based on the LHG approach [156, 159, 163], we
extrapolate the approach from the beauty sector to the charm sector, to see
if a similar explanation can be given in this case, or see if those states call
for a different explanation.
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3.5.1 Summary of the formalism

Following the former work (Ref. [482]) in last section, we extrapolate the
formalism to the open charm sector by just changing the B̄(∗) meson to a
D(∗) meson and b-quark to c-quark for the baryon. We take coupled channels
πΣc, πΛc, ηΛc, ηΣc, DN with I = 0, 1, and also consider D∗N and πΣ∗

c ,
ηΣ∗

c , D∆, D∗∆, with ∆ ≡ ∆(1232) and Σ∗
c = Σ∗

c(2520), belonging to a
decuplet of 3/2+ states. The transition potential is given by Eq. (3.78). The
Cij coefficients are similarly obtained as before from Refs. [155,389,390,481]

For the interaction of pseudoscalar mesons and 1/2+ baryons, the cou-
pled channels and the Cij coefficients both in I = 0 and I = 1 are given in
Tables 3.39−3.42.

Table 3.39: Cij coefficients for I = 0 and JP = 1/2−.

Cij DN πΣc ηΛc

DN 3 −
√

3
2

3√
2

πΣc 4 0

ηΛc 0

Table 3.40: Cij coefficients for I = 1 and JP = 1/2−.

Cij DN πΣc πΛc ηΣc

DN 1 −1 −
√

3
2 −

√
3
2

πΣc 2 0 0

πΛc 0 0

ηΣc 0
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Table 3.41: Cij coefficient for I = 0 and JP = 3/2−.

Cij πΣ∗
c

πΣ∗
c 4

Table 3.42: Cij coefficients for I = 1 and JP = 3/2−.

Cij D∆ πΣ∗
c ηΣ∗

c

D∆ 4 1
√
6

πΣ∗
c 2 0

ηΣ∗
c 0

For the cases of the transitions V B → V B, the interactions of vector
mesons and baryons, analogously, the coupled channels and the Cij coeffi-
cients for I = 0 and I = 1 are given in Tables 3.43−3.45.

Table 3.43: Cij coefficients for D∗N and coupled channels for I = 0, and
JP = 1/2−, 3/2−.

Cij D∗N ρΣc ωΛc φΛc

D∗N 3 −
√

3
2

√
3
2 −

√
3

ρΣc 4 0 0

ωΛc 0 0

φΛc 0



3.5. BARYON STATES WITH OPEN CHARM 227

Table 3.44: Cij coefficients for D∗N and coupled channels for I = 1, and
JP = 1/2−, 3/2−.

Cij D∗N ρΣc ρΛc ωΣc φΣc

D∗N 1 −1 −
√

3
2 −

√
1
2 1

ρΣc 2 0 0 0

ρΛc 0 0 0

ωΣc 0 0

φΣc 0

Table 3.45: Cij coefficients for D∗∆ and coupled channels for I = 1, and
JP = 1/2−, 3/2−, 5/2−.

Cij D∗∆ ρΣ∗
c ωΣ∗

c φΣ∗
c

D∗∆ 4 1
√
2 −2

ρΣ∗
c 2 0 0

ωΣ∗
c 0 0

φΣ∗
c 0

Once again we suppress with a factor 1/4 the transitions from a heavy
vector to a light vector for the non diagonal terms as done before. Fur-
thermore, we also take into account the contribution of the box diagrams
as done in the former work, using the former formalism but changing the
masses accordingly. More details can be seen in our paper [491].

3.5.2 Results for I = 0

In Table 3.46 we show the results that we obtain for J = 1/2, I = 0 from
the DN and coupled channels as a function of the cut off, qmax, used. In the
Table we show the results obtained with and without the box. In the s-wave
amplitude that we study, the parity of all the states obtained is negative.
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Table 3.46: Poles in coupled channels DN(2806), πΣc(2592), ηΛc(2834)
with I = 0 as a function of qmax. (The number in brackets after the channel
is the mass of the channel. Units: MeV)

qmax 630 638 645 700

2599.7 + i27.8 2598.8 + i25.6 2597.8 + i23.5 2590.8 + i0
no box

2666.8 + i7.7 2661.8 + i8.7 2657.4 + i9.6 2629.4 + i21.5

2597.6 + i11.0 2592.0 + i4.5 2591.2 + i0 2547.2 + i0
with box

2625.2 + i22.8 2623.3 + i26.4 2621.9 + i28.4 2612.0 + i31.0

We can see that for qmax = 638 MeV, and considering the box, we obtain
a state with small width of 9 MeV. This state could be associated with the
experimental one Λc(2595), which has a mass of 2592.25± 0.28 MeV and a
width of 2.59 MeV. The effect of the box has been a reduction of the mass
by about 7 MeV, which indicates a small mixing with D∗N .

It is interesting to observe in this Table that we predict another J =
1/2, I = 0 state with a mass of 2623 MeV and a width of 53 MeV.

One may complain that the width of the 2592 MeV state that we get is
larger than the experimental one, but we are very close to the πΣc threshold
and the results are very sensitive to the precise value of the mass of the state.
For these reasons we make a small variation of qmax around 640 MeV. We
can see that in Table 3.46 taking qmax = 645 MeV reduces the mass of the
state by 0.8 MeV, and being below the πΣc threshold, the width is now
zero. The channel πΣc is what gives width to the state and the proximity
to the threshold is what makes the width very small.

In Table 3.47 we show now the results for the states of J = 1/2, 3/2,
I = 0, obtained from the D∗N interaction with its coupled channels, both
with inclusion or not of the box diagram. We obtain two states, degenerate
in spin without the box. The box diagram breaks the degeneracy for the
lower energy state but barely changes the result for the higher energy state,
something that we shall be able to interpret when we look at the couplings
of the states to the different channels. The reason for the breakup of the
spin degeneracy is the Kroll Ruderman term that only acts in J = 1/2. The
effect of the box is a reduction of the mass of this lower energy state by about
60 MeV for values of qmax around 800 MeV. The effect of the box is bigger
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here than in the former case. First we are choosing qmax bigger, but also the
mass of DN in the intermediate state is closer here to the energies obtained
than the mass of D∗N to the energies of Table 3.46. We are searching for
the experimental J = 3/2, Λc(2625), which has a mass of 2628.11 ± 0.19
MeV and a width smaller than 0.97 MeV. We find a candidate with zero
width for qmax = 791 MeV. In addition we obtain three more states, since
we obtain two states with J = 1/2 and two with 3/2, all of them with zero
or very small width. The effect of the box is very small in the higher energy
state, which is then nearly degenerate in J = 1/2 and 3/2. We shall be able
to interpret this when we look for the couplings of the states to the different
channels.

Table 3.47: Poles in coupled channels D∗N(2948), ρΣc(3229), ωΛc(3069),
φΛc(3306) with I = 0 as a function of qmax. (Units: MeV)

qmax 780 791 810 850

2683.1 + i0 2673.9 + i0 2657.9 + i0 2624.0 + i0
no box

2966.4 + i0.4 2959.8 + i0.3 2948.6 + i0.1 2926.0 + i0

with box 2626.0 + i0 2615.4 + i0 2596.9 + i0 2557.6 + i0

(J = 1/2) 2965.8 + i0.8 2959.1 + i0.7 2947.9 + i0.6 2925.0 + i0.7

with box 2638.0 + i0 2628.5 + i0 2611.9 + i0 2576.5 + i0

(J = 3/2) 2965.2 + i1.5 2958.6 + i1.5 2947.4 + i1.4 2924.3 + i1.4

The first striking thing is that we have used two different cut offs in the
two sectors. Although they are still rather similar, this might look a bit
arbitrary, but the regularization scale does not have to be exactly the same
for different sectors. What we have done is to use two free parameters of
the theory to fine tune the energies of the two states, but we would not
have claimed success if the cut off needed had been outside the natural
range. Even then, it is by no means trivial to get the width so small, as
in the experiment. Note that in the case of the DN states we also found
a state with a mass of the order of 2623 MeV but the width was about 52
MeV. Yet, it is interesting to recall that the values of the cut off needed to
get these states are perfectly in line with what was already observed in the
light sector. Indeed, in the study of the K̄N interaction with its coupled
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channels, two states for the Λ(1405) were obtained in Ref. [277] using the
input of Ref. [155], the one at 1420 MeV corresponding to the Λc(2595)
obtained here. The cut off needed in Ref. [155] was 630 MeV, much in line
with what we have found here. On the other hand, an analogous case to
the spin 1/2, 3/2 that we obtain from the D∗N and coupled channels is
the one of the resonances ∆(1900)(1/2−),∆(1930)(5/2−),∆(1940)(3/2−).
These states were studied along the same lines as here in Ref. [492] with
the ρ∆ channel, and with extra coupled channels in Ref. [389], and a cut
off of about 770 MeV was needed to reproduce them. In other studies a
different regularization procedure is done by making the G function zero at
√
s =

√
m2
M +m2

B, where mM ,mB are the meson and baryon masses for

the lightest of the coupled channels in a given quantum number [237, 489].
In practice this has a similar effect to the one of the different cut offs.

It is interesting to see in Table 3.47 that we obtain a state at 2615 MeV
with J = 1/2 and zero width. This is not far away from the J = 1/2 state of
Table 3.46 at 2592 MeV, and one might think that this could be a candidate
for the experimental 2595 MeV state, given the flexibility of the theory to
make small changes in the cut off. However, there is one argument against
this interpretation. This state is linked to the 2628 MeV, J = 3/2 state of
Table 3.47. Once this latter energy is fixed, so is the one of the J = 1/2
state. One might think that a compromise for the two spin states could be
found with a different cut off, but this is not possible because the difference
of mass of these two states in the range of qmax = 780 − 850 MeV (not to
spoil too much the agreement for the 3/2 state) ranges within 12-19 MeV,
rather stable with the cut off, while the difference between the experimental
1/2 and 3/2 states is 36 MeV. This fact, however, has a repercussion which
is that we predict a JP = 1/2− state with mass 2615 MeV and zero width,
in addition to the state associated to the experimental one at 2592 MeV.
We, thus, get two narrow states, one at 2592 MeV and the other one at
2615 MeV. In this range only one narrow state is obtained in Ref. [238] at
2618 MeV.

In order to understand the meaning of the results that we obtain we
evaluate the residues, gi, and wave function at the origin, giGi [95], cor-
responding to the states with qmax = 638 MeV. What we can see is that
while both states couple appreciably to DN and πΣc, the amount of DN ,
measured by its coupling, or better, the wave function at the origin, is big-
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ger for the lower energy state. In our results, we also found that the wave
function at the origin for πΣc is rather large, but this is linked to the fact
that we are so close to the πΣc threshold. Indeed, if one recalls the shape
of the G function, we know that ReG is negative, with a discontinuity in
the derivative at threshold, where it has the minimum (largest |ReG|) (see
fig. 4 of Ref. [428]). This also tells that the amount of the wave function
of πΣc at the origin will be very sensitive to small changes in the mass of
the state. Similarly, we also can do the test for the states found with D∗N
and coupled channels of Table 3.47 (more discussions can be seen in our
paper [491])

It is instructive to compare the results obtained here with those of Ref.
[238]. There a 1/2−, I=0 state is found at 2618 MeV, with very small width,
which is associated to the Λc(2595). The state couples both toDN andD∗N
but the coupling to D∗N is about 50 % bigger than the one to DN . As
we have discussed here, this does not mean that the D∗N channel is the
dominant in the wave function, because what matters is the wave function
at the origin, gG, and, since the D∗N channel is farther away in energy than
the DN , the G function is smaller and finally the DN channel stands as
dominant, which would be in agreement with our statement in this paper.
It is also interesting to note that in Ref. [238] another Λc resonance is found
around 2617 MeV, but with a width of 90 MeV. We also find a similar state
around 2623 MeV and a width of 52 MeV. In both cases, a considerable
coupling to the πΣc state is responsible for the width. In addition, in
Ref. [238] a state with JP = 3/2−, I = 0 is obtained at 2666 MeV with a
width of 54 MeV which is associated to the Λc(2625). We, instead, get a
state at 2628 MeV and with zero width, with the dominant coupling to the
D∗N state, while in Ref. [238] there is a large coupling to D∗N but there is
also some coupling to πΣ∗

c which is responsible for the relatively large width.
Yet, the width can be drastically reduced if the mass goes down, getting
closer to the threshold mass of the πΣ∗

c channel (2664 MeV). The dynamics
of our approach highly suppresses this latter channel, which would involve
D exchange instead of π exchange, and is hence further suppressed than the
already suppressed pion exchange. Also in the JP = 1/2−, I = 0 sector, in
Ref. [238] a state with 2828 MeV and a width of 0.8 MeV is found, which
couples to ρΣc among other channels. We find a similar state at 2958 MeV
of dominant ρΣc nature, with a width of about 2 MeV.
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The result obtained here for the Λc(2595) also agrees qualitatively with
the one in Ref. [257] or Ref. [489], where also the Weinberg Tomozawa
interaction is used, with some small differences in the coupling constants
and the use of extra channels in Ref. [257] which are farther away in energy
and which we have ignored. The important thing is that in these works, the
state associated to the Λc(2595) couples mostly to DN , like in our case.

In addition, the results for the single channel πΣ∗
c in I = 0 and J = 3/2

are shown in Table 3.48.

Table 3.48: Poles in single channel πΣ∗
c(2656) with I = 0 and J = 3/2 as

a function of qmax. (The number in bracket after the channel indicate the
mass of the channel. Units: MeV)

qmax 700 800 1000 1200

no box 2664.05 + i28.5 2657.26 + i17.1 2655.61 + i0 2646.76 + i0

We can see that depending on the value of the cut off we get a state
barely above threshold or below. In the first case we have a width and
in the second the width is zero. By looking at table III of Ref. [238] this
state is likely to be identified to the 3/2 state at 2666 MeV of Ref. [238]
which couples strongly to πΣ∗

c and was associated there to the experimental
state at 2628 MeV. In our case the state associated to the experimental 3/2
has a different nature and is mostly a D∗N state. If we force the state in
Table 3.48 to correspond to the experimental one with J = 3/2 we need
qmax = 1530 MeV, which we could not justify with the ranges found from
phenomenology. We stick to the choice of the cut off qmax = 638 MeV
for the PB channels in which case we have a prediction of a state with
I = 0, J = 3/2 of 2668 MeV with Γ = 72 MeV. We should note that we
have obtained a resonant state above threshold with a single channel. This
might seem to contradict the findings in Ref. [205] where a single channel
with an energy independent potential does not generate resonances above
threshold. We have checked that it is the energy dependence of the potential
of Eq. (3.78) what makes the appearance of the state possible. Indeed, if
we make the potential energy independent by taking its value at the πΣ∗

c

threshold we do not get poles above threshold.
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3.5.3 Results for I = 1 states

In this section we show the results that we obtain for I = 1 from the DN ,
D∗N , D∆ and D∗∆ and coupled channels.

In Table 3.49 we show the pole positions of the states obtained with the
DN and coupled channels as a function of the cut off. The idea is that we
shall now use the same cut off as for I = 0 with the DN channel. Depending
on the cut off we find one or two poles. When we take qmax = 638 MeV,
there is only one pole. The 2nd pole gets closer to the DN threshold and
disappears.

Table 3.49: Poles in the I = 1 sector of DN and coupled channels as a
function of qmax. Threshold masses: DN(2806), πΣc(2592), πΛc(2425),
ηΣc(3001). (Units: MeV)

qmax 600 638 700 750

2668.9 + i119.0 2669.1 + i112.1 2668.1 + i100.7 2666.2 + i91.4
no box

− − 2801.9 + i11.5 2795.4 + i16.4

By taking the pole obtained for qmax = 638 MeV we show in Table 3.50
the couplings and wave functions at the origin. We observe that the state
largely couples to πΣc.

Table 3.50: The coupling constants to various channels for the poles in the
I = 1 sector of DN and coupled channels, taking qmax = 638 MeV.

2669.1 + i112.1 DN πΣc πΛc ηΣc

gi −1.33− i0.79 1.72 + i1.44 0.05 + i0.08 0.04 + i0.07

giG
II
i 3.18 + i4.01 −75.77− i15.68 −3.36− i0.32 −0.17− i0.48

In Table 3.51 we show the states obtained with D∗N and its coupled
channels as a function of the cut off. We find two states with zero or a small
width. The couplings of these states to the coupled channels are shown
in Table 3.52 for the cut off that we used with the same D∗N channel in
I = 0. We see that the state found around 2917 MeV couples mostly to
D∗N , while the one at 3125 MeV couples mostly to ρΣc.
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In Table 3.53 we show the states that we obtain in the D∆ and coupled
channels. We obtain two states. Once again we use the cut off corresponding
to the pseudoscalar-baryon channels and study the coupling of these states
to the different channels. We found that the lower state that we get couples
mostly to πΣ∗

c , while the one couples mostly to D∆.

Table 3.53: Poles in the I = 1 sector of D∆ and coupled channels as a
function of qmax. Threshold masses: D∆(3099), πΣ∗

c(2656), ηΣ
∗
c(3066).

(Units: MeV)

qmax 600 638 700 750

2733.9 + i119.4 2734.7 + i112.1 2737.6 + i99.2 2743.1 + i93.0
no box

2882.0 + i3.1 2843.5 + i4.5 2774.4 + i8.1 2712.8 + i6.7

2734.4 + i119.2 2736.0 + i111.9 2740.6 + i102.4 2741.2 + i98.2
with box

2829.7 + i3.3 2789.1 + i4.8 2714.2 + i4.7 2653.9 + i0.2

Finally, in Table 3.54 we show the states that we get from the D∗∆
and coupled channels. We get two states with zero or a small width. Once
again, taking the cut off corresponding to the vector-baryon channels, after
investigating the coupling to the different channels, we found that the lower
state couples mostly to D∗∆, while the other one couples most strongly to
ρΣ∗

c .

Table 3.54: Poles in the I = 1 sector of D∗∆ and coupled channels as a
function of qmax. Threshold masses: D∗∆(3241), ρΣ∗

c(3293), ωΣ
∗
c(3301),

φΣ∗
c(3538). (Units: MeV)

qmax 750 780 791 810

2852.1 + i0 2816.9 + i0 2803.9 + i0 2781.5 + i0
no box

3201.4 + i0 3189.7 + i0 3185.4 + i0 3177.7 + i0

2791.1 + i0 2761.0 + i0 2749.2 + i0 2728.4 + i0
with box

3201.2 + i1.3 3189.3 + i1.2 3184.9 + i1.1 3177.1 + i1.1

We have obtained seven states with I = 1, corresponding to Σc states.
In Ref. [238] one also sees three Σc states with J = 1/2 and two states with
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J = 3/2. Some of them have strong couplings to particular channels, as we
also find here, but the masses of the states differ somewhat. The stronger
resemblance is for a state that couples strongly to πΣ∗

c in Ref. [238] at 2693
MeV with Γ = 67 MeV, while here we find it at 2736 MeV with Γ = 224
MeV.

It is curious to see that the D∗∆ state has smaller mass than the corre-
sponding D∗N state, in spite of the ∆−N mass difference. The reason has
to be seen in the factor 4 in Table 3.26 for D∗∆ → D∗∆ versus the factor
1 for D∗N → D∗N in Table 3.25.

3.5.4 Summary of the results

Finally, since we have many intermediate results, we summarize here the
final results that we get for the states. The results are shown in Table 3.55,
where we also write for reference the main channel of the state.

Table 3.55: Energies and widths of the states obtained and the channels to
which the states couple most strongly.

main channel J I (E, Γ) [MeV] Exp.

DN , πΣc 1/2 0 2592, 9 Λc(2595)

πΣc 1/2 0 2623, 53 -

D∗N 1/2 0 2615, 0 -

D∗N 3/2 0 2628, 0 Λc(2625)

πΣ∗
c 3/2 0 2668, 70 -

ρΣc 1/2, 3/2 0 2959, 3 Λc(2940)?

πΣc 1/2 1 2669, 224 -

D∆ 3/2 1 2789, 9 -

πΣ∗
c 3/2 1 2736, 224 -

D∗N 1/2, 3/2 1 2917, 0 -

ρΣc 1/2, 3/2 1 3126, 9 -

D∗∆ 1/2, 3/2, 5/2 1 2749, 0 -

ρΣ∗
c 1/2, 3/2, 5/2 1 3185, 2 -

In summary, we predict six states with I = 0, two of them corresponding
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to the Λc(2595) and Λc(2625), and seven states with I = 1, some of them
degenerate in spin. The energies of the states range from about 2592 MeV
to 3185 MeV.

It might seem at first sight that this is a large number of states, but
we must recall that for the analogous sector of baryon strange states one
finds within the same range of difference of energies six Λ states with spin
and parity JP = 1/2−, 3/2−, 5/2− and six Σ states with the same spin and
parity, most of which could be reproduced as dynamically generated states
of meson-baryon or vector-baryon [189,395].

For the moment there is only one Σc state reported in the Ref. [9] around
2800 MeV. The state, however, has no spin nor parity assigned. While there
are several states in Table 3.38 close in energy to this state, it is worth
quoting that the width of the experimental state is around 75 MeV, which
is far away from the Γ = 0, 9, 224 MeV, that we find for the likely states in
Table 3.38 according to the mass. We would tentatively conclude that the
experimental state corresponds most likely to a positive parity state. On
the other hand, the reported state Λc(2940) with Γ = 17+8

−6 MeV [9], which
has no spin parity associated, could correspond to the spin degenerate Λc
state that we find at 2959 MeV with small width. In other approaches that
use a constituent quark model [476] a D∗N structure is suggested for this
state. However, as discussed before, this state, which has some coupling
to D∗N , couples mostly to ρΣc. The states dominated by D∗N in our
approach appear more bound.

3.5.5 Conclusions

In this work we studied the interaction of DN , D∆, D∗N and D∗∆ states
with its coupled channels using dynamics extrapolated from the light quark
sector to the heavy one. The starting point was to consider the heavy
quarks as spectators in the dominant terms of the interaction. The source
of interaction was pion exchange, that mixes states of pseudoscalar-baryon
with those of vector baryon, and vector exchange. The interaction was
extracted mapping from the light sector and respecting the rules of HQSS.
Hence, an extrapolation of the results of the LHG approach was used. With
these elements of the interaction, adding subleading terms in the large heavy
quark mass counting, obtained from the exchange of heavy vectors in the
LHG approach, we studied the interaction of the DN , D∆, D∗N and D∗∆
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with their coupled channels πΣc, πΛc, ηΣc (for the DN); πΣ∗
c , ηΣ

∗
c (for

the D∆); ρΣc, ωΛc, φΛc, ρΣ
∗
c , ωΣ

∗
c , φΣ

∗
c (for the D∗N); and ρΣ∗

c , ωΣ
∗
c ,

φΣ∗
c (for the D∗∆), and we searched for poles of the scattering matrix in

different states of spin and isospin. We found six states in I = 0, with one
of them degenerate in spin J = 1/2, 3/2, and seven states in I = 1, two
of them degenerate in spin J = 1/2, 3/2, and two more degenerate in spin
J = 1/2, 3/2, 5/2. The coupling of the states to the different channels,
together with their wave function at the origin, were evaluated to show which
is the weight of the different building blocks in those molecular states. In
particular, two of the states, one with spin 1/2 that couples mostly to DN ,
and a second one with spin 3/2 that couples mostly to D∗N were associated
to the experimental ones, Λc(2595) and Λc(2625) respectively. The rest of
states are so far predictions, with a number of states that is similar to the
one of negative parity Λ and Σ states in the strange sector. We think that
the use of realistic dynamics, with strict respect of heavy quark spin-flavor
symmetry, renders the results obtained rather solid and they should serve
as a guideline for future experiments searching for baryon states with open
charm.



Chapter 4

Particle decay properties

Particle decays is one of important sources of information in high energy
hadron experiments. Thus, to understand and explain the properties of res-
onances theoretically, we also need to investigate the particle decay modes.
Inside nuclei we have additional decay modes that come from particle-
nucleon reactions. In this chapter, we will investigate the decay properties
of some states, predicted in theories or found in experiments, such as the
dynamics in the nuclear medium, the experimental suppression, cross sec-
tion, phase shift of certain partial wave, the structure component of the
states, and radiative decay properties, et al..

4.1 J/ψ reaction mechanisms and suppression

The subject of J/ψ suppression in nuclei has a long history [493] and many
plausible reasons for it have been given. Reaction mechanisms of J/ψ with
the nucleons are suggested in Refs. [494–496]. Parton shadowing in the tar-
get nucleus may suppress the probability of producing a J/ψ [497]. Energy
loss of the incident parton in the nuclear medium, prior to cc̄ production,
may alter the J/ψ production cross section [498, 499]. Also, a suppression
of the J/ψ has been proposed as a signature of the formation of Quark-
Gluon Plasma in ultrarelativistic nucleus-nucleus collisions [500]. The re-
action mechanisms producing the J/ψ in a first place are also not well
understood [131]. In any case, a proper understanding of what happens
in hot nuclear matter in ultrarelativistic nucleus-nucleus collisions demands

239
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that we understand what happens and why in cold matter as mentioned in
Ref. [501]. In this sense J/ψ suppression has been extensively searched in p-
nucleus collisions in several fixed target experiments (NA3 [502], E772 [503],
NA38 [504], E866 [505], E672/E706 [506], NA50 [501,507,508] and more re-
cently in NA60 [509].

Our aim in this work is to exploit recent progress in the theoretical de-
scription of the interaction of vectors mesons with nucleons and apply these
ideas to study mechanisms of J/ψ absorption in nuclei. We have in mind the
depletion of J/ψ in production reactions in nuclei induced by elementary
particles, protons, photons, etc. The starting point is to recall recent ad-
vances on our theoretical understanding of the interaction of vector mesons
with nucleons. At small and intermediate energies the practical tool to
deal with vector meson interactions is the use of effective Lagrangians of
the LHG theory [156,159,163,329] which incorporate pseudoscalar mesons,
vector mesons and photons. Concerning the pseudoscalar interaction these
Lagrangians are equivalent to the chiral Lagrangians [160,377] assuming vec-
tor meson dominance, thus, they account for chiral symmetry. In addition
they allow to extend the theory to provide the interaction of pseudoscalar
mesons with vector mesons and vector mesons with themselves. If one con-
siders the coupling of vector mesons to baryons [171, 172] one can then
address the interaction of vectors with baryons. Yet, even at low energies
the use of perturbation theory becomes inadequate and nonperturbative
techniques are demanded to study this interaction. By combining the in-
formation from the Lagrangians and unitary in coupled channels, following
the pattern of the ChUA [189], a study of the vector-baryon interaction is
done in Ref. [390] for the case of the baryons of the octet of the proton and
in Ref. [389] for the case of the baryons of the decuplet of the ∆. It is found
there that several resonances appear as a consequence of the interaction
which can be associated to known states of the PDG [9]. The extrapola-
tion of these works to the charm sector was done in Refs. [127, 168], where
some N∗ and Λ∗ resonances in the hidden charm sector were dynamically
generated from DN and other coupled channels, πΣc and πΛc among them.
These works contain the tools to address the J/ψN interaction which are
used here.

Furthermore, when it comes to study the propagation of vector mesons
with nuclei we apply also recent tools developed in the study of the K̄∗(890)
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in nuclei [510]. This latter work has gone one step forward with respect to
the well established works on the issue [511–516] that were constructed to
address the problem of vector meson propagation through nuclei [284,517].
While the latter quoted works concentrated mostly on the modification of
the decay channels and the coupling to some resonance-hole components
introduced empirically, the dynamical generation of these resonances, to
which the vector-nucleon couples so strongly, in the work of Ref. [390], allows
to address the problem from a more microscopical point of view. Indeed,
in Ref. [510] there are two sources of modification of the K̄∗ properties, the
modification of its decay channel, πK̄, and the K̄ N interaction modified in
the medium, which is studied nonperturbatively in Ref. [510] and gives rise
to dynamically generated resonances in the region of 2000 MeV. In this sense
the coupling of the K̄∗ to hole-resonance components is done automatically,
with the strength provided by the same model. This of course has more
relevance when we go to the charm sector since experimental information on
baryonic resonances is scarce and their coupling to vector meson components
is not known.

With these motivation, in order to test the relevance of the J/ψ absorp-
tion mechanisms found, in the present work we evaluate the transparency
ratio for photoproduction of J/ψ in nuclei. Using beams of around 10 GeV,
and energies accessible in the Jefferson Lab upgrade, we look for the rate of
production in different nuclei.

4.1.1 Vector-baryon coupled channels approach

Recently, a study of the vector-baryon interaction in the hidden charm sec-
tor around energies of 4 GeV, has been tackled in Refs. [127, 168]. In the
sector with isospin I = 1/2 and strangeness S = 0, three channels are con-
sidered: D̄∗Λc, D̄

∗Σc and J/ψN . The potential is evaluated using an SU(4)
extrapolation of the LHG approach with symmetry breaking ingredients im-
plemented [127, 168]. The amplitudes of Feynmann diagrams like those in
Fig. 4.1 a) are evaluated, and the potential after projecting in s-wave takes
the form:

V WT
ij = Cij

1

4f2
(E + E′)~ε~ε ′, (4.1)
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Figure 4.1: a) Vector exchange diagrams for the vector-baryon interaction
considered in Refs. [127, 168]. b) Box diagram with ρΛ(Σ) in the inter-
mediate state. c) J/ψN → J/ψN like-box diagram with ρΛ(Σ) in the
intermediate state.

for i, j = D̄∗Λc, D̄
∗Σc, with a minus sign different from Eq. (3.9) absorbed

by the present coefficients Cij . In the above formula, E, E′ are the energies
of vector mesons, ~ε, ~ε ′ the polarization vectors, and f ≡ fπ = 93 MeV. The
transition between these two channels is achieved through the exchange of
one ρ or ω mesons. For transitions between D̄∗Λc, D̄

∗Σc and J/ψN , the full
propagator of the D∗ meson is taken into account. Thus, we have

V WT
kl (J/ψN → D̄∗Λc, D̄

∗Σc) = − Cklg
2

p2D∗ −m2
D∗

(ED∗ + EJ/ψ)~ε~ε
′, (4.2)

where g = mρ/2f . Note that the vertices J/ψJ/ψω or J/ψJ/ψρ are for-
bidden by G-parity and isospin respectively, which leads to a zero potential
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of the tree order amplitude J/ψN → J/ψN . But, when amplitudes are
unitarized via the BS equation, the resummation of loops implies indirect
reactions JψN → D̄∗Λc(Σc) → JψN .

The scattering matrix is given by the BS equation in coupled channels,
Eq. (1.44), seen in the subsection 1.3.1, with the G function using the
dimensional regularization expression, Eq. (1.46), as done in Refs. [127,168],
and the potential V given by Eq. (4.1) removing ~ε~ε ′. When going to
the complex plane of the energy, one resonance is found at the position
Re(

√
s) = 4415 MeV. Pole positions and couplings to the different channels

are given in Table 4.1. In addition, there can be transitions from the heavy

Table 4.1: Pole position and coupling constants (ga) to various channels for
the state found in the sector (I, S) = (1/2, 0)

(I, S)
√
s = 4415− 9.5i Channels

(1/2, 0) D̄∗Σc D̄∗Λc J/ψN

ga 2.83− 0.19i −0.07 + 0.05i −0.85 + 0.02i

vector-heavy baryon channels to light vector-light baryon channels with a
big momentum transfer to the last ones for the energies that we consider.
To account for this momentum dependence, the light vector-light baryon
channels are implemented through box Feynmann diagrams, see Fig. 4.1
b). This is done because the masses of the intermediate channels are very far
from the energies under consideration for J/ψN . This transition potential
is derived from the same hidden gauge Lagrangians, and it is given by
Refs. [127,168]

δṼ Box
ab =

∑
c

ṼalGl Ṽlb, (4.3)

where l stands for the light channels ρN , ωN , φN , K∗Λ, K∗Σ, and

Ṽal = −Calg2
−2EV1 + [(MB3 −MB1)(M

2
V1

+M2
V ∗
1
−M2

V3
)]/M2

V ∗
1

M2
V1

+M2
V3

− 2EV3EV1 −M2
V ∗
1

(4.4)

Here l stands for a different group of V3B3, and Cal [Cij in Eq. (4.1), Ckl
in Eq. (4.2)] coefficients given in Refs. [127, 168] or our paper [518]. Then,
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the kernel V in the BS equation, Eq. (1.44), becomes now:

Vab(V1B1 → V2B2) = V WT
ab + δṼ Box

ab (4.5)

with V WT
ab given by Eqs. (4.1) and (4.2). Since the light vector-light baryon

intermediate channels are very far from the thresholds of J/ψN, D̄∗Λc(Σc),
the real part of the box diagrams is small and only the imaginary part
matters, but one pays the prize of having the factor −m2

D∗ in the denomi-
nator of the propagator, which reduces its contribution. Thus, the effect of
the inclusion of the potential δṼ Box

acb in the BS equation is only a moderate
widening of the resonance. With this, the state found with mass M = 4415
MeV has a width of 28 MeV added to the 19.2 MeV due to its decay into the
J/ψN channel, which results in a total width of around 50 MeV [127,168].
The fact that this width is small for a state with such high mass is due
to the fact that the transitions are mediated by a heavy vector meson. It
is worth noting that the J/ψN channel, which concerns us in the present
article, only can go to the light vector-light baryon channels through inter-
mediate states with D̄∗Λc, D̄

∗Σc, see Fig. 4.1 c). Since the depletion has to
do with the inelastic J/ψN cross section, we evaluate it by using the optical
theorem that states in our normalization

σtot = − MN

P
J/ψ
CM

√
s
Im TJ/ψN→J/ψN , (4.6)

hence, by evaluating also the elastic cross section we have

σin = σtot − σel (4.7)

= − MN

P
J/ψ
CM

√
s
Im TJ/ψN→J/ψN − 1

4π

M2
N

s

∑∑
|TJ/ψN→J/ψN |2,

where
∑
,
∑

stand for sum and average over the spins of the nucleons and
J/ψ.

In Fig. 4.2 we plot the results for these cross sections. We observe a peak
around 4425 MeV, which corresponds to a hidden charm resonance found in
Refs. [127, 168]. Actually, we are interested in the region of J/ψ created in
electron nucleus collisions for electrons around 10 GeV which corresponds to
J/ψ moving in the rest frame of the nucleons with

√
s ' 4050− 5300 MeV,

which includes the resonant peak.
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Figure 4.2: The total, elastic and inelastic cross sections in Eqs. (4.6) and
(4.8).

4.1.2 The J/ψN → D̄Λc(Σc) reaction

In the case of the ρ meson the decay channel is ππ, and πK̄ for the K̄∗. The
equivalent mesonic decay channel of the J/ψ is DD̄, but it is closed kine-
matically. Yet, in the medium there is more available energy for the opening
of new decay channels. Indeed, the channel D̄Λc is slightly above the J/ψN
threshold and can lead to absorption phenomena in the medium. The ex-
trapolation to SU(4) of the coupling of vector mesons to pseudoscalars, as
done in Ref. [383], provides a strong coupling of J/ψ toDD̄, and the medium
related decay channels, with DN → Λc or DN → Σc, are studied in the
present work. When implementing vertex corrections in the medium, a con-
tact term J/ψN → D̄Λc, which is called Kroll Rudermann (KR) term, must
also be taken into account. Altogether, this leads to a relevant source of
the J/ψ absorption in the medium through the reaction J/ψN → D̄Λc. In
addition, one can also consider the creation of one pion in the final state, i.
e. J/ψN → D̄Σcπ, D̄Λcπ, which will be discussed in next subsection. This
reaction requires more energy, however, it is interesting to study it since
the πΣc, πΛc channels are decay channels of the Λc(2595) and Σc(2800)
resonances respectively, which are dynamically generated [256–258].

By analogy to the ρ→ ππ decay or K̄∗ → K̄π, the J/ψ couples to DD̄.
Although the channel is not open for decay, the channels J/ψN → D̄Λc,
D̄Σc are nearly opened, the thresholds are 4160 and 4290 MeV respectively,
which requires a momentum pcmJ/ψ = 405 MeV for D̄Λc production. The ver-
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tex J/ψDD̄ needed in these diagrams is obtained from the LHG Lagrangian,
Eq. (1.34), seen in subsection 1.2.2, in SU(4). The isospin doublets of D
are (D+, D0), (−D̄0, D−), and, thus, we find

−itJ/ψD+(q)D−(P−q) = −i2g qµ εµ, (4.8)

−itJ/ψD0(q)D̄0q = −i2g qµ εµ, (4.9)

−itJ/ψDD̄(I=0) = −i2
√
2 qµ ε

µ, (4.10)

with P the J/ψ momentum.

We then evaluate the cross section for the Feynman diagrams of Figs. 4.3
a). This requires in addition the extension of the Yukawa vertex DNΛc(Σc).

J/ψ D̄

N Λc(Σc)

N

D̄J/ψ

Λc(Σc)

D̄J/ψ

N Λc(Σc)

π

D

D

a)

b)

c)

Figure 4.3: Feynman diagrams of J/ψN → D̄Λc(Σc), a) Vector exchange
contribution. b) Kroll Ruderman term. c) The J/ψN → D̄πΛc(Σc) reac-
tion.

One can use SU(4) symmetry or simply assume that the D plays the anal-
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ogous role as a K̄ and Λc(Σc) the role of Λ(Σ). Then we find

−itD0p→Λ+
c

= − 1√
3

(
D + 3F

2f

)
~σ · ~q, (4.11)

−itD0p→Σ+
c

=
D − F

2f
~σ · ~q, (4.12)

−itD+p→Σ++
c

=
√
2
D − F

2f
~σ · ~q. (4.13)

We use the values D = 0.795, F = 0.465 [313]. The cross section for the
process J/ψ → D̄0Λ+

c is given by

σ =
MNMΛc

4π

1

s

p′

p

∑∑
|T |2, (4.14)

where p′, p are the Λc and N momentum in the J/ψN CM frame and |T |2
is given by∑∑

|T |2 =
4

3
g2D

[(P · pD̄)2

M2
J/ψ

−m2
D̄

]
× 1

2

1

mNmΛc

(mN +mΛc)
2

×(pp′ −mNmΛc)×
1

(q2 −m2
D)

2
× 1

3

(3F +D

2f

)2
.(4.15)

with mN the proton mass and P, pD̄ the four-momentum of the J/ψ and
D̄ respectively and gD = mD∗/2fD (fD = 206/

√
2 MeV).

For reasons of gauge invariance [393, 511, 515, 519, 520] one should add
the KR term, this is a contact term for the vector-two-baryon-pseudoscalar
particles, see Fig. 4.3 b). The prescription to get the KR term is to sub-
stitute the meson pole term: ~ε (~PV + 2~q ) 1

(PV +q)2−m2
D
~σ (~PV + q) by the KR

term: ~σ · ~ε. In the case of J/ψp→ D̄0Λ+
c we get,

−itpΛ+
c J/ψD̄0 = − g√

3

(
D + 3F

2f

)
~σ · ~ε (4.16)

In Fig. 4.4 we can see both contributions: D-exchange (dashed line), KR
(dot-dashed line), and the sum, which takes into account the interference
(continuous line). Whereas the KR contribution remains constant while
increasing

√
s, the D-exchange term increases with the momenta of the J/ψ.
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We observe that for energies around 4400 MeV the KR term dominates,
being about five times bigger than the D-exchange contribution, the latter
has σ ∼ 1.2 mb around this energy for D̄Λc. In the case of D̄Σc, the sum
is about one order of magnitude smaller than for D̄Λc. The cross section
for J/ψN → D̄Λc was also studied in [496] based on the same mechanism
of Fig. 4.3 a) and with similar results. We have also included here the KR
term following the developments of Refs. [393,511,515,519,520].
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Figure 4.4: The cross section for J/ψN → D̄Λc (left) and J/ψN → D̄Σc
(right).

4.1.3 The J/ψN → D̄πΛc, D̄πΣc

Next we study the reactions J/ψN → D̄πΛc, D̄πΣc. The diagrams are
depicted in Fig. 4.3 c). This process is interesting to study because the
DN interaction leads to the Λc(2595) and Σc(2800) resonances studied in
Refs. [256–258], which have the opened decay channels πΣc and πΛc respec-
tively. The scattering matrix for this process is calculated similarly as in
the mechanisms of the former section and we find for J/ψN → D̄πΛc

σ =
MNMΛc

4pJ/ψs

∫
dM23

∫ 1

−1
dcosθ

p1p̃2
(2π)3

∑∑
|T |2, (4.17)

with∑∑
|T |2 = 4

3
g2D

[(P · pD̄)2

M2
J/ψ

−m2
D̄

]( 1

q2 −m2
D

)2
× 3

2

∣∣T I=1
DN→πΛc

∣∣2. (4.18)
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In Eq. (4.17)M23 is the invariant mass of πΛc and θ the angle between J/ψ
and D̄, and

p1 =
λ1/2(s,m2

D̄
,M2

23)

2
√
s

, p̃2 =
λ1/2(M2

23,M
2
Λc
,m2

π)

2M23
. (4.19)

For the case of J/ψN → D̄πΣc we take only the I = 0 part, which
is dominant, and we sum the possible charge processes with this isospin:
J/ψ p→ D̄0π+Σ0

c ; J/ψ p→ D̄0π0Σ+
c ; J/ψ p→ D̄0π−Σ++

c . We find∑∑
|T |2 = 4

3
g2D

[(P · pD̄)2

M2
J/ψ

−m2
D̄

]( 1

q2 −m2
D

)2
× 1

2

∣∣T I=0
DN→πΣc

∣∣2. (4.20)

The amplitudes T I=1
DN→πΛc

and T I=0
DN→πΣc

are evaluated using the model of
[257, 258]. We show the cross section for Λc and Σc in the final state in
Fig. 4.5. The cross sections found are small. The one for J/ψN → D̄πΛc
is about 30 times smaller than the one for J/ψN → D̄Λc, and the one for
J/ψN → D̄πΣc about five times smaller than that of J/ψN → D̄Σc.
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Figure 4.5: The cross section for J/ψN → D̄πΛc(Σc).

4.1.4 Transparency ratio

We now try to see how we can test this prediction. We can for instance
take an electron beam of 10 GeV as in the Jefferson lab upgrade and look
at γA→ J/ψ X. Depending on what is the elementary production of J/ψ,
like γN → J/ψN, J/ψπN, · · · . We will have a range of J/ψ energies in the
lab frame which covers the range of energies 4000 MeV − 5340 MeV. We
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choose this range because we have the resonance peak for σin in this region.
We define the transparency ratio

TA =
σA(J/ψ)

AσN (J/ψ)
, (4.21)

but it is customary to normalize to a light nucleus like 12C and define

T ′
A =

TA
T12C

. (4.22)

We take several nuclei and evaluate σA(J/ψ) as a function of A. Given
the fact that the J/ψ will move in the nucleus essentially forward in the
lab frame of J/ψN , with N a secondary nucleon in the nucleus which we
consider at rest, we can use a simple formula derived in Ref. [521] which
gives the transparency ratio as

TA =
πR2

AσJ/ψN

{
1 +

( λ
R

)
exp
[
− 2

R

λ

]
+

1

2

( λ
R

)2(
exp
[
− 2

R

λ

]
− 1
)}
. (4.23)

where λ = (ρ0σJ/ψN )
−1, with σJ/ψN the inelastic cross section of J/ψN . In

Eq. (4.23) R is the radius of a sphere of uniform density ρ0 = 0.17 fm−3

with R = r0A
1/3, r0 = 1.143 fm and A the mass number. This formula

works remarkably well in comparison with a more accurate one that takes
into account the angle dispersion in the laboratory, as we have checked and
is also reported in Ref. [522] in η′ photoproduction in nuclei.

We plot in Fig. 4.6 the total J/ψN inelastic cross section, as the sum of
all inelastic cross sections from the different sources discussed before. We
can take now various energies of J/ψ and evaluate TA for this energy as a
function of A. We do that in Fig. 4.7 for

√
s = 4600 MeV (σTotal(in) '

6.8 mb), a typical energy which is not in the peak of the resonance (4415
MeV). We can see that the values of the transparency ratio are of the order
of 0.60− 0.70 for heavy nuclei indicating a depletion of about 30− 35 % in
J/ψ production in nuclei. Normalized to T12C the ratio goes down to 0.75
for heavy nuclei.

In Fig. 4.8 we plot the ratio T207Pb/T12C as a function of energy. We
can see that the presence of a resonance results into a dip in the ratio of
transparency ratios at the energy of the resonance.
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Figure 4.6: The total inelastic cross section of J/ψN .
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It should be noted that the calculation of the transparency ratio done
with Eq. (4.23) does not consider the shadowing of the photons and assumes
they can reach every point without being absorbed. However, for γ ener-
gies of around 10 GeV, as suggested here, the photon shadowing cannot be
ignored. Talking it into account is easy since one can multiply the ratio T ′

A

by the ratio of Neff for the nucleus of mass A and 12C. This ratio for 208Pb
to 12C at Eγ = 10 GeV is of the order 0.8, but with uncertainties [523]. We
should then multiply T ′

A(
208Pb) in Fig. 4.8 by this extra factor for a proper

comparison with experiment. However, this factor does not influence the
shape of the results of Fig. 4.8 and the dip due to the resonance. The small
dip in Fig. 4.8 would require a high precision experiment to be observed.
However, there is one more important reason that makes it not observable,
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Figure 4.8: The transparency ratio of J/ψ photoproduction as a function
of the energy in the CM of J/ψ with nucleons of the nucleus. Solid line:
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shadowing [523].

and this is the Fermi motion of the nucleons 1. Indeed, in the secondary
collisions of the J/ψ with nucleons of the nucleus the argument s of the
J/ψN cross section is given by

sN = (pJ/ψ + pN )
2 = (EJ/ψ + EN )

2 − (~pJ/ψ + ~pN )
2, (4.24)

while EN ≈ MN , the term 2~pJ/ψ~pN in the expansion of s gives a large
span of values of s. For this purpose we substitute the J/ψN inelastic cross
section by the one folded over the nucleon momenta

σ(s) → σ̄ =

∫
|~pN |<pF

d3~pN
(2π)3

σ(sN )

/∫
|~pN |<pF

d3~pN
(2π)3

, (4.25)

where pF = (3π2ρ/2)1/3 and for ρ we take an average density ρ ≈ ρ0/2, ρ0 =
0.17fm−3, the nuclear matter density. The differences are minimal if other
realistic densities are used.

The average cross section, σ̄, is plotted in Fig. 4.9 as a function of EJ/ψ.
We can see that the peak in Fig. 4.6 is washed away by the effect of Fermi
motion. Similarly, we redo the calculations of Fig. 4.8 for the transparency

1We would like to thank B. Pire for useful remarks concerning the Fermi motion in
the transparency ratio.
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ratio using the averaged cross section and we find the results of Fig. 4.10.
There, again, the dip in the transparency ratio has disappeared, but the
values for the J/ψ suppression are essentially the same as before.
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Figure 4.9: The average inelastic cross section of J/ψN .
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Figure 4.10: The transparency ratio of J/ψ photoproduction as a function
of the energy of EJ/ψ using the averaged J/ψN cross section over the Fermi
sea of Fig. 4.9. Solid line: represents the effects due to J/ψ absorption.
Dashed line: includes photon shadowing [523].

As to the values of the transparency ratio for the different nuclei and
different energies, even if the suggested experiment studied here has not been
done, the values obtained are in line with the rates of suppression found in
many experiments [502–504], where, in spite of using high energies, the J/ψ
are produced with momenta in the range studied here.
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4.1.5 Conclusions

We have investigated different sources of interaction of J/ψ with nucleons
in order to obtain the inelastic J/ψN cross section. First we have used
a model recently developed to study the vector-baryon interaction in the
charm and hidden charm sectors. This model produces a resonance which
couples to D̄∗Λc, D̄

∗Σc, J/ψN at 4415 MeV. The decay of this resonance to
light vector-light baryon channels is also incorporated through box Feyn-
man diagrams. Altogether, it gives contribution to the inelastic part of
the J/ψN → J/ψN cross section. We have also considered the transitions
J/ψN → D̄Λc or D̄Σc via D-exchange and KR (contact term) diagrams.
These processes give a rate large enough to be observed and dominate for
the energies that we consider here (

√
s ∼ 4100− 5000 MeV). Furthermore,

we evaluate the transitions J/ψN → D̄πΛc or D̄πΣc. However, these latter
processes have a small cross section in the range of energies studied here.
We find a total inelastic cross section of the order of a few mb, which is
sufficient to produce an appreciable suppression of J/ψ in its propagation
through nuclei. We then study theoretically the transparency ratio for J/ψ
electroproduction in nuclei, for electrons in the range of 10 GeV, and find
values for the transparency ratio which are in consonance with the typical
rates of J/ψ suppression found in most experimental reactions. One inter-
esting side effect is that because of the J/ψN resonance found theoretically
around

√
s = 4415 MeV, the J/ψ inelastic cross section has a maximum

around the energy of this resonance. The transparency ratio would have a
dip around this energy in principle. However, when the Fermi motion of the
nucleus is considered the cross section has to be substituted by its average
over the nucleon momenta and the dip is washed away. The implementation
of such an experiment would be rather valuable, providing information on
the J/ψ annihilation modes through the nucleonic components of nuclear
matter.
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4.2 Small Kπ component in the K∗ wave function

Understanding the nature and structure of hadronic particles is an impor-
tant subject of hadron physics. In principle Quantum Chromodynamics
(QCD) should give an answer to these questions. At high energies, because
of the asymptotic freedom [142, 143, 524], QCD can be treated perturba-
tively, but at low energies, needed to interpret the hadron spectrum, QCD
is highly non perturbative and calculations become very difficult. Lattice
QCD can provide an answer in the future, but so far the determination of
the hadron spectrum is finding more problems than anticipated, in particu-
lar for particles which decay in several channels, which are the majority of
them [525,526].

Traditionally quark models have tried to find an approach to that prob-
lem [2, 527–529] and remarkable progress has been done from this perspec-
tive, but in order to understand the particle properties quoted in the PDG [9]
it is also becoming clear that hadronic states are more complex than just
three quarks for the baryons and qq̄ for the mesons [530]. One of the theo-
ries that has been remarkably successful dealing with hadron interaction and
structure is chiral perturbation theory [376,377]. This theory is an effective
field theoretical approach to QCD at low energies and the quark and gluon
degrees of freedom are substituted with the baryons and mesons themselves.
Yet, it soon became clear that chiral perturbation theory has a very lim-
ited energy range of convergence and improvements were made to construct
non perturbative unitary extensions of the theory that allowed to deal with
hadron interactions at much higher energies. These extensions are com-
monly known as the ChUA [16, 18, 19, 155, 190, 194, 195, 260, 277, 326–328]
(see [189] for a review). With this theory one can study the interaction
between hadrons, and some times the interaction leads to poles in the scat-
tering matrix which are interpreted in terms of “dynamically generated” or
“composite hadron” states, like the two Λ(1405), Λ(1670), N∗(1535), etc.

One of the questions that attracts attention is the issue of whether some
resonances are “composite” of other hadrons or “genuine” states (other
than hadron-hadron molecular states). One answer to this question was
early given in the paper of Weinberg [204] (see also Refs. [266, 456, 531]),
but it deals with particles bound in s-wave with a very small binding. The
generalization to also s-waves but not necessarily so lightly bound and with
many coupled channels was given in Ref. [95] for bound states and it was
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extended to deal with resonances in Ref. [205]. A further generalization to
higher partial waves was done in Ref. [206]. In this latter paper it was found
that the ρ meson had a ππ component in the wave function that amounted
only to about 20 %, which allows one to claim that the ρ is basically a
genuine state rather than a composite state of ππ.

In the present work we want to extend the work done in Ref. [206] for
the ρ meson to the K∗. The K∗ particle was first reported by Ref. [532]
and also confirmed in Refs. [533,534]. It is always exhibited as a resonance
in the Kπ scattering [358, 360], which is determined from experiments by
the reactions K±p→ K±π+n, K±p→ K±π−∆++ and K+p→ K0π0∆++.
The p-wave Kπ scattering was studied by N/D method in Ref. [19] using
the ChUA and good agreement was found between theory and experiment.
But there are no works focusing on the structure of the K∗ resonance from
the point of view of its possible Kπ compositeness or otherwise and this is
the aim of our present work.

4.2.1 Brief summary of the formalism

Following the formalism of Ref. [206], as discussed in subsection 1.3.2, we
have extrapolated the ChUA to higher partial waves, which are used in the
present work. With one more step, following again Ref. [206], one finds
that for a resonance or bound state, which is dynamically generated by the
interaction, the sum rule

−
∑
i

g2i

[
dGi
dE

]
E=Ep

= 1, (4.26)

is fulfilled, with Ep the position of the complex pole (also seen Eq. (3.75)).
However, if the state contains some genuine component outside the space
of the N wave functions of the coupled channels approach, Eq. (4.26) is
generalized to

−
∑
i

g2i

[
dGi
dE

]
E=Ep

+ |〈β|Ψ〉|2 = 1 , (4.27)

or equivalently to

−
∑
i

g2i

[
dGi
dE

]
E=Ep

= 1− Z ; Z = |〈β|Ψ〉|2 , (4.28)
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where |β〉 is the genuine component of the state, and gi is the coupling,
defined as

gigj = lim
E→Ep

(E − Ep) tij . (4.29)

More details can be seen in our paper [535].

4.2.2 Chiral unitary model

Now we investigate the structure of the K∗ particle, which shows up as a
resonance ofKπ, using the formalism discussed before with just one channel.
In order to quantify the statement, we first start from the ChUA, and then
we use a pure phenomenological method which is independent from any
theoretical model to confirm our results, seen in the next subsection.

The p-wave Kπ scattering is studied in Ref. [19] using the N/D method
and only the tree level scattering potential. We take the potential from
Ref. [19] but taking into account the definition of Eq. (1.53), thus removing
the three-momentum factor,

v = − 1

2f2

(
1 +

2G2
V

f2
s

M2
K∗ − s

)
, (4.30)

where MK∗ is the bare K∗ mass, f is the π decay constant and GV the
coupling to Kπ in the formalism of Ref. [377], where GV ' f/

√
2.

Here, we have explicitly separated the factor |~p |2 in the potential V
to get v which does not depend on the momentum. The formalism using
this v kernel requires, as shown in subsection 1.3.2, that the |~p |2 factor
should be included in the loop function (see Eq. (1.56) and the discussion
in Ref. [206]). Thus, we can fit the data [19, 358, 360] by using Eq. (1.55)
in one channel, but with the loop function G given by

G(s) =

∫
|~q |<qmax

d3~q

(2π)3
|~q |2

s− (ω1 + ω2)2 + iε

(
ω1 + ω2

2ω1ω2

)
, (4.31)

where ωi =
√
m2
i + ~q 2, i = π, K. The loop function of Eq. (4.31) is regu-

larized by means of a cutoff qmax. As also done in Ref. [206], we generalize
the formulas of the former subsection to make them relativistic defining gigj
as (seen also Eq. (3.72))

gigj = lim
s→sR

(s− sR) tij , (4.32)
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Figure 4.11: The fit results of the Kπ scattering p-wave phase shift. The
data are taken from [19,358,360].

The p-wave Kπ phase shift is then given by the formula [206]

q2cm t =
−8π

√
s

qcm cot δ(qcm)− i qcm
, (4.33)

with qcm the three-momentum in the center of mass reference frame, which
is defined after Eq. (1.46), and given by Eq. (2.58). Then we carry a χ2

fit to the data [19,358,360] using the parameters f, GV , MK∗ , qmax, with
f, GV constrained not to differ much from standard values. For the best fit
of the data, we find the values of these free parameters:

f = 86.22 MeV , GV = 53.81 MeV ,

MK∗ = 995.76 MeV , qmax = 724.698 MeV .
(4.34)

The best fit results are shown in Fig. 4.11. In Fig. 4.11(a) we show the
best fit to data points for the Kπ phase shift which are taken from the
experimental data [19, 358, 360]. Fig. 4.11(b) shows the results of the fit
using the determined parameters for a continuum of energies. Using the fit
parameters, we also get the results for the modulus squared of the scattering
amplitudes |t|2 and |T |2, which are shown in Fig. 4.12. From Fig. 4.12,
we can see a clear peak in the modulus squared of the amplitudes which
corresponds to a resonant structure, with a mass about 890 MeV and a
width about 50 MeV. In order to apply the sum rule to the case of a
resonance, we should extrapolate the amplitude to the complex plane and
look for the complex pole s0 in the second Riemann sheet. This is done by



4.2. SMALL Kπ COMPONENT IN THE K∗ WAVE FUNCTION 259

 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 9e-07

 600  700  800  900  1000  1100  1200  1300

|t
|2

 [
M

e
V

-4
]

√ s [MeV]

|t|
2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 600  700  800  900  1000  1100  1200  1300

|T
|2

 [
M

e
V

-2
]

√ s [MeV]

|T|
2

Figure 4.12: Modulus squared of the Kπ scattering amplitudes. Left: |t|2;
Right: |T |2 with cosθ = 1.

changing G to GII in Eq. (1.55) to get the complex amplitude in the second
Riemann sheet, tII . We proceed as follows:

GII(s) is the analytic continuation to the complex plane of the loop
function [16] in p-wave, given by

GII(s) = GI(s) + i
q3cm
4π

√
s
, Im (qcm) > 0 , (4.35)

where GI and GII are the loop functions in the first and second Riemann
sheet, GI is given by Eq. (4.31), and qcm is the complex momentum in the
center of mass reference frame, the same as before, given by Eq. (2.58). In
the second Riemann sheet, we find the pole of the resonance by solving the
equation

1− vG = 0 . (4.36)

Thus we are now able to determine the coupling g̃ρ as the residue in the
pole of the amplitude using Eq. (4.32), as

g2 = lim
s→s0

(s− s0)t
II . (4.37)

Finally, we can use the sum rule of Eq. (4.28) for the single Kπ channel
(generalized to the relativistic case) in order to evaluate the contribution of
this channel to the wave function of the resonance,

−g2
[
dGII(s)

ds

]
s=s0

= 1− Z , (4.38)
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where Z represents the probability that the K∗ is not a Kπ molecule but
something else.

Using the determined parameters from the best fit to the data, we find
the pole in the second Riemann sheet, which corresponds to the K∗ particle,

√
s0 = (891.0 + i 31.3) MeV , (4.39)

which is consistent with the results of Fig. 4.12. Note that we also get the
complex conjugate pole at (891.0− i 31.3) MeV, with a sign convention for
the imaginary part as taken in many works looking for poles. We compare
the result of Eq. (4.39) with the pole position found in Ref. [536] of (892.03−
i 23.3) MeV, and in Ref. [537] of (892.0− i 23.1) MeV. As one can see, the
agreement with the mass is very good, but the width obtained is a bit larger.
This also happened in the case of the ρ [206]. The value of the coupling at
the pole of Eq. (4.39) is

g = gKπ = (7.19 + i 0.67) . (4.40)

Then, we get

1− Z = (0.122 + i 0.193) ,

|1− Z| = 0.229 ,
(4.41)

which indicates that the amount of Kπ in the wave function is small. One
can conclude that the K∗ is largely a genuine state other than a Kπ com-
posite molecule.

4.2.3 Phenomenological analysis

As done in Ref. [206], we also use a pure phenomenological analysis to
confirm our results only with experimental data. The case for a p-wave
resonance is different from the one for s-wave, where the coupling g can be
obtained from experiments and dG

dE (or dG
ds ) is a convergent magnitude, even

when qmax → ∞.
The phenomenological scattering amplitude in a relativistic form for p-

wave can be written as

t̃ =
g̃2ex

s−m2
K∗ + i mK∗Γon

(
qcm
qoncm

)3 , (4.42)
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where qcm is the three-momentum of the Kπ system in the center of mass
reference frame, which is given by Eq. (2.58) for real

√
s, and qoncm is the

same quantity for
√
s = mK∗ ,

qoncm = qcm(
√
s = mK∗) , (4.43)

and the coupling is related to the width through the equation

g̃2ex =
8πm2

K∗Γon
(qoncm)

3
. (4.44)

Besides, the values of the mass mK∗ and width Γon of the K∗ for a Breit
Wigner distribution are given by experiment, mK∗ = 895.5 MeV and Γon =
46.2 MeV in the PDG [9].

As done in the former subsection, to get the pole and the coupling, we
also need to extrapolate the amplitude to the complex plane and search for
the pole s0 in the second Riemann sheet. We obtain t̃ in the second Riemann
sheet from Eq. (4.42) by taking s complex, s = a+ i b, and p→ −p in the
width term. Thus, we can look for the pole in the second Riemann sheet
and then use Eq. (4.37) to evaluate the coupling. We obtain

√
s0 = (892.0 + i 22.4) MeV ,

g̃Kπ = (6.08 + i 0.50) ,
(4.45)

(and also the complex conjugate ones) which are consistent with those ob-
tained before and closer to the pole positions of (892.03− i 23.3) MeV and
(892.0− i 23.1) MeV, found in Refs. [536] and [537], respectively.

For the p-wave, the G function in Eq. (4.31) or Eq. (1.56) is not
convergent and dG

ds is also logarithmically divergent [206, 538]. Therefore,
when doing the 1 − Z calculation, one does not know which value of the
cutoff qmax should be used to regularize the G function. Hence, as done
in [206], we can use natural values of the cutoff and test if the results are
stable or not for a certain range of qmax.

In Table 4.2, we show the results of our study of the strength |1 − Z|
obtained for the K∗ by changing the cutoff qmax around a certain reasonable
range. As we can see, the results are stable and similar to those obtained in
the former subsection. Particularly, for |1− Z| we get the same conclusion
as before, which means that, since |1−Z| is a small number, the K∗ is not
a Kπ composite state.
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Table 4.2: Values of 1− Z for different cutoffs qmax.

qmax [MeV] 1− Z |1− Z|

724.7 0.082− i0.137 0.160

700.0 0.077− i0.138 0.158

800.0 0.095− i0.134 0.165

900.0 0.111− i0.131 0.172

1000.0 0.124− i0.128 0.179

1100.0 0.136− i0.126 0.186

1200.0 0.147− i0.124 0.192

4.2.4 Conclusions

In the present work, we show the results of our investigation of theK∗ struc-
ture. We use a method for studying the particle structure by the generalized
Weinberg’s compositeness condition, which extends the results of Weinberg
for s-wave to other partial waves and bound states or resonances. Using
this formalism, we first calculate the Kπ coupling with the chiral unitary
theory, by means of the tree level chiral potential, and then we make a fit to
the experimental data of the phase shifts to determine the free parameters
in this model. With the best fit to the experimental data we get the pole of
the K∗ resonance in the second Riemann Sheet, (891.0+i 31.3) MeV, which
is consistent with the PDG data. With the coupling of Kπ, we find that
the probability of the Kπ component, |1 − Z|, is a small value, only 0.229
(about 1/5), which means that the K∗ is not a Kπ molecule but something
else. Next, we also use a phenomenological method to confirm the former
results. The pole in the second Riemann sheet is (892.0 + i 22.4) MeV and
|1 − Z| has values around 0.158 ∼ 0.192, which are in agreement with the
results of the theoretical model analysis within uncertainties, thus, leading
to the same conclusion.



4.3. THREE METHODS TO DETECT THE X(3700) 263

4.3 Three methods to detect the X(3700)

The use of the ChUA in the meson-meson interaction gives rise to the
f0(500)(or σ), f0(980), a0(980) scalar mesons [16, 264, 349, 357, 539–541]
from the unitarization in coupled channels of the meson-meson interaction
provided by the chiral Lagrangians [376,377]. The f0(500) appears basically
as a ππ resonance and the f0(980), a0(980) as basically KK̄ quasibound
states that decay into ππ and πη respectively. The similarity between K̄
and D (K and D̄) suggest that there could be also a DD̄ quasibound state
around 3700 MeV, that we shall call X(3700), decaying into pairs of light
pseudoscalars, ππ, ηη, ηη′, KK̄. In an extrapolation of the ChUA to the
SU(4) sector [261] it was found that, indeed, a quasibound scalar DD̄ state
with I = 0 emerged with a small width, since transition matrix elements
from DD̄ to the light sector were strongly suppressed. This finding has
been corroborated recently in Refs. [246,247] using models that incorporate
heavy quark symmetry.

Later on it was found in Ref. [262] that the bump in the DD̄ spectrum
close to the DD̄ threshold observed at Belle in the e+e− → J/ψDD̄ reaction
[542] was better interpreted in terms of the bound state below threshold,
withMX ' 3723 MeV, than with a new resonance as suggested in Ref. [542].
So far, this is the strongest experimental support for this state, in spite of the
fact that some other reaction has been suggested to observe it. Indeed, in
Ref. [169] a suggestion was made to detect the state in the radiative decay
of the ψ(3770). The idea is based in the fact that the ψ(3770) couples
strongly to DD̄ and with the emission of a photon one can bring the DD̄
state below the threshold into the region of the resonance. A width of
Γψ→γX = (1.05 ± 0.41) KeV was found which would be in the measurable
range. However, a problem of this suggestion is that this peak would have
to be seen over a background of ψ → γ + anything, which is estimated
to have a branding ratio of the order of 10−2, judging by the rate of some
measured channels reported in the PDG [9], while Γψ→γX/Γψ ' 4 × 10−5.
The signal would be of the order of 1% of smaller on top of a background
and the prospects to see it there would be dim. There is another problem
since the peak for the decay appears at small photon momentum where
there would be radiative decays displaying Bremsstrahlung of the photons,
with accumulated strength at low photon energies, precisely where the peak
of the X would appear. The selection of a particular decay channel where
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the background would be much reduced would be then much welcome and
this is what we do here, suggesting the ηη′ channel for reasons that would
be clear later on.

On the other hand, with the advent of BESIII the production of the
ψ(4040) state is being undertaken and in this case the photon has more
energy in the radiative decay, removing the peak from the Bremsstrahlung
region, with obvious advantages.

We have also investigated another method, taking the same reaction as
performed in Ref. [542] but looking for e+e− → J/ψηη′. We predict a peak
for ηη′ production and compare the strength of the peak with the cross
sections measured in Ref. [542] for the J/ψDD̄ production.

With all these studies we find out three methods which would allow to
see the neat peak for that state and the widths or cross sections are found
within present measuring range, such that devoted experiments would be
most opportune.

4.3.1 Decay model with the ChUA

In Ref. [169] the radiative decay of ψ(3770) into γX(3700) was studied. The
work of Ref. [261] was redone including the channels D+D−, D0D̄0, D+

s D
−
s ,

π+π−, K+K−, π0π0, K0K̄0, ηη, ηη′, η′η′, ηcη, ηcη
′. Using a potential de-

rived from an SU(4) extension of the SU(3) chiral Lagrangians [376, 377]
with an explicit SU(4) breaking for terms exchanging charm, the BS equa-
tions of Eq. (1.44) were solved to obtain the scattering matrix. With this
formalism a pole was obtained for the T matrix around 3722 MeV below
the DD̄ threshold. The accuracy as well as limitations in the case of SU(4)
symmetry in the basic vertices is discussed in section II D of Ref. [168].
Note that the inclusion of the η′ involves also an assumption about U(3)
symmetry. One should also in principle mix states of D and D∗ in the
coupled channels, but the transition of D and D∗ in our approach is given
by π exchange and one can easily prove the π exchange term is subleading
in the mQ counting (potential in Quantum Mechanics going as O(m−1

Q ) ),
with mQ the mass of the heavy quark, while the leading diagonal terms are
of order O(1) in this counting (see Ref. [412]), as discussed in last chapter.
And more discussion can be found in our paper [543].

What is of relevance for the present work is the coupling of this state
to the different channels. In Table 4.3 we show the results obtained in
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Ref. [169]: As we can see, the largest couplings are for DD̄ and DsD̄s.

Table 4.3: Coupling of the pole at (3722− i18) MeV to the channels.

channel Re(gX) [MeV] Im(gX) [MeV] |gX | [MeV]

π+π− 9 83 84

K+K− 5 22 22

D+D− 5962 1695 6198

π0π0 6 83 84

K0K̄0 5 22 22

ηη 1023 242 1051

ηη′ 1680 368 1720

η′η′ 922 -417 1012

D0D̄0 5962 1695 6198

D+
s D

−
s 5901 -869 5965

ηcη 518 659 838

ηcη
′ 405 9 405

However, the separation in energy of the DsD̄s component makes the DD̄
component to stand as the more relevant meson-meson component of this
state, which qualifies approximately as a DD̄ quasibound state. The width
obtained from the decay of this state in all the allowed channels is 36 MeV.
Note that the transition to light, open, channels is suppressed and this
determines the large lifetime of the state. We observe from the Table that
the largest coupling to the light channels is to ηη′ which also contains two
different particles, hence, this will be the channel that we will adopt to have
the X(3700) state detected.

In Ref. [169] the decay of ψ(3770) to γX was evaluated recalling that
the ψ(3770) decays basically to DD̄. This allows one to obtain the coupling
of ψ(3770) to D+D− and then, from the triangular diagram of Fig. 4.13,
the ψ(3770) → γX transition amplitude was evaluated. We do not repeat
here the steps of the calculations in Ref. [169] and quote the final results.
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Figure 4.13: Diagram for ψ(3770) → γX that contains the d term.

The transition amplitude for the diagram of Fig. 4.13 is given by

iM = iεµψ(P )ε
ν
γ(K)Tµν , (4.46)

and since the problem has two independent four momenta, by Lorentz in-
variance one may write

Tµν = agµν + bPµPν + cPµKν + dPνKµ + eKµKν . (4.47)

Due to gauge invariance only the structures agµν and dPνKµ (with P, K
the ψ and γ momentum), which leads to a convergent integral, survive,
and, in addition, one has a = −dK ·P . The d coefficient is evaluated using
the Feynman parameterization of the loop function corresponding to the
diagram of Fig. 4.13 and one finds

d = −
∑
j

gψgX,je

2π2

∫ 1

0
dx

∫ x

0
dy
y(1− x)

s+ iε
, (4.48)

with s given by

s = (1− x)(xM2
ψ −m2

2 − 2yP ·K)− xm2
1, (4.49)

with e the electron charge (e2/4π = α = 1/137), gψ the coupling of ψ(3770)
to D+D−, gψ = 11.7, and j summing over the two relevant channels D+D−
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ψ(3770)

X(3700)

γ

η

η′

m2

m1

m1

Figure 4.14: Diagram for ψ(3770) → γX → γηη′.

and D+
s D

−
s . The partial decay width for ψ(3770) → γX is given by

Γψ→γX =
| ~K|

12πM2
ψ

(P ·K)2 |d|2. (4.50)

The result obtained in [169], which we reproduce here, is

Γψ→γX = 0.65 KeV. (4.51)

As mentioned in the Introduction, determining the peak corresponding
to this process over a background of γX events is problematic and thus we
choose the ηη′ to detect the X peak. For this the diagram of Fig. 4.13
has to be changed to the one of Fig. 4.14. Technically all we have to do is
substitute d by d ′ where

d ′ = d
1

M2
inv −M2

X + iMXΓX
gX,ηη′ , (4.52)

with d defined in Eq. (4.48),

M2
inv = (pη + pη′)

2, (4.53)

and gX,ηη′ the coupling of the X to the ηη′ channel given in Table 4.3. Since
the width ΓX is small (∼ 36 MeV) and there is relatively large phase space
for ηη′ decay, we can simply take ΓX constant in Eq. (4.52).

The relevant magnitude now is

dΓ

dMinv
=

1

4(2π)3
1

M2
ψ

pγ p̃η
∑∑

|T |2, (4.54)
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Figure 4.15: The mass distribution of the ηη′ in the decay of ψ(3770) to
γX(3700) → γηη′.

which provides the invariant mass distribution, where

pγ =
λ1/2(M2

ψ, 0,M
2
inv)

2Mψ
, (4.55)

p̃η =
λ1/2(M2

inv,m
2
η,m

2
η′)

2Minv
, (4.56)∑∑

|T |2 =
2

3
|d ′|2(K · P )2, (4.57)

with pγ , p̃η the γ momentum in the ψ(3770) rest frame and the η momentum
in the ηη′ rest frame respectively.

In Fig. 4.15 we show this distribution, and we see a clear peak at
Minv ' 3722 MeV, which has a narrow width. The peak is still around
the upper threshold for the invariant mass. However, the fact that we have
chosen a neutral channel to identify the X state prevents Bremsstrahlung
to occur and the identification of a peak there would be a clear signal of a
state. The integrated width around the peak (3600 < Minv < 3770 MeV)
gives

Γ =

∫ 3770

3600

dΓ

dMinv
dMinv = 0.293 KeV, (4.58)

which is smaller than the total width of Eq. (4.51) which integrates over
the whole range of Minv.
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The largest contribution comes from the D+D− channel which by itself
provides 73% of the rate. The coherent sum with the D+

s D
−
s contribution

makes up for the rest of the rate.

The width of Eq. (4.58) represents a branching ratio of 10−5. In this
sense one should note that CLEO has set thresholds of the order of mag-
nitude of 10−4 and at BESIII one can get a production ψ(3770) of about
a factor one hundred times bigger, which would make this measurement
feasible in that Lab.

4.3.2 Radiative decay of the ψ(4040)

The ψ(4040) shares the same quantum numbers as the ψ(3770), however
the largest branching ratio is not to DD̄ but to D∗D̄ + cc. From the data
in the PDG we find that

Γ(DD̄)

Γ(D∗D̄ + cc)
= 0.24± 0.05± 0.12, (4.59)

Γ(D∗D̄∗)

Γ(D∗D̄ + cc)
= 0.18± 0.14± 0.03, (4.60)

Assuming that the D∗D̄+ cc, DD̄ and D∗D̄∗ provide most of the contribu-
tion, this allows us to get the coupling

gψ(4040),D+D− = 2.15, (4.61)

and then we can recalculate the invariant mass distribution and width for
ψ(4040) → γX(3700). In Fig. 4.16 we show the results for the invariant
mass distribution. We find now a neat peak around the mass of the X. The
novelty here is that the peak is far away from all thresholds which could
eventually be seen in the spectrum of inclusive dΓ/dEγ without the risk to
confuse the peak with Bremsstrahlung like in the case of the ψ(3770) →
γX. In any case, as advocated here, the direct measurement of the ηη′

channel should drastically reduce the background and allow a clear peak
to be identified. The integrated width around this peak (3600 < Minv <
3800 MeV) gives

Γ =

∫ 3800

3600

dΓ

dMinv
dMinv = 0.496 KeV, (4.62)
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Figure 4.16: The mass distribution of ηη′ in the ψ(4040) decay to
γX(3700) → γηη′.

which is about double than in the case of the ψ(3770). In this case, the
larger phase space for decay has overcome the reduction due to the reduced
coupling of Eq. (4.61).

We should note that the largest contribution comes from the D+D−

channel, this channel alone providing about half the rate of Eq. (4.62)
while D+

s D
−
s alone only given 19% of this rate.

The width of Eq. (4.62) is a bit bigger than the one obtained for the
ψ(3770), yet, the rate of production at BESIII is smaller. Present plans are
to produce 2.8 million ψ(4040) events and no plans are made for the future
yet 2. With this statistics and the width of Eq. (4.62), which corresponds
to a branching ratio of 6.2 × 10−6, one could get about 17 events of this
radiative decay. It is clear that more statistics would be needed to see a
clear peak.

It should be clear that we have only evaluated the cross section for the
production of the ηη′ in the peak of the X(3700) resonance. There will be
for sure background for the reactions studied, but we should note that in
all of them there is an OZI suppression since we either destroy cc̄ or create
cc̄. Hence, cross sections from other non resonant mechanisms can be of the
same order of magnitude as from the resonance mechanism described, only

2We would like to thank Cheng-Ping Shen for providing us the information.
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Figure 4.17: Feynman diagram of the reaction e+e− → J/ψX → J/ψDD̄.

the strength will be distributed over a large phase space where the peak due
to the X(3700) excitation should be clearly visible due to its small width.

4.3.3 The e+e− → J/ψX → J/ψηη′ reaction

In Ref. [262] the e+e− → J/ψX → J/ψDD̄ reaction was studied and it was
concluded that the data on the DD̄ invariant mass distribution was better
described in terms of the X(3700) resonance than in terms of a new state
suggested in Ref. [542]. The mechanism for this reaction is given in Fig.
4.17. The differental cross section is given by [262]

dσ

dMinv(DD̄)
=

1

(2π)3
m2
e

s
√
s
|~k| |~p| |T |2, (4.63)

with

|~k| =
λ1/2(M2

inv(DD̄),m2
D,m

2
D)

2Minv(DD̄)
, (4.64)

|~p| =
λ1/2(s,M2

J/ψ,M
2
inv(DD̄))

2
√
s

, (4.65)

where T is given by

T = C
1

M2
inv(DD̄)−M2

X + iΓXMX
. (4.66)

As in Ref. [262] we restrain from giving absolute values but we can give
relative values with respect to DD̄ production simply multiplying T of Eq.



272 CHAPTER 4. PARTICLE DECAY PROPERTIES

 0

 5

 10

 15

 20

 25

 3  3.2  3.4  3.6  3.8  4  4.2  4.4

d
Γ/

d
M

in
v

Minv [MeV]

η η’

D D

Figure 4.18: The mass distribution of the final states J/ψηη′ compared to
J/ψDD̄.

(4.66) by gX,ηη′/
√
2gX,D+D− , where the factor

√
2 will take into account

in |T |2 that we compare ηη′ production versus D+D− +D0D̄0 production.
In Fig. 4.18 we show the results for ηη′ production with the same scale
as for DD̄ production. We can see that the strength of the peak is bigger
for ηη′ production than for DD̄, in spite of having a smaller coupling to
X(3700). The reason is that the ηη′ production is not suppressed by the
threshold factors that inhibit DD̄ production. The peak seen in the ηη′

mass spectrum is neat and the strength larger than for DD̄ production.
Since DD̄ has been observed in Ref. [542], this guarantees that the ηη′ peak
is within present measurable range.

4.3.4 Conclusions

In the present work, we have investigated some reactions by means of which
one could observe the predicted scalar meson formed as a quasibound state
of DD̄. This state appears in analogy to the f0(500) and f0(980) states
which are described within the ChUA as a ππ resonance and a quasibound
KK̄ state respectively. Some suggestion had been made before to observe
this state in the ψ(3770) → γX(3700) decay by looking at the γ energy
distribution. Yet, this has the inconvenience of having to observe a small
peak in a large background. In order to suppress the background we have
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chosen one of the main decay channels of the X(3700) state, the ηη′ chan-
nel, and suggest to look at the ηη′ invariant mass distribution in the reac-
tion ψ(3770) → γX(3700) → γηη′. Since BESIII already can produce the
ψ(4040), we also suggest to look at the ψ(4040) → γX(3700) → γηη′ decay
channel. A third reaction was motivated by the only indirect experimental
“evidence” of this state. Indeed, in the BELLE reaction e+e− → J/ψDD̄
[542], a peak was observed in the DD̄ invariant mass distribution close to
the DD̄ threshold, which was interpreted in [262] as a signal of a DD̄ res-
onance below the DD̄ threshold. In the present work we have suggested to
look at the reaction e+e− → J/ψηη′, allowing the X(3700) to be produced
and decay into ηη′.

We find clear peaks in all the invariant mass distributions of ηη′. In
the two radiative decays, the rates are within present measurable range at
BESIII, although in the case of ψ(4040) radiative decay the statistics with
presently planned ψ(4040) production would be very low. In the case of the
e+e− reaction we do not evaluate absolute cross sections and we find more
instructive to compare the cross section of the e+e− → J/ψηη′ reaction with
the one of e+e− → J/ψDD̄ already measured. We observe that the cross
section for the former reaction is bigger than for the latter one and produces
a clear peak that does not have the ambiguity of a threshold enhancement
as in the e+e− → J/ψDD̄ reaction. This is the best guarantee that the
reaction is within measurable range.

The experimental search for this state is timely and its observation would
clarify issues concerning the interaction of hadrons in the charm sector,
which is not so well known as the non charmed one, and which would be
much welcome.
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Chapter 5

Conclusion

In our work, we have made some investigations on the hadronic spectrum,
mostly in the heavy quark sector, focusing mainly on the baryonic states
with charm and beauty. Besides, we also did some works on the mesonic
states both in the light and the heavy quark sectors. First, we explore the
recently developed three-body interaction formalism, the fix center approx-
imation to the Faddeev equations, to study some strong interaction of the
three-body hadronic systems. Second, we investigate the two-body interac-
tions in the charm and beauty sector with the coupled channel approach, by
taking into account the constraints of heavy quark spin symmetry. Third,
we study the decay models and properties of some resonances, theoretically
predicted in the strong interactions of low energy QCD. Now, we make a
conclusion about the three aspects of our research.

I). The Faddeev equations under the fixed center approximation are
accurate when dealing with bound states and successfully explain the struc-
ture properties of some states dynamically reproduced in the three-body
interactions. And it is technically simple, and allows one to deal with three-
body hadron interactions effectively without introducing any free parame-
ters, based on the two-body interaction with the chiral unitarized approach.
Thus, with this effective tool, we get some results in our studies.

• The results of K̄DN , NDK and NDD̄ systems

In the three body systems that have one D meson or DD̄, together
with one baryon, K̄DN , NDK and NDD̄, we find bound or quasi-

275
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bound states, relatively narrow, with energies 3150 MeV, 3050 MeV
and 4400 MeV, respectively. All these states have JP = 1/2+ and
isospin I = 1/2 and differ by their charm or strangeness content,
S = −1, C = 1, S = 1, C = 1, S = 0, C = 0, respectively. The first
state could perhaps be associated to the Ξ(3123), which has unknown
JP , but the width obtained is a bit too large. The second state is a
new state of exotic nature. The third state is like a new regular N∗

state, but it contains hidden charm.

• A quasi-bound state in the DNN system

We have used two methods for the study of the DNN system. The
first one used the fixed center approximation for the Faddeev equations
and the second one employs the variational approach with hadronic
potentials in coordinate space. We found a quasi-bound state in the
DNN system with I = 1/2, which is bound and rather stable, with
a width of about 20-40 MeV. We obtained a clear signal of the quasi-
bound state for the total spin J = 0 channel around 3500 MeV. The
J = 1 channel is more subtle, and the precise DN amplitude in the
I = 1 channel is important for a robust prediction in this channel.
The mesonic decay width of the quasi-bound state turned out to be
less than 40 MeV.

• New states in the D∗-multi-ρ systems

In the study of the many-body interaction between a D∗ and multi-ρ,
we find several clear resonant structures above 2800 MeV in the multi-
body scattering amplitudes. They would correspond to new charmed
resonances, D∗

3, D
∗
4, D

∗
5 and D∗

6, not listed in the PDG, which are
our theoretical predictions, and would be analogous to the ρ3(1690),
f4(2050), ρ5(2350), f6(2510) and K∗

3 (1780), K
∗
4 (2045), K

∗
5 (2380) de-

scribed before as multi-ρ and K∗-multi-ρ states respectively.

• The study of the ηKK̄ and η′KK̄ systems

For the three-body systems of ηKK̄ and η′KK̄, we find a clear and
stable resonance structure around 1490 MeV in the squared ηKK̄
scattering amplitude, which is not sensitive to the renormalization
parameters and is associated to the η(1475) in the PDG. Conversely,
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we get only an enhancement effect of the threshold in the η′KK̄ am-
plitude that indicates the difficulty to bind the η′KK̄ system as a
consequence of a weaker η′K interaction than the ηK one.

• The ρKK̄ interaction

Since the KK̄ system with isospin I = 0, is found to be a dominant
component of the f0(980) resonance, as many theoretical results claim,
we study the ρKK̄ system applying the fixed center approximation
to the Faddeev equations. We find a clear peak in the three-body
amplitude around 1732 MeV and a width of about 161 MeV, by taking
into account the effect of the width of the ρ and f0(980). We associate
this peak to the ρ(1700) which has a mass of 1720 ± 20 MeV and a
width of 250± 100 MeV.

II). In the low energy QCD interaction, the chiral unitarized approach
is successful to understand the interaction information, such as resonance
structure, cross section, phase shifts, scattering lengths, and so on. But, in
the heavy charm and beauty sector, the heavy quark spin symmetry should
also be taken into account. Therefore, with the chiral unitarized approach,
combining the coupled channel effect and the heavy quark spin symmetry
constraints, we have made some predictions on the heavy baryonic spectrum.

• Hidden charm baryons dynamically generated

With the constraints of heavy quark spin symmetry and the dynamics
of the local hidden gauge for the interaction potential, using a cou-
pled channel unitary approach to evaluate the scattering amplitude for
the meson-baryon interaction with hidden charm (taking the coupled
channels: ηcN , ηc∆, J/ψN , J/ψ∆, D̄Λc, D̄Σc, D̄

∗Λc, D̄
∗Σc, D̄

∗Σ∗
c),

we look for states dynamically generated and find four basic bound
states, not list in the PDG too, corresponding to D̄Σc, D̄Σ∗

c , D̄
∗Σc and

D̄∗Σ∗
c , decaying mostly into ηcN and J/ψN . All the states appear in

isospin I = 1/2 and we find no bound states or resonances in I = 3/2.
The D̄Σc state appears in J = 1/2, the D̄Σ∗

c in J = 3/2, the D̄∗Σc
appears nearly degenerate in J = 1/2, 3/2 and the D̄∗Σ∗

c appears
nearly degenerate in J = 1/2, 3/2, 5/2, with the peculiarity that in
J = 5/2 the state has zero width in the space of states chosen. All the
states are bound with about 50 MeV with respect to the thresholds



278 CHAPTER 5. CONCLUSION

of the corresponding channels, and the width, except for the J = 5/2
state, is also of the same order of magnitude.

• New hidden beauty baryon states

Following the same line and formalism of the hidden charm sector in
the former work, we investigate the meson-baryon interaction with
hidden beauty and obtain several new states of N∗ around 11 GeV.
Under the constraints of heavy quark spin symmetry, we consider the
coupled channels: ηbN , ΥN , BΛb, BΣb, B

∗Λb, B
∗Σb, B

∗Σ∗
b , and

find four basic bound states of isospin I = 1/2, which correspond
to BΣb, BΣ∗

b , B
∗Σb and B∗Σ∗

b , decaying mostly into ηbN and ΥN .
The BΣb state appears in J = 1/2, the BΣ∗

b in J = 3/2, the B∗Σb
appears nearly degenerate in J = 1/2, 3/2 and the B∗Σ∗

b appears
nearly degenerate in J = 1/2, 3/2, 5/2. All these states that we
found, have a binding energy about 50 − 130 MeV with respect to
the thresholds of the corresponding channel, and a width from 2 −
110 MeV, except for the one in J = 5/2 with zero width since there
is no coupled channel to decay. Finally, we find no bound states or
resonances in I = 3/2.

• Hidden beauty mesonic molecules

Following the same line, we investigate the meson-meson interaction

in the hidden beauty sector: B
(∗)
(s) B̄

(∗)
(s) , and obtain several new states.

Both I = 0 and I = 1 states are analyzed and it is shown that in
the I = 1 sector, the interactions are too weak to create any bound
states within our framework. In total, we predict with confidence the
existence of 6 bound states, with binding energies 34 MeV (178 MeV)
for qmax = 415 MeV (830 MeV), and weakly bound 6 more possible
states, with binding energies 2 MeV (18 MeV). The existence of these
weakly bound states depends on the influence of the coupled channel
effects.

• Baryon states in the open beauty sector

With one more step, we examine the interaction of B̄N , B̄∆, B̄∗N and
B̄∗∆ states, together with their coupled channels: πΣb, πΛb, ηΣb (for
the B̄N); πΣ∗

b , ηΣ
∗
b (for the B̄∆); ρΣb, ωΛb, φΛb, ρΣ

∗
b , ωΣ

∗
b , φΣ

∗
b (for

the B̄∗N); and ρΣ∗
b , ωΣ

∗
b , φΣ

∗
b (for the B̄∗∆). Using a mapping from
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the light meson sector and a assumption that the heavy quarks act
as spectators at the quark level, with the scattering potential coming
from light vector exchanges in the extended local hidden gauge ap-
proach, we look for states dynamically generated from the interaction
and find two states with nearly zero width, which we associate to the
Λb(5912) and Λb(5920) states, coupled mostly to B̄∗N . The difference
of masses between these two degenerate states, with J = 1/2, 3/2
respectively, is due to pion exchange connecting these states to inter-
mediate B̄N states. In addition to these two Λb states, we find three
more states with I = 0, one of them nearly degenerate in two states
of J = 1/2, 3/2. Furthermore we also find eight more states in I = 1,
two of them degenerate in J = 1/2, 3/2, and the other two degenerate
in J = 1/2, 3/2, 5/2.

• The open charm baryon states

Analogously, following the last work, by changing the B̄(∗) meson to a
D(∗) meson and the b-quark to a c-quark for the baryon, we also inves-
tigate the interaction ofDN ,D∆,D∗N andD∗∆ states, together with
their coupled channels: πΣc, πΛc, ηΣc (for theDN); πΣ∗

c , ηΣ
∗
c (for the

D∆); ρΣc, ωΛc, φΛc, ρΣ
∗
c , ωΣ

∗
c , φΣ

∗
c (for the D∗N); and ρΣ∗

c , ωΣ
∗
c ,

φΣ∗
c (for the D∗∆). The pion exchange and the Weinberg Tomozawa

interactions are generalized and with this dynamics we look for states
generated from the interaction, finding two states with nearly zero
width which are associated to the Λc(2595) and Λc(2625). The lower
state couples mostly to DN , and the second to D∗N . Additionally,
we find four more states with I = 0, one of them nearly degenerate in
two states of J = 1/2, 3/2; in the I = 1 sector, we find seven states,
two of them degenerate in J = 1/2, 3/2, and the other two degenerate
in J = 1/2, 3/2, 5/2.

III). Furthermore, to understand and explain the properties of the states
found in experiment or theory, we also investigate the particle decay modes
and the decay properties of some particles.

• J/ψ reaction in the nuclear medium

Recent studies of the interaction of vector mesons with nuclei make
possible and opportune the study of the interaction of the J/ψ with
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nuclei and the investigation of the origin of the J/ψ suppression in its
propagation thorough a nuclear medium. We observe that the tran-
sition of J/ψN to V N with V being a light vector, ρ, ω, φ, together
with the inelastic channels, J/ψN → D̄Λc and J/ψN → D̄Σc leads
to a particular shape of the inelastic cross section. Analogously, we
consider the mechanisms where the exchanged D collides with a nu-
cleon and gives πΛc or πΣc. The cross section has a peak around√
s = 4415 MeV, where the J/ψN couples to a resonance predicted

recently. However, when the Fermi motion of the nucleus is considered
the cross section has to be substituted by its average over the nucleon
momenta and the peak is washed away. We study the transparency
ratio for electron induced J/ψ production in nuclei at about 10 GeV
and find that 30 - 35 % of the J/ψ produced in heavy nuclei are ab-
sorbed inside the nucleus. This ratio is in line with depletions of J/ψ
through matter observed in other reactions.

• Kπ component in the K∗ wave function

Using the Weinberg’s compositeness condition to partial waves higher
than s-wave in order to determine the weight of a Kπ component
in the K∗ wave function, we first make a fit to the Kπ phase shifts
in p-wave, from where the coupling of K∗ to Kπ and the Kπ loop
function are determined. Then, with these ingredients, we determine
the weight of the Kπ component, |1 − Z| ∼ 0.2, a small value, and
conclude that the K∗ is a genuine state, different to a Kπ component,
in a proportion of about 80 %.

• How to detect the predicted DD̄ scalar meson X(3700)

In the charm sector, a quasibound DD̄ state is predicted around 3720
MeV by the chiral unitary approach, and named as X(3700), which is
analogous to the f0(500), appearing as a ππ resonance in chiral unitary
theory, and the f0(980), appearing as a quasibound KK̄ state. There
is some experimental support seen in the e+e− → J/ψDD̄ reaction
close to the DD̄ threshold. In our work we propose three different
experiments to observe it as a clear peak. The first one is the radiative
decay of the ψ(3770), ψ(3770) → γX(3700) → γηη′. The second one
proposes the analogous reaction ψ(4040) → γX(3700) → γηη′ and
the third reaction is the e+e− → J/ψX(3700) → J/ψηη′. Neat peaks
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are predicted for all the reactions and the calculated rates are found
within measurable range in present facilities.

From the former description, one can see that in our research, in addi-
tion to describing some known states, we have also theoretically predicted
some states which are not listed in the PDG. The approach that we use to
investigate, is reliable, thus, our results are accurate, with certain theoret-
ical uncertainties and the resonances found are stable since their width is
not very large. Therefore, our results should serve as a guideline for future
experimental searches of these new resonances. We hope that the future
experiments in the BES, BELLE, J-PARC, RHIC, LHC, FAIR and other
facilities will search for these states predicted in our work.
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Resumen de la Tesis

La F́ısica de hadrones ha tenido un desarrolo espectacular en los últimos
años debido a la plétora de estados nuevos que han sido descubiertos en
laboratorios como BES en Beijing, la colaboración Babar en USA, Belle en
Japón, CLEO en USA y el CERN en Europa, entre otros. El modelo de
quarks, según el cual los mesones están formados de quark antiquark y los
bariones de tres quarks, tuvo en su d́ıa un valor incalculable, al permitir
entender los hadrones en términos de unos pocos componentes elementales.
Las predicciones que hizo, y fueron confirmadas, puso este modelo de los
hadrones en un lugar incuestionable de la Historia de la F́ısica. Sin embargo,
el paso del tiempo nos ha ido enseñando que la Naturaleza es más sutil que
nuestros modelos y una una parte de los estados observados recientemente
no pueden explicarse en los términos convencionales y exigen estructuras
más complejas.

Por otra parte, una vez establecidos los bloques básicos constituyentes
de los hadrones, quedaba describir su interacción y entonces se desarrolló
la Cromodinámica Cuántica (QCD) que describ́ıa la interacción entre los
quarks en términos de unos mediadores, los gluones. La descripción de la
interacción fuerte y los estados hadrónicos estaba en principio terminada.
Sin embargo las propiedades de esa interacción eran sutiles. A grandes en-
erǵıas y transferencia de momento la interacción era débil, pero a bajas
enerǵıas y transferencias de momento la interacción se volv́ıa muy intensa,
debido a dos propiedades, libertad asintótica y confinamiento, respectiva-
mente. Desde el punto de vista de explicación teórica de fenómenos eso
significa que a altas enerǵıas se pueden hacer cálculos perturbativos, mien-
tras que a bajas enerǵıas hay que recurrir a métodos no perturbativos y
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entonces la resolución de la QCD se hace técnicamente impracticable. Ello
no ha impedido que, con ingentes cantidades de tiempo de ordenador, di-
versos grupos hayan tratado de obtener propiedades de hadrones partiendo
directamente del Lagrangiano de QCD, en lo que hoy llamamos Lattice
gauge theories. El avance en ese campo ha sido espectacular, aunque con-
viene mencionar el excesivo e injustificado entusiasmmo de unos cálculos
iniciales con aproximaciones ”quenched”, que hoy damos por inexactos. In-
cluso hoy dia, el cálculo del espectro de masas de los hadrones puede hacerse
con relativa fiabilidad para los hadrones estables, pero los estados excitados
que pueden desintegrarse son mucho más conflictivos debido al hecho que
los cálculos unquenched, que en principio mezclan todas las componentes
posibles de los estados, dan lugar a enerǵıas de estados que no son mas que
los estados de colisión de esas componentes que han sido discretizados por la
necesaria eleccción de un volumen finito para llevar a cabo los cálculos. Hay
técnicas basadas en la fórmula de Lüescher para pasar de esas enerǵıas a
corrimientos de fase en el continuo, pero las aplicaciones a problemas realis-
tas de estados con varios canales de desintegración está sólo en su fase inicial.

Los modelos de quarks se basan en potenciales efectivos entre los quarks
con potenciales confinantes, y otras interacciones que tratan de simular la
dinámica de QCD y dan lugar a estructuras de hadrones, muchas veces más
complejas que las básicas descritas el principio.

Asi las cosas, una nueva ĺınea de trabajo ha supuesto un gran avance en
la descripción de los hadrones y los procesos hadrónicos: las teoŕıas efectivas.
En ellas se cambian los grados de liberdad elementales, quarks y gluones, por
bloques establecidos en la Naturaleza a bajas enerǵıas: los mismos hadrones
de más baja enerǵıa y más estables. Entonces se derivan Lagrangianos efec-
tivos con esas componentes que respetan las simetŕıas básicas de QCD. A
bajas enerǵıas, y tomando como componentes los mesones pseudoscalares y
los bariones de más baja enerǵıa, aparecen los Lagrangianos quirales y es
posible hacer desarrollos perturbativos con ellos, asumiendo una converge-
nia en potencias del momento de los hadrones. Sin embargo esta teoŕıa, que
ha tenido un enorme impacto en la f́ısica hadrónica y describe con precisión
un gran número de observables, tiene también sus ĺımites. Si nos fijamos
en la interacción pion-pion, por ejemplo, un desarrollo perturbativo de la
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matriz de colisión sólo tiene sentido hasta la enerǵıa de la primera singular-
idad que en ese caso es el polo de la resonancia f0(500) (σ popularmente).
Mucho antes de los 500 MeV de enerǵıa los cálculos perturbativos ya no son
significativos.

Haćıa falta un paso adelante para hacer cálculos no perturbativos rescatando
la dinámica que hay en los Lagrangianos quirales y ese paso se dio con la
Teoŕıa quiral Unitaria, también llamada chiral unitary approach. En esa
teoŕıa se obtiene la amplitud de colisión a partir de la amplitud a orden
más bajo resumando todos los términos de la ecuación de Schrödinger (
Lippmann Schwinger en este caso), aunque normalmente los cálculos se
hacen relativistas y se usa la ecuación de Bethe Salpeter. La interacción a
orden más bajo, u órdenes más bajos, se interpreta como un potencial y hay
un rango que se convierte en una escala de regularización en los loops de la
ecuación, que tiene un tamaño natural, pero que normalmente se ajusta a
algún observable para pasar luego a hacer predicciones en otros observables.
El éxito de este desarrollo ha sido innegable y con él pueden obtenerse am-
plitudes de colisión realistas para procesos hadrónicos. En algunos casos
esas mismas amplitudes presentan polos que se interpretan como estados
ligados o resonancias. Se dice entonces que se ha generado dinámicamente
una resonancia, que puede interpretarse como un estado molecular de otros
dos hadrones más elementales que interaccionan entre śı, del mismo modo
que un protón y un neutrón interaccionan para dar el deuterón.

Un punto quedaba por describir, pues en los Lagrangianos quirales no
aparecen expĺıcitamente los mesones vectoriales. Una solución a este prob-
lema ha venido de la introducción de los Lagrangianos de local hidden gauge
symmetry. Estos Lagrangianos introducen los vectores junto con los pseu-
doscalares. La interacción de los pseudoscalares es la misma que en los
Lagrangianos quirales, y órdenes superiores de esta teoŕıa dan lugar a los
Lagrangianos quirales de orden superior, con la hipótesis de dominancia
vectorial de Sakurai.

Con las herramientas del local hidden gauge, que extiende los lagrangianos
quirales, y las técnicas de la Teoŕıa quiral unitaria, uno tiene las puertas
abiertas al estudio de la mayoŕıa de los procesos hadrónicos. La presente
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Tesis ha usado esos elementos para hacer incursiones en diversos campos,
como el estudio de posibles estados ligados o resonancias formadas por tres
hadrones y la interacción de estados con charm o beauty.

La tesis tiene cuatro caṕıtulos básicos: uno de ellos dedicado a la intro-
ducción de la teoŕıa y las técnicas a ser usadas a lo largo de la Tesis. Otro
en el que se recopilan los trabajos sobre tres hadrones. Otro en el que se
describen los trabajos en los que se usa la simetŕıa de Heavy Quark Spin
Symmetry, HQSS, para describir o predecir mesones y bariones con charm o
beauty or hidden charm y hidden beauty. En esos trabajos se observa que la
extensión del local hidden gauge approach al campo de los quarks pesados
es compatiblle con HQSS. Otro caṕıtulo recopila trabajo hecho sobre otros
temas como J/ψ suppresion, el estudio de la componente Kπ en la función
de onda del K∗ o el estudio de diversas reacciones para observar el mesón
predicho X(3700) formado por la interacción de DD̄.

Estados de tres o más hadrones

La técnica general para estudiar sistemas de tres cuerpos es el uso de
las ecuaciones de Faddeev, que a pesar de su sencillez formal son dif́ıciles
de resolver y todos los esquemas actuales contienen aproximaciones. En
nuestro caso hemos untilizado una aproximación a esas ecuaciones que es
fiable sólo cuando el estado resultante es ligado en sus componentes más
importantes. Esa aproximación es conocida como el Fixed Center Approx-
imation, FCA, y se basa en el hecho de que dos de las componentes ligan
para formar un estado y una tercera part́ıcula interacciona luego con esas
dos componentes permitiendo la reinteracción un número ilimitado de veces
alternativamente con cada una de las componentes del ”cluster” original,
que se supone no cambia apreciablemente por esa interacción con terceros.
Primero se estudian algunos casos que pueden ser comparados con cálculos
más finos realizados utilizando las ecuaciones de Faddeev. Un vez determi-
nadas las condiciones para el éxito de la FCA, se pasa a estudiar nuevos
sistemas donde se hacen predicciones.

En uno de los trabajos se estudian los estados de tres hadrones formados
por NDK, K̄DN and NDD̄. El estudio se basa en la constatación de que
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en trabajos anteriores los estados DN y KD dan lugar a resonancias bien
establecidas. En el caso de DN se obtiene la resonancia Λc(2595) y en el
caso de la KD la resonancia Ds0(2317). Luego se estudia la interacción de
la tecera part́ıcula con ese ”cluster” hadrónico y se determina la amplitud
de colisión para el sistema de tres cuerpos. Una representación del módulo
al cuadrado de esa amplitud, con la observación de picos, nos indica donde
hay estados, que en un estudio experimental seŕıan interpretados como bar-
iones. Se obtienen estados con enerǵıas 3150 MeV, 3050 MeV y 4400 MeV
con números cuánticos JP = 1/2+ e isospin I = 1/2 que difieren en su con-
tenido en charm o strangeness, S = −1, C = 1, S = 1, C = 1, S = 0, C = 0,
respectivamente. De momento no se conocen estados con esos números
cuánticos y esas enerǵıas, y los resultados son predicciones de bariones en
un régimen de enerǵıas que no está todav́ıa explotado.

Otro trabajo es la predicción de estado con un meson D∗ y varios
mesones ρ. Estudios anteriores probaron que la interacción de vectores con
los spines alineados para dar spin 2 es muy fuerte, de modo que era posible
añadir varios mesones ρ con sus spines alineados dando lugar a varios es-
tados mesónicos de spin creciente. Esos estados pudieron ser contrastados
con éxito con varios estados conocidos en la Tabla de part́ıculas, hasta un
f6 que estaŕıa formado por seis ρ. Del mismo modo se hab́ıa comprobado
que un K∗ y diversos ρ con sus spines alineados daban lugar a estados que
también se pod́ıan contrastar con estados K∗ conocidos. Asi pues, se es-
tudió el sistema de interacción de un D∗ con varios ρ dando lugar a picos
en la amplidud que se asocian con estados, de momento no observados, por
lo que quedan como predicciones de mesones con alto spin y charm, que
esperamos sean investigados experimentalmente en el futuro.

Uno de los estados estudiados que ha tenido cierta repercusión es el
estado DNN . La relevancia de ese estado radica en que su análogo con
strangeness ha sido largamente debatido en la Literatura. Es el estado
K̄NN . Ha habido grandes debates sobre si ese estado está ligado o si puede
ser observado experimentalmente. La conclusión desde el punto de vista
teórico es que ese estado está ligado pero que la anchura de desintegración
es mayor que la ligadura, lo cual pone grandes dificultades para su obser-
vación experimental. Uno puede pensar en ese estado como un estado ligado
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de Λ(1405) con otro nucleón, pero la Λ(1405) tiene una anchura de unos 30-
50 MeV, que se traduce en una anchura mayor en el estado K̄NN , cuando
su ligadura es del orden de unos 20 MeV. Sin embargo, la resonancia equiv-
alente en el caso de DN es la Λc(2595) que tiene una anchura del orden
de 2 MeV, de modo que en ese caso la situación podŕıa ser revertida, con
una enerǵıa de ligadura mucho mayor que su anchura de desintegración.
El estudio, que fue hecho en colaboración con un grupo japonés, usando
ellos una técnica variacional, dio lugar como esperado, a un estado ligado
y con una anchura de desintegración mucho menor que la ligadura, por lo
que pensamos que ese estado debeŕıa ser claramente identificable, y en el
trabajo se exponen varios posibles experimentos para su observación.

Otro tabajo en esa ĺınea es el estudio del sistema ρKK̄. En ese caso, el
sistema KK̄ interacciona para formar la f0(980) y luego el ρ interacciona
con K y K̄. Es interesante observar que un estado aparece ńıtido en ese
caso y es claramente identificable con el mesón ρ(1700).

En la misma ĺınea estudiamos estados de ηKK̄ y η′KK̄. En este caso
observamos que mientras en el primer caso se obtiene un pico ancho que
podŕıa identificarse con la resonancia η(1475), en el segundo no obtenemos
ningún pico sino un débil cusp en el umbral por lo que pensamos que eso
no corresponde a ningún estado observado.

Estudio de mesones y bariones usando la simetŕıa de HQSS

Este tema ha dado lugar a varios art́ıculos. En el primero de ellos se
aplica la simetŕıa de HQSS, que nos dice que la interacción es independi-
ente del spin y sabor de los quarks pesados. Sabido eso, se rearreglan los
spines de los quarks para dar lugar a sumas de spines de los cuales la in-
teracción es independiente. Ello supone cambiar de base de estados que se
lleva a cabo con coeficients de 9j. Luego podemos hacer uso del Teorema
de Wigner Eckart y con unos pocos elementos de matriz reducidos somos
capaces de describir la interacción. A continuación elegimos un modelo para
calcular esos elementos de matriz reducidos y obervamos que la extensión
de la teoŕıa de local hidden gauge al sector de quarks pesados satisface
las reglas de la HQSS. Usando sólamente los términos dominantes en la
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HQSS determinamos entonces las amplitudes de colisión de pares de mesón-
barión con charm oculto y a partir de ah́ı, buscado polos en la segunda hoja
de Riemann, determinamos los estados moleculares que se obtienen de la
teoŕıa. Observamos varios estados que corresponden básicamente a D̄Σc,
D̄Σ∗

c , D̄
∗Σc y D̄

∗Σ∗
c , y que se desintegran esencialmente en ηcN and J/ψN .

Algunos de esos estados están degenerados en spin en nuestros modelos.
Posteriormente comparamos con resultados obtenidos en otros estudios y
vemos analoǵıas y diferencias. Varios de los estados obtenidos son comunes
a todos los estudios lo que nos da una gran fiabilidad sobre su existencia y
futura observación.

Tras este tema estudiamos estados bariónicos con beauty oculta. De
nuevo se obtienen estados que corresponden básicamente a BΣb, BΣ∗

b , B
∗Σb

and B∗Σ∗
b , y que se desintegran en ηbN and ΥN , con una enerǵıa de lig-

adura de unos 50−130 MeV con respecto al umbral de los correspondientes
canales. Todos ellos tienen isospin I = 1/2, y no se encuentran estados
ligados para I = 3/2. Algunos de esos estados, como en el caso anterior,
están degenerados en spin.

Siguiendo la misma ĺınea se estudian los estados mesónicos de beauty
oculta y de nuevo se obtienen seis estados. También se observa que en el
orden dominante de HQSS no aparecen estados de I=1. Ello contrasta con
la observacion de estados Z recientemente, lo cual indica que debe haber una
interaccion más allá del término dominante. El hecho de que esos estados
Z se encuentren muy cerca del umbral de canales es a nuestro entender una
señal de la débil interacción, y otros integrantes del grupo de investigación
están trabajando en ese tema en la actualidad.

En ese mismo caṕıtulo se estudian dos nuevos sistemas, que son bariones
con charm y con beauty. En el primero de ellos se estudian estados de un
mesón pseudoscalar y un barión y se mezclan con estados de vector baryon.
En el contaje estricto de HQSS y usando la teoŕıa de local hidden gauge, la
conexión entre vector-barión y pseudoscalar-barión se hace por intercambio
de piones, u otros mesones pseudoscalares, que resultan subdominantes en
el estricto contaje de HQSS. Sin embargo en este trabajo retomamos el tema
introduciendo explicitamente esa conexión. Entonces observamos que hay
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una mezcla apreciable de estados B̄N y B̄∗N . Encontramos dos estados
con anchura prácticamente nula, que asociamos a los estados descubiertos
Λb(5912) and Λb(5920) con spines J = 1/2, 3/2, que se acoplan mayormente
a B̄∗N . Por otra parte encontramos también otros tres estados de I=0 y
ocho estados de I=1, algunos de ellos degenerados en spin. En este trabajo
también hacemos una observación esclarecedora del significado de la HQSS,
desde el punto de vista de tener los quarks pesados como observadores,
deduciendo de una manera sencilla los acoplamientos D∗Dπ y B∗Bπ, en
perfecto acuerdo con los resultados experimentales en el primer caso, y con
resultados de lattice QCD en el segundo.

Tras ese trabajo estudiamos sistemas de mesón barión con charm, de
nuevo mezclando vector-barión y pseudoscalar-barión. Nuevamente obten-
emos dos estados Λc(2595) y Λc(2625) con spin 1/2 y 3/2 respectivamente.
En este caso el de menos enerǵıa se acopla a DN mayormente, mientras
que el de mayor enerǵıa se acopla básicamente a D∗N . Por otra parte en-
contramos cuatro estados más con I=0 y siete con I=1, algunos de ellos
degenerados en spin.

Problemas relacionados

En este caṕıtulo estudiamos tres nuevos temas:

a) J/ψ depletion.

b) Tres métodos para la observación de un estado ligado deDD̄, X(3700).

c) Componente de Kπ en la función de onda de K̄∗.

a) El estudio de la interacción de vectores con nucleones en el sector
de charm y charm oculto nos permite tener una mejor visión de la inter-
acción J/ψN que en otros modelos, al tener acceso a canales acoplados de
ese canal en los que puede desintegrarse. De ese modo podemos calcular la
anchura de desintegración de J/ψ en núcleos y aportar nuestra contribución
al problema del J/ψ depletion, que ha dado lugar a gran número de inter-
pretaciones.
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b) En la Tesis de Daniel Gamermann se obtuvo un estado ligado de
DD̄ con masa alrededor de 3700, que se nombró X(3700). Posteriormente
en otros estudios se llega a la misma conclusión. Por ser un estado ligado
de esas componentes es dif́ıcil de observar. En este trabajo se proponen
tres métodos diferentes para su observación experimental. El primero es
la desintegración radiativa de ψ(3770), ψ(3770) → γX(3700) → γηη′. El
segundo propone la reacción análoga ψ(4040) → γX(3700) → γηη′ y la ter-
cera reacción es e+e− → J/ψX(3700) → J/ψηη′. En todas las reacciones se
obtienen picos ńıtidos y las secciones eficaces o anchuras de desintegración
estan dentro del rango de medidas posibles en los Laboratorios actuales.

c) El chiral unitary approach provee las amplitudes de colisión para di-
versos procesos. Sin embargo en dicha versión no proporciona información
sobre las funciones de onda. En varios trabajos del grupo se ha estable-
cido esa conexión, dando significado a los aclopamientos de los estados a
los canales de interacción. Primero se hizo para estados ligados en onda
s. Luego se extendió a estados resonantes, y finalmente a estados reso-
nantes en cualquier onda parcial. El resultado para estados resonantes es
sutil pues las funciones de onda de los canales abiertos divergen. Entonces
hay que reinterpretar el significado de las magnitudes que aparecen en el
estudio. En particular hay una regla de suma que generaliza el resultado
del compositeness condition de Weinberg, en donde los diversos términos
pueden interpretarse como probabilidades de diversos canales, que suman
a uno para estados ligados. Sin embargo, ese no es el caso para estados
resonantes donde las probabilidad de los canales abiertos es infinita. Una
nueva reinterpretación de los términos aparece en ese caso ligado a su uso
en los polos de la segunda hoja de Riemann. Los términos están asociados
a la integral del cuadrado de la función de onda en una prescripcion de fase
concreta, que converge en ese caso, y que nos da una idea del peso que esa
componente tiene en la función de onda, aunque no es una probabilidad.
En el presente trabajo se han utilizado esas ideas para determinar el peso
de la componente πK en la resonancia K∗. El estudio permite no obstante
determinar con fiabilidad que al menos un 80 % de la función de onda de esa
resonancia no corresponde a un estado πK y está asociado a otros canales,
que llamamos genuinos, presumiblemente qq̄, aunque la teoŕıa no puede pre-
cisar la naturaleza de lo que le falta a la regla de suma respecto de la unidad.
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Consideraciones generales: La Tesis se ha desarrollado en torno al estu-
dio de la naturaleza de estados hadrónicos, utilizando para ello las técnicas
de teoŕıas efectivas adecuadas a ese tipo de estudios, muchas de las cuales
han sido desarrolladas anteriormente en el grupo en el que he realizado
la Tesis. Hemos sido capaces de describir varios estados existentes como
agregados de dos o tres hadrones más elementales y hemos hecho muchas
predicciones, en los sectores de charm y beauty, donde los experimentos
están conduciendo a la observación de nuevos estados a un ritmo frenético.
Esperamos y deseamos que muchos de esos estados sean observados en un
futuro próximo, y a un tiempo más corto esperamos que nuestro estudio
sirva de orientación y referencia para otros grupos que trabajan en los mis-
mos temas, de cuyos trabajos nos hemos también beneficiado como se verá
a lo largo de esta Tesis.

El trabajo ha dado lugar a 13 publicaciones cient́ıficas en revistas inter-
nacionales y un trabajo más que está en proceso de revisión. Aśımismo ha
dado también lugar a diez presentaciones en Congresos Internacionales.
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