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ABSTRACT  

Graphene oxide (GO) and thermally reduced graphene oxide (TRGO) were covalently modified 

with imidazolium salts through their hydroxyl surface groups. Selective reaction of the –OH 

groups with p-nitrophenylchloroformate produces labile intermediate organic carbonate 

functions which were used for the covalent anchoring of a hydroxy-functionalized imidazolium 

salt. The imidazolium-functionalized materials were used to prepare nanohybrid materials 

containing iridium N-heterocyclic carbene (NHC) type organometallic complexes by reaction 

with [Ir(µ-OMe)(cod)]2. Characterization of the graphene-based hybrid materials containing 

supported iridium N-heterocyclic carbene (NHC) complexes, TRGO-1-Ir and GO-1-Ir, through 

typical solid state characterization techniques, such as XPS or ICP-MS, allowed for the 

determination of 4.7 and 10.2 wt.% iridium loads, respectively. The graphene-supported iridium 

hybrid materials were active in the heterogeneous hydrogen-transfer reduction of cyclohexanone 

to cyclohexanol with 2-propanol/KOH as hydrogen source, being the thermally reduced material 

(TRGO-1-Ir) the catalyst with the best catalytic performance, even better than a related acetoxy-

functionalized NHC iridium homogeneous catalyst, with an initial TOF of 11.500 h-1. A good 

recyclability of the catalysts, without any loss of activity, and stability in air was observed.  



 

 

1. Introduction 

Graphenes are nowadays used in many research areas due to their unique properties, such as 

their excellent electronic behavior, their highly aromatic lattice which confers an exceptional 

mechanical strength, or their extraordinary chemical stability in most of the reaction media [1]. 

These properties make them outstanding supports to develop versatile matrixes for 

heterogeneous catalysts with enhanced activity [2]. Graphene oxide (GO) is usually obtained as 

an intermediate in the production of graphene by chemical methods (chemical oxidation of 

graphite), methodology which is considered nowadays as one of the most promising to produce 

graphenes at large scale, ensuring its availability [3,4]. Structurally, it can be considered as a 

graphene sheet decorated with oxygen functional groups at basal planes (i.e. epoxy and hydroxyl 

groups) and edges (carboxylic acids), and therefore with a variable amount of sp3 hybridized 

carbon atoms disrupting the typical Csp2 structure of graphene [5,6,7]. This distinctive structure 

can be chemically functionalized easily thereby expanding their field of application. In fact, 

functionalized graphene oxide has been extensively applied to areas such as composite materials, 

catalysis, optoelectronics, supercapacitors, memory devices and drug delivery [8,9,10]. 

Furthermore, the presence of oxygen functional groups on the aromatic scaffold of GO allows 

these sheets to mediate ionic and nonionic interactions with a wide range of molecules. 

Interestingly, GO by itself or in combination with other materials, show remarkable catalytic 

properties [11]. It is known that the presence of epoxy and hydroxyl functional groups on either 

side of the GO sheet imparts bifunctional properties that allow it to act as a structural node 

within metal-organic frameworks (MOFs), leading to improvements in catalytic activities by 

synergistic effects between the framework and the catalytically active center in the hybrid 

MOF.12 In contrast, there are very few examples of supported molecular organometallic 



 

 

compounds on functionalized graphene oxides with catalytic activity.13 In these cases, a covalent 

linkage between the carbonaceous surface and the organometallic compound is highly desirable 

in order to reduce leaching. The common strategies described in the literature to achieve covalent 

functionalization exploit the carboxylic groups that decorate the edges of the GO sheets. This is 

the case of the esterification with nucleophiles (such as alcohols, amines or amino acids), directly 

in basic media,[14,15] or in the presence of SOCl2,[16] oxalyl chloride,[17] or DCC 

(dicyclohexyl carbodiimide) [18]. Other oxygen-containing groups, different from carboxylic 

acids, have the advantage of being thermally more stable that the acids groups [19] and therefore 

are accessible within reduced graphene oxides (TRGO) in which the Csp2 structure is partially 

restored. In this respect, the epoxy groups at the basal planes of the sheets have been used for 

functionalization via the amine groups of ionic liquids [20]. Hydroxyl groups have been scarcely 

explored for the functionalization of graphene derivatives [21] Most of them make use of 

difficult-handling and toxic siloxane derivatives and,[22] as far as authors are concerned, none of 

them has been used to support hybrid catalyst.  

A number of highly efficient iridium−NHC (NHC = N-heterocyclic carbenes) catalysts active 

in hydrogen transfer catalysis have been reported [23] In particular, iridium(I) complexes with 

hemilabile O- and N-donor functionalized NHC ligands, having methoxy, dimethylamino, and 

pyridine as donor functions, are efficient catalyst precursors for transfer hydrogenation of 

unsaturated compounds using 2-propanol/KOH as hydrogen source [24] Interestingly, we have 

recently observed that iridium−NHC catalysts supported on carbon nanotubes through the 

carboxylic acids exhibit an enhanced hydrogen-transfer catalytic activity compared with related 

homogeneous systems [25].  



 

 

The aim of this work is to prepare graphene-based hybrid catalysts by covalent 

functionalization of GO and TRGO through their surface –OH groups. The grafting of the 

GO/TRGO surface with NHC ligand precursors was achieved by reaction of hydroxo-

functionalized imidazolium salts with intermediate carbonate species. The imidazolium-

functionalized graphene materials were used to prepare hybrid materials containing iridium–

NHC type organometallic complexes which were evaluated as heterogeneous catalysts for the 

hydrogen transfer reduction of cyclohexanone over several cycles in order to determine the 

recyclability and stability of the supported catalysts. In addition, the catalytic activity of a related 

homogeneous acetoxy-functionalized NHC iridium catalyst is described for comparative 

purposes. 

 

 

2. Experimental 

2.1.Materials  

All chemicals, including powder graphite, were purchased from Aldrich, reagent or HPLC 

grade qualities were employed in all the experimental work. Solvents were distilled immediately 

prior to use from the appropriate drying agents or obtained from a Solvent Purification System 

(Innovative Technologies). 

The GO utilized in this work was prepared applying a modified Hummers method to the 

commercial graphite as described previously [31]. TRGO was obtained from the correspondent 

graphite oxide by thermal treatment at 400ºC in an horizontal furnace, under a nitrogen flow of 

50 mL min-1. The residence time at the final temperature was 60 min [26]. The imidazolium salt 

[MeImH(CH2)3OH]Cl (1),[27] the starting organometallic compound [Ir(µ-OMe)(cod)]2 [28] and 



 

 

the acetoxy-NHC carbene complex [IrCl(cod)(MeIm(CH2)3OCOCH3] (Ir-ImidO)[25] were 

prepared according to the literature procedures. 

2.2. Characterization of Graphene Materials and Hybrid Catalysts  

NMR spectra were recorded on a Bruker Advance 400 spectrometer at 400.16 MHz (1H). 

NMR chemical shifts are reported in ppm relative to tetramethylsilane and referenced to partially 

deuterated solvent resonances. The catalytic reactions were analyzed on an Agilent 4890 D 

systems equipped with an HP-INNOWax capillary column (0.4 µm, 25 m x 0.2 mm i.d.) using 

mesitylene as internal standard. Thermogravimetric analyses (TGA) of the materials were 

performed in a TA SDT 2960 analyzer thermobalance. The procedure was as follow: 3 mg of 

sample were heated in the thermobalance at 10 ºC min-1 to 1000 ºC using a nitrogen flow of 200 

mL min-1. Transmission electron microscopy (TEM) spectra were carried out on a JEOL 2000 

EX-II instrument operating at 160 kV. High-resolution images of transmission electron 

microscopy HRTEM of the samples were obtained using a JEOL JEM-2100F transmission 

electron microscope, equipped with a field-emission-gun (FEG) operating at 200 kV. Energy-

dispersive X-ray spectroscopy (EDX) was used to verify the atomic composition of the catalyst. 

The samples were prepared by casting a few drops of 1 mg mL-1 ethanol suspensions of the 

materials over the carbon grids. To minimize exposure of the samples to the air, these were 

transferred to the lacey carbon grid into glovebox filled with ultrahigh-purity argon and from the 

glovebox to the TEM holder to minimize the time required to introduce them into the 

microscope. Elemental analyses were performed on a LECO-CHNS-932 micro-analyser with a 

LECO-VTF-900 furnace coupled to the micro-analyzer. The X-ray photoemission spectroscopy 

(XPS) spectra were performed in a SPECS system operating under a pressure of 10-7 Pa with a 

Mg Kα X-ray source. Functional groups in the graphene materials were quantified by 



 

 

deconvolution of the high resolution C1s XPS peak in Gaussian and Lorentzian functions.[29] 

The binding energy profiles were deconvoluted as follows: undamaged structures of Csp2-

hybridized carbon (284.5 eV), damaged structures or Csp3-hybridized carbons (285.5 eV), C-O 

groups (286.5 eV), C=O functional groups (287.7 eV) and COO groups at 288.7 eV. The amount 

of iridium present in the samples was determined by means of Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) in an Agilent 7700x instrument. The samples were digested following 

the method described elsewhere;[30] briefly, 30 mg of sample were treated with 5 mL of a 

mixture of concentrated nitric and hydrochloric acids (3:1 ratio) at 180 ºC for 3 h under 

microwave irradiation. 

2.3. Functionalization of Graphene Materials with 1-(3-hydroxypropyl)-3-methyl-1H-

imidazol-3-ium chloride (1)  

Both type of graphenes (GO and TRGO) were functionalized with the imidazolium salt, 1-(3-

hydroxypropyl)-3-methyl-1H-imidazol-3-ium chloride, [MeImH(CH2)3OH]Cl (1), following a 

two steps procedure. GO or TRGO (100 mg) were dispersed in 20 mL of dichloromethane 

(DCM). The dispersion was cooled to 0 ºC with an ice bath and then, p-nitrophenylchloroformate 

(3.0 g, 15 mmol) and triethylamine (2.1 mL, 15 mmol) were added under inert atmosphere. The 

mixture was stirred for 24 h and allowed to reach room temperature slowly. The resulting solids 

were filtered and washed three times with DCM (20 mL) and dried under vacuum for 2 h. In a 

second step, the imidazolium salt 1 (100 mg, 0.560 mmol) and a catalytic amount of 

triethylamine (0.2 mL) were added, under inert atmosphere, to dispersions of the graphene solids 

obtained in step 1 in tetrahydrofuran (THF) (15 mL), and refluxed for 24 h. The products were 

obtained by centrifugation/filtration, washed with THF (3 x 20 mL), DCM (3 x 20 mL), and 

ethanol (3 x 20 mL) and then, vacuum dried at 100 ºC in a preheated furnace until constant 



 

 

weight. The obtained graphene samples were labeled as GO-1 and TRGO-1 depending on the 

parent material used in each case, GO or TRGO, respectively.  

In another experiment, a dispersion of GO (100 mg) in THF (15 mL) was refluxed for 24 h. 

Centrifugation/filtration, washing with THF, DCM and ethanol, and vacuum drying at 100 ºC 

yielded GO-Blank. 

2.4. Preparation of Hybrid Catalysts GO-1-Ir and TRGO-1-Ir 

Imidazolium functionalized graphene materials, GO-1 or TRGO-1 (100 mg) were reacted 

with [Ir(µ-OMe)(cod)]2 (100 mg, 0.150 mmol) in THF (10 mL) under an argon atmosphere. The 

mixtures were refluxed for 2 days and then immersed into an ultrasonic bath for 30 min at room 

temperature. The resultant solids were recovered by centrifugation, washed with THF (5 x 10 

mL) and diethyl ether (2 x 5 mL), and dried under vacuum to produce GO-1-Ir and TRGO-1-Ir. 

General Procedure for Transfer Hydrogenation Catalysis. The catalytic transfer 

hydrogenation reactions were carried out under an argon atmosphere in thick glass reaction tubes 

fitted with a greaseless high-vacuum stopcock. In a typical experiment, the reactor was charged 

with a solution of cyclohexanone (0.52 mL, 5.0 mmol) in 2-propanol (4.5 mL), internal standard 

(mesitylene, 70 µL, 0.5 mmol), base (0.1 mL, 0.025 mmol of a KOH solution 0.24 M in 2-

propanol) and the catalyst (0.005 mmol, 0.1 mol%). The weight of the supported catalysts used 

in each experiment was calculated according to the ICP measurements, assuming that all the 

iridium in the sample corresponds to active catalyst sites, 9.34 mg of GO-1-Ir (10.2 %wt of 

iridium) and 20.44 mg of TRGO-1-Ir (4.7 %wt of iridium). The resulting mixture was stirred at 

room temperature until complete solution of the homogeneous catalyst, 

[IrCl(cod)(MeIm(CH2)3OCOCH3] (Ir-ImidO),[25] or for 10 min. in the case of heterogeneous 

catalyst, and then placed in a thermostated oil bath at the required temperature, typically 80 ºC. 



 

 

Conversions were determined by gas chromatography analysis under the following conditions: 

column temperature 35 ºC (2 min) to 220 ºC at 10 ºC/min, flow rate of 1 mL/min using ultrapure 

He as carrier gas. 

Once the reaction was completed, the hybrid catalysts were recovered by centrifugation and 

washed with additional amounts of 2-propanol (3x10 mL). Several catalytic cycles were 

performed with these materials, under the same experimental conditions, without adding any 

fresh catalyst precursor. The last cycle was carried out without inert atmosphere. 

 

3. Results and discussion 

3.1. Functionalization of the -OH Groups in Graphene Oxide (GO) and Partially Reduced 

Graphene Oxides (TRGO).  

GO was synthesized from commercial graphite by using the Hummers method. Following that 

procedure and, after sonication, water or dichloromethane homogeneous dispersions of 

monolayers of Csp2 carbon atoms decorated with different oxygen-containing functional groups 

were obtained (see Supporting Information for details). As determined by XPS (Figure 1a), the 

functional groups observed include carboxylic acids (7.9 %), C=O (17.8 %) and C-O (29.6 %) 

groups. The presence of these functionalities at the basal planes of the sheet (alcohol or epoxy 

groups) or at the edges/holes (carboxylic acids, C=O groups) provides anchorage sites for the 

covalent linkage of different ligands and therefore, allowing for the preparation of hybrid 

materials. The amount of carbon atoms in a sp2 hybridization (36.2 %) is however quite poor 

compared to that of graphene.[31] Nevertheless, thermal treatment of graphite oxide at 400ºC 

(TRGO, Figure 1b) led to the partial reconstruction of the Csp2 structure (up to 71.4 %), due to 



 

 

the elimination of the thermally unstable oxygen functional groups at this temperature (thermal 

reduction).  

 

 

Figure 1. XPS C1s spectra and deconvoluted curves of: a) GO, b) TRGO, c) GO-Blank. 

Despite the inherent loss of hydrophilicity, the thermally stable functional groups still present 

in TRGO are sufficient to form stable water and dichloromethane suspensions. Among them, the 



 

 

most abundant oxygen-containing functions are the C-O groups (11.5 %), while the COO content 

(including acid groups being the less thermally stable)[19,32] is reduced down to 2.4 %. In view 

of the decrease in the acid groups content in this reduced material and, in order to broad the 

scope of the synthesis of organometallic supports, we have thought on the alternative 

functionalization of the carbonaceous materials through their OH groups, not only with thermally 

reduced graphene TRGO, but also with the parent GO. 

The functionalization of the hydroxyl groups was achieved by means of a two-step procedure 

depicted in Figure 2. In a first step, GO and TRGO materials were reacted with p-

nitrophenylchloroformate. This reactive is known to selectively react with “isolated” hydroxyl 

groups with the subsequent formation of the corresponding p-nitrophenyl carbonate esters 

[33,34,21] In a second step, treatment of the carbonates with the imidazolium salt 

[MeImH(CH2)3OH]Cl (1), which contains a nucleophile OH-ending group, in refluxing 

tetrahydrofuran for 24 h, resulted in the formation of new carbonate graphene derivatives, GO-1 

and TRGO-1, by p-nitrophenol displacement .  

GO-1 and TRGO-1 form relative stable suspensions in acetone (see Supporting Information), 

which allowed their characterization by NMR spectroscopy. Their 1H NMR (acetone-d6) spectra 

exhibit the typical set of signals for the imidazolium groups, at 7.41/7.35 ppm (H4 and H5) and 

8.64 ppm (H2). Neither the corresponding signals of the nitrophenyl fragment nor the imidazolic 

-OH group were observed in the spectra. This is in agreement with a covalent linkage of 1 to the 

graphene derivative. The relatively few protons present in the graphene layered material were not 

observed in the 1H NMR which is attributed to their poor relaxation, as it is proposed for related 

CNT-based materials [25] This fact also precludes the characterization of the samples by solid-

state 13C-CP MAS NMR spectroscopy (see Supporting Information). 



 

 

 

 

Figure 2. Covalent functionalization of the parent graphenes, GO and TRGO, with the 

imidazolium salt [MeImH(CH2)3OH]Cl (1).  

 

It is well known that certain oxygen-containing functional groups of GO are readily 

decomposed even at low temperatures as a consequence of their low thermal stability [31]. 

Therefore, for comparative analytical purposes, the sample GO-Blank was prepared by refluxing 

suspensions of GO in boiling THF for 24 h. We have to take into account that TRGO was 

obtained at much higher temperature so the relative TRGO-Blank is irrelevant. Comparison of 

the TGA curves of GO and GO-Blank obtained under nitrogen (Figure 3) confirm the 



 

 

significant lower weight loss of GO-Blank in the range below 110 ºC, which is related with the 

elimination of carboxylic acids and/or, in a lower extent, hydroxyl or epoxy groups located at the 

interior of the aromatic domains under the processing conditions [35]. This result was 

corroborated by XPS analysis of GO-Blank which shows a diminished amount of all types of C-

O functional groups with a decrease of the acid groups down to 3.3% (Figure 1c). We can 

therefore conclude that a large amount of the carboxylic acids in GO were lost under the reaction 

conditions applied for the preparation of GO-1, and not by reaction with the imidazolium ligand, 

therefore confirming the highly selective imidazolium anchoring to the –OH functionalities on 

the graphene surface. 

 

 

Figure 3. Thermogravimetric analysis profiles of GO, GO-1 and GO-Blank.  

 

The imidazolium functionalization of GO-1 and TRGO-1 was further confirmed by elemental 

analysis (Table 1) which shows an increase in the nitrogen content with respect to the parent GO 

and TRGO, from ≈ 0.1 wt.% in the parent samples up to 6.9 and 1.4 wt.% for GO-1 and 

TRGO-1, respectively, which is consistent with the attachment of the imidazolium ligand on the 

graphene sheets. The lower amount of nitrogen in TRGO-1 compared to that of GO-1 is 



 

 

obviously related with the lower amount of C-O groups in the parent thermally reduced sample, 

which restricts its capacity to bond imidazolium salt. The increment of the atomic nitrogen 

content in these samples calculated by XPS (Table 1) is also consistent with the above 

conclusions. Additionally, and as expected, chlorine atoms were also detected by XPS in a half 

ratio of the nitrogen content.  

 

Table 1. Elemental analysis and XPS data of parent graphenes (GO and TRGO) and 

imidazolium functionalized graphenes (GO-1 and TRGO-1).  

Sample 
Elemental Analysis (wt.%)     XPS (%) 

C H N O  N Cl 

GO 49.1 2.4 0.1 48.4  0.0 0.0 

TRGO 74.1 0.6 0.0 25.3  0.0 0.0 

GO-1 51.8 3.4 6.9 37.9  5.6 2.5 

TRGO-1 76.8 1.4 1.4 20.3  1.4 0.6 

 

 

Detailed analysis of the high-resolution XPS C1s peaks of GO-1 and TRGO-1 (Figure 4, a 

and b, respectively) show the appearance of the typical band of the C-N bonds which is not 

present neither in the parent materials nor in GO-Blank. Unfortunately, this band lies in between 

the Csp3 and C-O bands, which prevent their quantification. The increment in the intensity of the 

COO band in TRGO-1 and GO-1 with respect the parent TRGO and the thermally treated GO-

Blank (to discriminate the effect of the temperature in the elimination of functional groups) is 

mainly ascribed to the new carbonate groups formed in the functionalization process.  

 



 

 

 

 

Figure 4. XPS C1s spectra and deconvoluted curves of imidazolium functionalized graphenes: a) 

GO-1, b) TRGO-1.  

 

TEM images of GO-1 and TRGO-1 (Figure 5, c and d) are similar to those of the 

corresponding precursors, GO and TRGO (Figure 5, a and b). Also, the thermally reduced 

samples show the expected fluffy appearance what indicates that the functionalization do not 

produce any damage in the graphene layers. 



 

 

 

Figure 5. TEM images of a) GO, b) TRGO, c) GO-1, and d) TRGO-1.  

 

3.2. Synthesis and characterization of hybrid graphene/iridium catalysts.  

The hybrid catalysts containing supported iridium N-heterocyclic carbene (NHC) complexes, 

GO-1-Ir and TRGO-1-Ir, were prepared by reaction of the methoxo iridium(I) dimer compound 

[Ir(µ-OMe)(cod)]2 (cod = 1,5-cyclooctadiene) with the imidazolium functionalized graphenes, 

GO-1 and TRGO-1, as depicted in Figure 6. Insoluble materials were obtained in both cases, 

probably as a consequence of the increment in the molecular weight of the samples, which 

prevent their characterization in solution by NMR. Evidence for the successful anchoring of the 

NHC-iridium complexes on the graphene oxide sheets was obtained from XPS spectroscopy. For 

comparative purposes the materials GO-Ir and TRGO-Ir were prepared by reaction of the 

unfunctionalized GO and TRGO (lacking the supported imidazolium ligand) with [Ir(µ-

OMe)(cod)]2.  

 



 

 

 

 

Figure 6. Synthesis of hybrid graphene/Ir-NHC materials. 

 

The high-resolution Ir4f XPS peak obtained for all iridium samples (Figure 7) shows the two 

characteristic peaks of the iridium (Ir4f7/2 and Ir4f5/2). Both peaks were centered at 62.4 and 65.6 

eV for the functionalized materials containing the NHC linkers, GO-1-Ir and TRGO-1-Ir. 

These values compare well with those observed for related iridium(I) compounds,[36] or 

nanotube-supported iridium-NHC hybrid materials recently describe by us [25]. However, in 

GO-Ir and TRGO-Ir, lacking NHC linkers, the maxima are shifted towards higher binding 

energies, 63.0 and 66.1 eV, respectively. This suggests that in the absence of the imidazolium 

ligand 1 the iridium centers could be in an upper oxidation state (i.e. iridium oxide) [37] or 

alternatively taking part of very different iridium species (i.e, iridium nanoparticles,[38] 

carboxylate-complexes,[39] clusters,[40] etc.).  



 

 

 

Figure 7. XPS spectra for the Ir4f core level of the graphene-based Ir hybrid catalysts.  

The amount of iridium in the hybrid catalysts, determined by means of ICP-MS measurements, 

was 10.2 wt.% for GO-1-Ir and 4.7 wt.% for TRGO-1-Ir. For the samples without imidazolium 

ligands, GO-Ir and TRGO-Ir, the amount of iridium loaded was higher, 19.9 and 6.0 wt.%, 

respectively, most probably as a result of the different attachment mode of the iridium to the 

oxygen functional groups of the graphene materials.  

HRTEM images obtained for GO-1-Ir (Figure 8) showed the presence of supported iridium 

species homogeneously distributed at the surface of the graphene sheets, which was also 

confirmed by EDX spectroscopy (see Supporting Information). Iridium species with diameters as 

lower as 0.17-0.27 nm and greater (1.2-1.4 nm and even larger) were observed. According to 

other authors, these findings could be attributed to the presence of molecular iridium complexes 

anchored on the surface (lower diameters) together with iridium clusters or nanoparticles 

possibly formed by beam damage when measuring that cause iridium migration. These electron-

dense regions have also been observed in the characterization of related molecular iridium 

analogues [25]. 

 



 

 

 

Figure 8. HRTEM images of a) GO-1-Ir and b) TRGO-1-Ir. 

 

Although there is no direct evidence of the covalent coordination of the IrCl(cod) metal 

fragment, considering the above results, it is suggested that the functionalization of the 

nanomaterials was achieved through the carbene atom of the heterocycle moiety in a similar way 

to that of the Ir-NHC homogeneous catalysts. 

3.3. Hydrogen-Transfer Catalytic Activity.  

The supported organometalllic complexes GO-1-Ir and TRGO-1-Ir graphene materials were 

therefore tested as catalysts for the hydrogen transfer reduction of cyclohexanone to 

cyclohexanol (Equation 1) using 2-propanol both as hydrogen source and as a non-toxic solvent 

with a moderate boiling point. The catalytic transfer hydrogenation of several unsaturated 

substrates, including cyclohexanone, under homogeneous conditions were previously tested and 

optimized for a set of O-functionalized NHC iridium(I) related complexes such as 

[IrBr(cod)(MeIm(2-methoxybenzyl))] [24] Standard catalyst loads of 0.1 mol %, with 0.5 mol % 

of KOH as co-catalyst, and 80 ºC were routinely employed (Equation 1). The supported catalysts 

prepared without imidazolium ligand, GO-Ir and TRGO-Ir, and the related molecular acetoxy-

functionalized NHC complex [IrCl(cod)(MeIm(CH2)3OCOCH3] (Ir-ImidO) [25] were also 



 

 

evaluated for comparative purposes. It is noteworthy that all the graphene materials without 

iridium did not show any catalytic activity. 

 

 

Reaction profiles obtained for heterogeneous and homogeneous catalysts are shown in Figure 

9. The relevant reaction parameters, including the reaction times required to reach 90% 

conversion and the turnover frequencies (TOF), for all the examined catalysts are summarized in 

Table 2. As can be observed in the conversion vs time reaction profiles (Figure 9), no induction 

period was detected, as cyclohexanone reduction was immediately observed after thermal 

equilibration of the reactant mixture. The reaction profiles illustrate the outstanding catalytic 

activity of the graphene-supported iridium-NHC hybrid materials, GO-1-Ir and TRGO-1-Ir, 

compared with those materials lacking a NHC linker between the carbon material and iridium, 

GO-Ir and TRGO-Ir. In fact, the later materials became deactivated after 3 hours reaching less 

than 20% conversion. The hybrid material TRGO-1-Ir is the catalyst with the best catalytic 

performance, even better than the homogeneous acetoxy-functionalized NHC catalyst 

[IrCl(cod)(MeIm(CH2)3OCOCH3] (Ir-ImidO). 

The reaction time required to reach 90% conversion (as determined by GC using mesitylene as 

internal standard) for TRGO-1-Ir was 150 min, much shorter than that observed for the 

homogeneous catalyst [IrCl(cod)(MeIm(CH2)3OCOCH3] (Ir-ImidO) of 200 min, and 

definitively much better than the 760 min required for the GO-1-Ir material. These results point 

out to an influence of the graphene support in the enhancement of the catalytic activity when 

compare with the homogeneous system. On the other hand, the superior catalytic activity of 



 

 

TRGO-1-Ir is a consequence of the structural features of the reduced graphene material. Most 

probably, the higher structural Csp2 area of this thermally reduced type of graphene TRGO 

compared with the parent GO sample has a positive influence. The poor catalytic performance of 

GO-1-Ir could be related with the presence of a great variety of oxygen functional groups in this 

sample. This other groups (i.e. carboxylic acids) could also react with the iridium precursor in a 

competitive way leading to iridium carboxylate or alkoxide complexes with much lower catalytic 

activity than the supported iridium NHC species. 

 

 

Figure 9. Reaction profiles for transfer hydrogenation of cyclohexanone by homogeneous and 

heterogeneous catalysts.  

Successful recycling studies were carried out with both graphene-supported iridium-NHC 

hybrid catalysts GO-1-Ir and TRGO-1-Ir. The catalyst without NHC linkers, GO-Ir and 

TRGO-Ir, could not be re-cycled (Figure 10). The recycling procedure simply requires 

filtration, washing of the catalysts with fresh 2-propanol (4 x 5 mL), and addition of further 

cyclohexanone/KOH/i-PrOH. The process was repeated four times in protected atmosphere, and 

in the fifth run, the catalytic reactions were conducted in air. The results of cyclohexanone 

conversion after each catalytic run, with reaction times of 2.5 h for TRGO-1-Ir and 12.5 h for 



 

 

GO-1-Ir, are depicted in Figure 10. Both graphene-supported iridium-NHC hybrid catalysts 

exhibited comparable conversions in the successive experiments, even for the fifth cycle under 

no protected atmosphere. This behavior contrast with the impossibility to recycle the acetoxy-

functionalized iridium-NHC homogeneous catalysts (Ir-ImidO) due to its air-sensitivity.  

 

Table 2. Catalytic Hydrogen Transfer from 2-Propanol to Cyclohexanone with graphene/Ir-NHC 

and graphene/Ir hybrid catalysts, and related acetoxy-functionalized NHC-Ir homogeneous 

catalyst (Ir-ImidO).a,b  

Catalyst Time (min)c TON TOF0, h
-1 TOF90, h

-1
 

GO-1-Ir 760 947 11364 75 

TRGO-1-Ir 150 964 11568 385 

GO-Ir - 147 441 - 

TRGO-Ir - 203 609 - 

Ir-ImidO 200 941 11124 282 

a Reaction conditions: catalyst/substrate/KOH ratio of 1/1000/5, 0.1 
mol% of catalyst in 5 mL 2-propanol (5 mL) at 80 °C. b The reactions were 
monitored by GC using mesitylene as internal standard. c Reaction time at 
90% of conversion. 

 

 



 

 

 

Figure 10. Recyclability of graphene-supported iridium heterogeneous catalysts.  

4. Conclusions 

We have demonstrated that graphene oxides and partially reduced graphene oxides can be 

conveniently functionalized through the hydroxyl surface groups. Covalent anchoring of a 

hidroxy-functionalized imidazolium salt was achieved through labile intermediate organic 

carbonate functions prepared by the selective reaction of the -OH groups with  

p-nitrophenylchloroformate. The imidazolium functionalized graphene materials were used to 

prepare hybrid materials containing supported iridium N-heterocyclic carbene (NHC) complexes 

covalently bonded through carbonate functions. 

The hybrid graphene/iridium-NHC materials were active catalysts in the hydrogen transfer 

reduction of cyclohexanone to cyclohexanol using 2-propanol as hydrogen source. Interestingly, 

a superior catalytic performance was achieved for the partially reduced graphene-based material. 

This heterogeneous catalyst is slightly more active than a related acetoxy-functionalized NHC 

iridium homogeneous catalyst. The enhanced catalytic activity most probably is due to the 

positive effect of Csp2 structure in partially reduced graphenes. However, both types of catalysts 

present very similar reaction profiles thus suggesting a similar operating mechanism. In contrast, 

the presence of remaining oxygen functional groups as competitive sites for the anchoring of 



 

 

poorly active iridium complexes seems to be the reason for the low catalytic performance of 

hybrid catalyst based on graphene oxide lacking NHC-linkers. 

It was also demonstrated that the graphene-based heterogeneous hybrid catalysts remained 

stable through successive catalytic runs. The supported catalyst can be reused in five consecutive 

cycles without any loss of activity, even under an air atmosphere.  
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