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Abstract

In the context of a sticky price DSGE model subject to government expenditure
and preference shocks where governments issue only nominal non-contingent bonds
we examine the implications for optimal inflation of changes in the level and average
maturity of government debt. We analyse these relationships under two different
institutional settings. In one case government pursues optimal monetary and fiscal
policy in a coordinated way whereas in the alternative we assume an independent
monetary authority that sets interest rates according to a Taylor rule and where
the fiscal authority treats bond prices as a given. We identify the main mechanisms
through which inflation is affected by debt and debt maturity (a real balance effect
and an implicit profit tax) and also study additional channels through which the
government achieves fiscal sustainability (tax smoothing, interest rate twisting and
endogenous fluctuations in bond prices). In the case of optimal coordinated monetary
and fiscal policy we find that the persistence and volatility of inflation depends on
the sign, size and maturity structure of government debt. High levels of government
debt do lead to higher inflation and longer maturity debt leads to more persistent
inflation. However even in the presence of modest price stickiness the role of inflation
is minor with the majority of fiscal adjustment achieved through changes in taxes
and the primary surplus. However in the case of an independent monetary authority
where debt management, monetary policy and fiscal policy are not coordinated then
inflation has a much more substantial and more persistent role to play. Inflation is
higher, more volatile and more persistent especially in response to preference shocks
and plays a major role in achieving fiscal solvency.
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1 Introduction
Rising levels of government debt in the OECD in the wake of the financial crisis of 2007/8
are raising numerous concerns. Most obviously issues of fiscal sustainability are triggering
a sovereign debt crisis, notably in the Euro area. Related to this concern is the notion
that governments will use inflation in order to achieve fiscal solvency without resorting to
distortionary labour taxes. For instance, Aizenman and Marion (2009) calculate that a
persistent inflation rate of 5% will contribute significantly to stabilising US public finances.
In contrast the evidence of Giannitsarou and Scott (2007) and Hall and Sargent (2010),
using historical data, suggests that inflation has played a relatively minor role in achieving
debt sustainability. Much discussion around the link between debt and inflation also
includes a focus on the maturity structure of government debt with a widespread belief
that the longer is the maturity of government debt the greater the incentive to use inflation.
In this paper we examine optimal Ramsey policy for a government that controls labour
taxes and inflation in an economy characterised by monopolistic competition and sticky
prices. In doing so we follow the work of Schmitt-Grohe and Uribe (2004) and Siu (2004)
who show how price adjustment costs limit the ability of inflation to make a substantial
contribution to fiscal sustanability and Lustig, Sleet and Yeltekin (2008) who extend this
work to consider long maturity bonds and show that governments use inflation more if
they can issue long term bonds and that it is optimal to do so.

Our model is outlined in Section 2 and is similar to those of Schmitt-Grohe and Uribe
(2004), Siu (2004) and Lustig et al. (2008). It focuses on a government which sets optimal
policy under commitment in a monopolistically competitive environment characterised by
sticky prices and incomplete bond markets in which governments cannot issue a complete
set of contingent claims but instead issue nominal non-state contingent bonds. As in
Lustig et al. (2008) we allow the maturity of government debt to be greater than a single
period. Using the computational method of Faraglia, Marcet and Scott (2012) enables us
to consider much longer maturities (in this case up to 20 periods) than previously analysed
although unlike Lustig et al (2008) we do not focus on the composition of debt but simply
focus on changes to average maturity. We extend previous work in this area by focusing
not just on government expenditure shocks but also allow for preference shifts that bring
about fluctuations in consumption that can be considered demand side shocks.

In Section 3 we consider a simplified version of our model with shocks in the first
period only. We use this simple environment to identify the key mechanisms through
which the government uses inflation to stabilise debt - a real liability effect and an implicit
profit tax - and examine how these channels are affected by the level, sign and maturity
of government debt. In Section 4 we then consider using full stochastic simulations the
properties of our model and the properties of inflation using both long and short run
samples. We find that price stickiness dominates the desire to use inflation to stabilise
debt and so inflation shows only very modest changes in response to expenditure shocks
and only for the duration of bond maturity. Longer bonds do lead to stronger and more
persistent inflation but the role is still minor. In the case of preference shocks the inflation
impact is larger but the advantage of using long bonds is less.

In Section 5 we consider an alternative and more empiricaly relevant institutional
setting in which fiscal policy is set optimally but an independent monetary authority sets
interest rates according to a Taylor rule and bond prices are taken as given by the fiscal
authority. This alternative institutional structure has substantial effects on policy and
leads to far more substantial fluctuations in inflation which are considerably more persistent
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than under optimal coordinated policy. The impact is especially noticeable in response
to preference shocks. These conclusions are reinforced in Section 6 where we investigate
the role of inflation and interest rates in achieving fiscal sustainability. Under the jointly
optimal (coordinated) policy and in response to both shocks inflation fulfills a relatively
modest role with changes in taxes and the primary position being the most important
variable. When monetary and fiscal policies are conducted by separate (uncoordinated)
authorities inflation becomes essential in making the debt level manageable. A final section
concludes.

2 Model

2.1 Agents

Preferences
Ours is an infinite horizon economy populated by a large number of identical households

with preferences defined by:
E0

∞∑
t=0

βtu(ct, ξt) + v(ht) (2.1)

where ct denotes consumption, ht hours and β is the subjective discount factor. The term
ξt is a preference shock which shifts the utility of consumption. For each value of ξt,
utility u(ct, ξt) is assumed increasing and concave in consumption.

Firms
In every period t the economy produces a final good Yt which is a Dixit-Stigltiz

composite of a continuum of differentiated intermediate products. Each household is a
monopolistic producer of one of these intermediate products which are produced with a
linear technology yt = ht. Demand for the intermediate good is given by Ytd(pt), where
pt is the relative price of the intermediate good in terms of the composite final good.
The demand function d satisfies additional assumptions that guarantee the existence of a
symmetric equilibrium namely d(1) = 1 and d′(1) < −1.

Let Pi,t denote the price of a generic intermediate product i and introduce sticky prices
through adjustment costs given by θ

2( Pi,t
Pi,t−1

− 1)2 where the parameter θ governs the degree
of price stickiness. The higher θ is the higher the resource cost of adjusting prices and
when θ = 0 prices are fully flexible.

Intermediate good producers seek to maximize:

Et
∞∑
j=0

βj
uc(ct+j, ξt+j)
uc(ct, ξt)

[ Pi,t+j
Pt+j

Yt+jd(Pi,t+j
Pt+j

)− wt+jhi,t+j −
θ

2( Pi,t+j
Pi,t+j−1

− 1)2] (2.2)

subject to the constraint hi,t+j = Yt+jd(Pi,t+j
Pt+j

). The stochastic discount factor βj uc(ct+j ,ξt+j)
uc(ct,ξt)

is used to evaluate future profits and wt+j is the wage rate in the competitive labor market
which firms hire from. The firm’s first order condition with respect to Pt is given by:

1
Pt
Ytd(Pi,t

Pt
) + Pi,t

P 2
t

Ytd
′(Pi,t
Pt

)− wtYtd′(
Pi,t
Pt

) 1
Pt
− θ( Pi,t

Pi,t−1
− 1) 1

Pi,t−1

+ βEt
uc(t+ 1)
uc(t)

θ(Pi,t+1

Pi,t
− 1)Pi,t+1

P 2
i,t

= 0 (2.3)
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This equation forms the "Phillips curve" describing the inflation output trade-off at the
heart of our model. Letting d′(1) = η and imposing a symmetric equilibrium such that
all firms set the same price gives:

Ytη

θ
((1 + η)

η
− wt)− (πt − 1)πt + βEt

uc(ct+1, ξt+1)
uc(ct, ξt)

(πt+1 − 1)πt+1 = 0

where πt = Pt
Pt−1

denotes gross inflation.

Government and Markets
The government engages in two activities - it levies taxes τt on households’ labor

income and trades with households in bond markets to finance a spending process {gt}∞0 .
We assume only one type of asset, a nominal bond of maturity N . We denote by BN

t the
quantity of this bond issued in period t and its price by qNt . We assume each period
the government buys back the entire stock of debt issued in the previous period. The
government budget constraint is therefore :

qNt B
N
t = qN−1

t BN
t−1 + Pt(gt − τtwtht) (2.4)

2.2 The Ramsey Problem

To solve for optimal policy we substitute out from the planner’s constraint for taxes and
bond prices. In a competitive equilibrium (1−τt)wt = − vh(ht)

uc(ct,ξt) and q
N
t = βNEt

uc(ct+N ,ξt+N )
uc(ct,ξt)ΠNj=1πt+j

with q0
t = 1. Using these substitutions the government budget constraint becomes:

βNEt
uc(ct+N , ξt+N)

uc(ct, ξt)ΠN
j=1πt+j

BN
t = βN−1Et

uc(ct+N−1, ξt+N−1)
uc(ct, ξt)ΠN−1

j=1 πt+j
BN
t−1

+ Pt(gt − (1 + vh(ht)
uc(ct, ξt)wt

)wtht) (2.5)

Multiplying by the marginal utility of consumption in period t, dividing by Pt and letting
bNt = BNt

Pt
denote the real debt level, gives:

βNEt
uc(ct+N , ξt+N)

ΠN
j=1πt+j

bNt = βN−1Et
uc(ct+N−1, ξt+N−1)

ΠN−1
j=1 πt+j

bNt−1
πt

+ uc(ct, ξt)(gt − (1 + vh(ht)
uc(ct, ξt)wt

)wtht) (2.6)

In a competitive equilibrium aggregate output equals hours worked i.e. Yt = ht so our
Phillips curve becomes:

(πt − 1)πt = htη

θ
((1 + η)

η
− wt) + βEt

uc(ct+1, ξt+1)
uc(ct, ξt)

(πt+1 − 1)πt+1 (2.7)

Finally, the economy wide resource constraint sets output equal to the sum of con-
sumption, government spending and the price adjustment costs so that :

ht = ct + gt + θ

2(πt − 1)2 (2.8)
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Our Ramsey planner seeks to maximize (2.1) subject to (2.6),( 2.7) and (2.8). We attach a
multiplier λs,t to the budget constraint, λp,t to the Phillips curve and λf,t to the resource
constraint. The Lagrangian for the planner’s program is then given by:

L = E0
∑
t

βt(u(ct, ξt) + v(ht) + λf,t(ht − ct − gt −
θ

2(πt − 1)2)

+(λs,t−N − λs,t−N+1) uc(ct, ξt)Πt
t−N+1πj

bNt−N − λs,t(gtuc(ct, ξt)− (wtuc(ct, ξt)ht + vh(ht)ht))

+(λp,t−1 − λp,t)uc(ct, ξt)πt(πt − 1) + λp,t
η

θ
htuc(ct, ξt)(

1 + η

η
− wt)) (2.9)

for given λs,−N , ...λs,−1 and λp,−N , ...λp,−1. The first order conditions for this problem with
respect to ct, bNt , ht, wt and πt are :

uc(ct, ξt)− λf,t + λs,tucc(ct, ξt)(wtht − gt) + (λs,t−N − λs,t−N+1)bNt−N
ucc(ct, ξt)
Πt
t−N+1πj

=

−λp,t
ηhtucc(ct, ξt)

θ
(1 + η

η
− wt) + (λp,t − λp,t−1)ucc(ct, ξt)πt(πt − 1) (2.10)

vh(ht) + λf,t + λs,t(wtuc(ct, ξt) + vhh(ht)ht + vh(ht)) (2.11)

+ λp,t
η

θ
uc(ct, ξt)(

1 + η

η
− wt) = 0

λs,t −
η

θ
λp,t = 0 (2.12)

− θλf,t(πt − 1) −
N∑
k=1

(λs,t−k − λs,t−k+1)βN−kEt
uc(ct+N−k, ξt+N−k)bNt−k

πt Πj=t+N−k
j=t−k+1 πj

− (λp,t − λp,t−1)uc(ct, ξt)(2πt − 1) = 0 (2.13)

Etλs,t
uc(ct+N , ξt+N)

Πt+N
t+1 πj

− Etλs,t+1
uc(ct+N , ξt+N)

Πt+N
t+1 πj

= 0 (2.14)

Equations (2.10) and (2.11) are the planner’s first order conditions for consumption and
hours respectively whilst (2.13) determines the optimal inflation level. The first term in
(2.13) captures the marginal impact of higher inflation on the resource costs associated
with price changes. The second term measures the effect of higher inflation on the inherited
liability of the government in period t and the last term represents the intertemporal
effects of a current change in inflation via the Phillips curve. In (2.12) the planner changes
wages (marginal costs) so as to balance the benefits of higher wages in financing the
deficit with the costs in terms of higher inflation in period t. Finally (2.14) is the Euler
equation for the optimal choice of bNt . Following the argument in Aiyagari et al. (2002)
the multiplier λs,t behaves as a risk adjusted random walk.
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2.3 Calibration

Each period represents one calendar year with the discount factor β set to 0.96. We assume
in period 0 the economy is in steady state with constant prices, consumption, government
spending and hours and with the values for these variables such that they solve the system
of first order conditions for the Ramsey policy problem. The steady state inflation rate
is equal to zero, the level of government expenditure is set to 25% of value added, and
the market value of debt equal to 60% of output. Since in the steady state the market
value of debt is given by βNbN , as we vary the maturity N , we have to vary the quantity
of bonds in the steady state to keep the market value constant. When we simulate the
economy we choose initial conditions for bNt , λs,t and λp,t for t = {−N, ...,−1} equal to
the steady state values for these objects.

Household preferences are of the form u(ct, ξt) + v(ht) = ξtlog(ct) + ζlog(1− ht). We
choose ζ so that households spend 20% of their unitary time endowment working which
gives ζ = 3.0417. 1

For price adjustment costs θ we follow SGU (2004) and set θ = 4.375 which gives a
linearized version of the Phillips curve consistent with the empirical estimates of Sbordone
(2002). Taking log deviations of wages and inflation around the zero steady state inflation
rate gives the Phillips curve :

π̂t = βEt π̂t+1 −
h(1 + η)

θ
ŵt (2.15)

where circumflexes denote log deviations from the steady state. To calibrate the elasticity η
we follow SGU (2004) and choose a value of -6. Sbordone’s empirical estimates imply a
value of 17.5 for h(1+η)

θ
which with h = 0.2 implies a value for θ = 17.5. We divide by four

to give an annual rate.
We assume the following stochastic processes for government spending and the prefer-

ence shock :

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t, εg,t ∼ N(0, σ2
g)

ln ξt = (1− ρξ) ln ξ + ρξ ln ξt−1 + εξ,t, εξ,t ∼ N(0, σ2
ξ )

We calibrate ρi and σi for i ∈ {ξ, g} so as to make the log-linearized version of our
model consistent with estimates of the IS equation in Ireland (2004).2 In particular letting
it denote the short term interest rates the demand side equation in our model is given by:

β(1 + it)Et
ct
ct+1

ξt+1

ξt

1
πt+1

= 1

Log linearising this equation and imposing that in equilibrium yt = ct + gt + θ
2(πt − 1)2

yields :
1Let h = 0.2 denote the steady state level of hours and g and c the analogous steady state values for

government expenditure and consumption. The steady state market value of debt, βNb, is 60% of h, which
gives us b = .6h

βN . The government budget constraint gives the appropriate value of ζ that is consistent
with these targets since in the steady state it holds that: b(βN − βN−1) = g − 1+η

η h(1− ζc

1−h
η

1+η ).
2Since he uses log consumption without government spending shocks the loading of the term (̂ıt −

Et π̂t+1) is unity rather than c
y . Nevertheless his model seems to be the closest to ours in the empirical

New Keynesian literature.
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ŷt = Etŷt+1 −
c

y
(̂it − Etπ̂t+1) + g

y
ĝt + c

y
ξ̂t − Et

g

y
ĝt+1 + c

y
ξ̂t+1

where x̂ denotes the log deviation of variable x from its steady state value.
Ireland (2004) estimates a version of this IS equation (along with a Phillips curve

and an interest rate rule) using quarterly data for the US economy. In his analysis he
leaves out government spending shocks and instead estimates the IS equation with only
one disturbance. His estimates of the process for this unique shock map into our vector
of disturbances with the linear combination g

y
ĝt + c

y
ξ̂t. In order to retrieve the implied

process for ξt we assume, following SGU (2004), that spending shocks have a standard
deviation σg = 0.03 in annual data and a first order autocorrelation ρg = 0.9. Ireland
(2004) on the other hand obtains a point estimate for the autocorrelation of g

y
ĝt + c

y
ξ̂t

equal to 0.947. The value of 0.974 that would give us a yearly autocorrelation of 0.9 is
within the range of his estimates. We therefore set ρg = ρξ = 0.9. Finally the standard
deviation of the preference shock is obtained by mapping the yearly aggregated process
into the quarterly estimates of Ireland (2004) giving a value of 0.0804.

3 Inflation, Debt Maturity and Debt Sustainability
Our aim, in the context of a model with coordinated optimal monetary and fiscal policy,
is to understand how the government uses inflation to achieve debt sustainability and
how this changes as we vary the maturity structure of government debt. In this section,
to help our focus on these issues, we consider a simplified version of our model in which
there is only uncertainty in the first period. In other words, the economy is hit by an
unanticipated shock to either government spending or preferences in period one and for
all subsequent periods there is no uncertainty. We can solve this model exactly and use
the first order condition to understand the properties of optimal inflation. We highlight
two key channels through which inflation is used for fiscal purposes, a real liability effect
and a channel that we refer to as an implicit profit tax.

The focus of this paper is inflation but we also briefly describe the behavior of tax rates
and interest rates through which the government can achieve debt sustainability. As in
Aiyagari et al (2002) the government in our model smooths the burden from distortionary
taxation over time. As a result tax changes are peristent. As in Faraglia, Marcet and
Scott (2012), the planner uses the tax schedule to alter consumption growth in order to
influence interest rates and the debt financing costs. This additional channel is refered to
as interest rate twisting.

3.1 Expenditure Shocks

We first consider the case of a shock to government expenditure. Under perfect foresight
the government’s intertemporal budget constraint is:

−
∞∑
t=1

βt−1(gtuc(ct, ξ)− wtuc(ct, ξ)ht − vh(ht)ht) = βN−1uc(cN , ξ)
bN0 P0

PN
(3.1)

In (3.1) we have replaced the product of inflation rates from period one to period N with
the ratio of initial and end prices. We also evaluate the budget constraint setting the
preference shock to its steady state value, ξ, so as to concentrate solely on the effects

8



of changes in g. The government’s intertemporal budget constraint equates the present
discounted value of surpluses to the initial liability inherited by the government. After
the unexpected shock, the government can either adjust tax revenue, or adjust the right
hand side of (3.1) to ensure that it holds. Our focus here is on the properties of optimal
inflation.

To determine the optimal path we assume the multipliers λs,t and λp,t have settled
at their constant steady state values prior to the shock. From the martingale property
of λs,t we have λs,0 = E0

uc(cN ,ξ)λs,1
PN

/E0
uc(cN ,ξ)
PN

and from the first order condition with
respect to wages λs,0 = λp,0

η
θ
. We assume the analogous values for the multipliers in

periods t = −N,−N + 1,−1 are equal to these period zero values. Since all uncertainty is
removed after the shock g1 from (2.14) it follows λs,t = λs,t+1 ∀ t ≥ 1 and similarly from
(2.12) λp,t = λp,t+1. As a result the first order condition for inflation is:

− θλf,t(πt − 1) − (λs,0 − λs,1)βN−tuc(cN , ξ)b
N
0 P0

πtPN
I(t ≤ N)

− (λp,1 − λp,0)uc(ct, ξ)(2πt − 1) I(t = 1) = 0 (3.2)

where I(t = k) is an indicator function that takes the value one in period k and zero
otherwise.

This optimality condition is nonlinear and cannot be solved analytically but we can
note some properties of the solution. First in (3.2) inflation responds to the g shock for a
maximum of N periods. In period t = N + 1 gross inflation satisfies −θλf,t(πt − 1) = 0.
In the case of sticky prices θ > 0 and λf,t 6= 0 so that inflation equals zero (πt = 1).
Therefore it is optimal for the planner to use inflation only for the duration of outstanding
government debt.

From periods 1 toN the term (λs,1−λs,0)βN−t−1 uc(cN ,ξ)bN0 P0
πt PN

determines optimal inflation
as a function of the governments inherited liability and in particular the sign of the inflation
response depends on whether governments are creditors or debtors. When bN0 > 0, the
government wants to increase prices in response to a rise in g1, so as to decrease the liability
and absorb part of the shock. The converse holds if bN0 < 0. The higher is debt the higher
is the level of optimal inflation. Therefore both the level and maturity of government debt
matters when the government uses inflation through this real liability effect.

An additional influence on inflation operates through the term (λp,1−λp,0)uc(c1, ξ)(2π1−
1) but only in period 1. This term is related to the monopoly distortion in our model. When
prices are sticky, increasing wages in high spending states serves to increase government
revenue as labour income is taxed and reduces the monopoly distortion. The planner’s
incentive to do this only in the first period is driven by the motive to minimize inflation
costs. Increases in wages beyond period 1 would contribute to government revenue.
However, because of the expectation term in the Phillips curve they would result in an
increase in inflation over several periods and so with additional costs which outweigh any
fiscal gains.

We refer to this last effect as an implicit profit tax. To understand why note that,
following SGU (2004), we have assumed the government is not able to tax firms’ profits
directly. If we do allow for a profit tax then this channel declines and in the limit disappears.
To see this assume there a constant explicit profit tax rate τ̃ . In this case we can show
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the relevant first order condition on inflation is:

− θλf,t(πt − 1) − (λs,0 − λs,1)βN−tuc(cN , ξ)b
N
0 P0

πt PN
I(t ≤ N) (3.3)

+λs,tθ(πt − 1)uc(ct, ξ)τ̃ − (λs,1 − λs,0)uc(ct, ξ)(2πt − 1)θ
η

(1− τ̃) I(t = 1) = 0

and the higher are corporate taxes the smaller this impact and in the limit, when τ̃ = 1,
the last term in (3.3) vanishes. 3

These two forces - the real liability effect and an implicit profit tax - determine inflation
dynamics and their impact depends on the sign of the shock g1 as well as whether the
government is a creditor or debtor and the maturity of debt. For example assume a
positive innovation to government spending and bN0 > 0. In this case a rise in wages and
inflation in period one helps the government reduce its debt and encourages labour supply.
The two channels therefore work in the same direction in this case. However if bN0 < 0 the
planner would like to reduce inflation to increase the value of savings but also increase
wages and thus inflation to tax profits. Therefore when bN0 > 0 both forces serve to raise
inflation but when bN0 < 0 the two forces push in different directions. If the government
can issue longer term bonds, the trade-off between these two forces is less. Because the
effective tax term applies only in period 1 if N = 1 these two factors are in direct conflict.
If N > 1 then the government can commit to lower inflation between periods 2 and N to
meet both objectives.

To quantify these channels and to investigate how varying maturity works, in Figure 1
we show the optimal inflation path in our economy in response to a rise in spending (a
one standard deviation shock) in the case of one period bonds (top left panel) and for a
long bond where N = 10 (top right panel). The initial shock is propagated through the
first order autoregressive process so spending differs from g for several periods before it
eventually converges back to its steady state value. The solid lines on both panels show
the responses of inflation when the governments inherited liability is 60% of the steady
state level of output, whereas the dashed lines represent an initial position of -60% of
output.4

[ Figure 1 About Here. ]

In line with our previous analysis, when bN0 > 0 (solid lines) the government commits
to increase inflation for N periods in response to the shock. In period one the response
of prices is larger because the real liability effect and the profit tax effect point in the
same direction. After period 1, in the case of the long bond, optimal inflation adjusts
downwards, to reflect only the real liability effect.

When bN0 < 0 (dashed lines) prices increase with both maturities in period 1 due
to the planners’ incentive to tax profits. In our baseline calibration therefore the profit
tax effect dominates the real liability effect in period 1. Long bonds however permit the

3This equation generalizes to the case where τ̃ = τt that is when the government taxes profits at the
same rate as labor income as in Lustig et al (2008).

4In (3.2) the optimal inflation path is influenced by the behavior of the multipliers which here evolve
as pure random walks. This property is preserved independent of the first order autocorrelation coefficient
of the process of government spending. As a result the optimal inflation path would be qualitatively very
similar in the case of i.i.d innovations to g1. We verified this numerically but for the sake of brevity do
not report these results.
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government to commit to set gross inflation below unity for every subsequent period until
period N and so boost the value of assets. The price level increases by 0.045 % after the
shock in the short bond economy whereas in the long bond model it drops by 0.0521%. In
this case increasing maturity leads to lower inflation.

Notice that in either case the overall increase in prices, which is measured, in percentage
points, is extremely modest. Prices increase by only 0.14 percentage points under N = 1
and bN0 > 0 and whenever N > 1 the planner would like to engineer an even smoother
adjustment in inflation by spreading the burden across periods although increasing the
maturity of debt does increase persistence. This result echoes the analysis of SGU (2004)
who showed that when N = 1 distortions from sticky prices dominate over tax smoothing
concerns. Inflation in this case is not seen as an attractive mechanism with which to
achieve fiscal sustainability.

3.2 Preference Shocks

We now consider the effects of an adverse shock to preferences, specifically a fall of ξt
relative to the steady state value ξ. This shock will lower households appetite to consume
leading to lower consumption and fewer hours worked. From the point of view of the
government, a shock to preferences will lower tax revenue and will decrease the surplus of
the government.

To illustrate the effects rewrite the government’s intertemporal constraint as:

−
∞∑
t=1

βt−1(guc(ct, ξt)− wtuc(ct, ξt)ht − vh(ht)ht) = βN−1uc(cN , ξN) bN0
P0

PN
(3.4)

Consider first the case bN0 > 0. A fall in ξ1 relative to steady state means the LHS of
(3.4) will decrease and as before movements in inflation and consumption can help the
government smooth any required change in taxes. A negative innovation to ξ1 will force
the government to increase prices PN whereas if, in contrast, bN0 < 0 then the planner
must adjust the liability by lowering prices. In both of these cases the government still has
the incentive to vary the implicit profit tax through varying wages and inflation, and once
more in the case where bN0 < 0 and the government issues short bonds the real liability
effect and the implicit profit tax conflict contemporaneously.

We have so far shown that increasing maturity enables the government to make greater
use of inflation, but in the case of preference shocks there is also a disadvantage to issuing
longer bonds. Preference shocks impact asset prices and change the trade-off facing the
government when it wishes to hedge against them using long maturities rather than short
bonds. To illustrate this we rewrite the government’s intertemporal budget constraint as:

−
∞∑
t=1

βt−1 uc(ct, ξt)
uc(c1, ξ1)(gt − wthtτt) = βN−1uc(cN , ξN)

uc(c1, ξ1)
P0

PN
bN0 (3.5)

If ξ1 < ξN the change in the marginal utility of consumption in periods 1 and N may
push the government’s inherited liability in the opposite direction than the planner desires
because of endogenous fluctuations in bond prices. When bN0 > 0 the planner would like
to lower the value of debt. However if the shock is mean reverting, as we assumed, and
relative movements in consumption are not large enough to compensate, then the ratio
uc(cN ,ξN )
uc(c1,ξ1) will rise and hence send the liability in the opposite direction. The longer is the
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maturity N , the more vulnerable the government is to this adverse effect. The only type
of bond that is completely insulated from this effect is the one period bond, because its
price is always equal to one independent of shocks. Whether shorter maturities help the
government smooth the burden of taxation better than longer ones ultimately depends on
how the importance of being able to use inflation more readily under long N fares against
the importance of these movements in the real returns.

In Figure 1 (bottom panels) we show the responses of inflation to the preference shock.
The bottom left panel shows the optimal path in the short bond economy. Once again the
solid line represents the path when the government has an initial position with positive
debt and the dashed line shows an initial position with savings. The bottom right panel
plots the analogous quantities in the short bond economy. Inflation follows a similar path
as in the case of spending shocks although the magnitude of the adjustment of inflation is
more than twice as large as under the fiscal shock. The reason for this is that preference
shocks represent a much larger innovation to the governments budget all else equal, and
therefore require a bigger adjustment in the policy tools that the planner has at their
disposal.

3.3 Response of the tax schedule

In Figure 2 we plot the response of tax rates to both spending and preference shocks in our
model. The left panels (top and bottom) correspond to the short maturity case and the
right panels to the long bond economy. The top plots show how the tax schedule behaves
after an unanticipated spending shock. The bottom plots show the analogous response to
a preference shock. All figures correspond to the case of a positive initial liability bN0 > 0.
Taxes increase after the shock and this increase persists even in the long run. Following
Aiyagari et al (2002) this property reflects the random walk behavior of the multiplier λs,t,
which in turn represents the excess burden of taxation. The government wants to smooth
tax distortions by spreading the excess burden equally in expectation across periods. Both
under preference and spending shocks there is a bigger rise in taxes in the initial period
because taxes are influenced by the wage path as τt = 1 + vh(ht)

uc(ct,ξt)wt . In the case of the
preference shock the change in the value of ξt also exerts an influence. The government
postpones the rise in taxes so as to reduce the impact of the distortion on hours initially.

[ Figure 2 About Here.]

As explained in Faraglia Marcet and Scott (2012) in the long bond model there is
an additional channel through which the government can achieve fiscal sustainability.
The fall in the tax rate in period N − 1 serves to increase consumption in that period
and therefore lower the marginal utility uc(cN−1, ξN−1). In effect the real value of the
outstanding liability βN uc(cN−1,ξN−1)

uc(c1,ξ1) drops and helps the government reduce the need to
finance deficits through taxes. When debt is negative bN0 < 0, the planner pursues the
opposite policy of increasing the tax rate. Following Faraglia Marcet and Scott (2012) we
refer to this channel as interest rate twisting.
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4 Stochastic Simulations
Having outlined the key mechanisms at work in our model we now turn to full stochastic
simulations to see how varying debt maturity influences the behaviour of inflation. We
simulate the economy using random draws of government spending and preference shocks
and study the cyclical behavior of optimal inflation, taxes and debt. As discussed in the
previous section, these optimal paths will differ depending on the maturity structure and
sign of government debt.

Our numerical approach to solve for the equilibrium is to approximate the conditional
expectations in the first order conditions with polynomials of the appropriate state
variables. In our application the state vector is a high dimensional object - it includes the
value of government spending and the preference shock in period t, the history of debt
obligations bNt−j , past values of the multipliers λs,t−j and past values of gross inflation πt−j
for j = 1, ..., N . To give an idea of its size note that if the maturity of government bonds
is 10 periods then the state space consists of 31 variables. Faraglia, Marcet and Scott
(2012) show that in order to make the computation of models with large N manageable
one has to reduce the number of states in the approximating polynomials. Their approach
is to partition the state space into variables that are of primary importance and variables
of secondary importance. The latter are introduced in the approximating functions as
successive linear combinations. The authors provide a procedure to test for the number of
linear combinations that are necessary to get accurate approximations of the conditional
expectation terms5.

The previous analysis suggested that the response of inflation to expenditure or
preference shocks depends on the existing level of government debt. Therefore the range of
positions that the government is allowed to take in the bond market will affect the cyclical
properties of the variables of interest. To limit this range we assume that bond issuances
are subject to ad hoc constraints of the form βNbNt ∈ {MN , MN}. In the notation MN

is the lower value of the quantity of bonds that the government can issue in any given
period and MN is the corresponding upper bound. Because the government is assumed
to buy back its debt each period, in the model MN and MN are bounds that correspond
effectively to the overall liability of the government. Notice that since βN is the steady
state market price of an N period bond, these constraints are expressed in terms of the
(steady state) market value of debt.

The results presented in this section derive from a model where MN

βN
= 0, meaning

that the government can only borrow from the private sector. In Lustig et al. (2008)
this constraint is imposed to ensure that the government cannot take extreme positions
that would effectively complete the market as in Angeletos (2002). We also impose this
constraint as we wish to focus on the case where the government has high debt but also
in light of the findings of Faraglia et al. (2012) who show that allowing the government
to go short or long in the case of only one asset leads to an equilibrium with a large
accumulation of precautionary savings by the government.

4.1 Simulation Results - Long Sample

The model is run with one long sample of 100,000 observations. In Table 1 we show sample
moments for four maturities - one, five, ten and twenty period bonds. All statistics are

5In the appendix we also address the accuracy of our numerical solution.
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calculated after dropping the first 5,000 observations so as to get rid of the influence of
initial conditions.

The first two rows of Table 1 report the mean values of bonds and the market value of
debt relative to the average value of output. Increasing debt maturity seems to have only
a small impact on the market value of debt. As is expected, given our previous analysis,
changing the maturity structure of debt changes the properties of the optimal inflation
process. In row 4 we report the first order autocorrelation of inflation. As the maturity
increases from one year to twenty years the correlation increases from 0.136 to 0.534. The
fact that inflation is positively autocorrelated even under one year maturity reflects the
impact of the bounds on the government’s optimal plan. 6 We show in the appendix
that near the no lending constraint the multiplier λs,t ceases to behave as a risk adjusted
random walk. In fact there is strong mean reversion in its response to shocks and evidently
this adds to the persistence of the inflation process.

[ Table 1 About Here.]

In the third row of the table we report the standard deviation of inflation. This quantity
increases with maturity from roughly 0.43% in the one year bond economy to 0.56% in the
20 year maturity model. However this is the unconditional standard deviation of inflation
and so these differences reflect mainly differences in persistence. There is thus the following
implication: that since the unconditional volatility effectively measures the overall price
adjustment that the planner wants to engineer in response to shocks, lengthening the
maturity even to twenty years does not translate into large price adjustments.

The last row of Table 1 shows the standard deviation of tax rates in the model. Longer
maturities imply more volatile tax rates for two reasons. First, because tax rates are
influenced by the behavior of wages as τt = 1− ζ 1

1−ht
1

uc(ct,ξt)wt and therefore more volatile
inflation leads directly to more volatile taxes. The second reason is that in economies
with long maturities the planner wants to use the tax schedule in order to control the
marginal utility of consumption and so influence interest rates. According to Faraglia et
al. (2012) this commitment to increase or lower taxes in a given period in the future adds
to volatility.

4.2 Does High Debt Encourage High Inflation?

As discussed above the properties of inflation, taxes and the market value of debt are
affected by the magnitude of government debt. In the stochastic model with one long
sample the government on average issued little debt in terms of market value and as a
consequence there was little difference between issuing short and long run debt. In this
section we use short samples where we can condition on different levels of debt to better
understand the impact on inflation. The results, summarized in Table 2 represent the
moments from 1000 samples of 100 observations each run with different initial conditions
uniformly distributed across the range {0, M

βN
}. We report the properties of inflation when

the initial condition is 0, 30, 60 and 90 percent of average GDP. To conserve on space we
only consider the case of 1 and 10 period bonds.

6In our simulations the lower bound is hit in roughly 4% of our sample. The upper bound is rarely hit
(roughly .2%) of all periods.
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[ Table 2 About Here.]

The top two rows of the table report the standard deviation and the first order
autocorrelation of inflation in the case of debt with one year maturity. The bottom two
report the analogous objects for maturity equal to ten years. As debt increases from 30%
to 90% relative to GDP the volatility of inflation increases. The results from the short
samples of this section give an indication of whether the optimal policy entails a large
response of inflation to shocks when debt is high. The answer is "no". The sample volatility
of inflation is 0.53% in the case of one year bonds and 0.60% with 10 year maturity in the
case when initial debt is 90% relative to GDP. Price adjustments are therefore not large
even in this case.

5 Taylor Rule
Our analysis so far has considered the case of a government implementing coordinated
optimal monetary and fiscal policy under commitment. In the case where government
issues N period debt the key variables for policymakers are inflation rates from period t
to period t + N − 1 and the marginal utilities of consumption in periods uc(ct, ξt) and
uc(ct+N−1, ξt+N−1). Through these the planner can influence the price of an outstanding
claim βN−1bNt−1

uc(ct+N−1,ξt+N−1)
uc(ct,ξt)

Pt−1
Pt+N−1

and thereby the path of short and long term interest
rates as well as inflation and hence the financing costs of debt. We have examined the
behaviour of inflation under these conditions and found that there is a limited role for
inflation, even with long maturity bonds.

However in practice governments face a variety of institutional constraints when setting
their policies. One such constraint originates in the way monetary policy is conducted in
many advanced economies whereby an (independent) central bank sets the target level of
the nominal interest rate in response to changes in inflation or the difference of output
from its potential. Second because the price of government debt is determined in asset
markets, and possibly influenced by factors that are beyond the governments control, it is
not obvious to what extend a commitment to a given policy for taxes and inflation can
influence interest rates, as testified by the current Euro crisis. The lack of influence over
bond prices is also institutionalised by the existence of separate debt management agencies
who make decisions as to what maturity of debt to issue separately from decisions that are
made regarding the size of the deficit. The type of bonds issued and their impact on bond
prices is therefore considered separately in practice from fiscal decisions that set taxes and
the deficit.

In this section we consider the behaviour of inflation and the role of debt maturity
when we change some of the institutional assumptions behind our analysis. We assume
the existence of an independent monetary authority that sets short term interest rates
as a function of inflation and the output gap and we also assume the government cannot
directly influence the price of nominal bonds or private sector expectations about the
course of future inflation. The equilibrium of this model has a much smaller set of state
variables characterizing government policy. Instead of having to keep track past and
current values of the multipliers and bond quantities, only the inherited stock of debt from
the last period bNt−1 and the shocks are in the state space. As we shall show this leads to a
strong influence of the level of government debt on the path of inflation and taxes.

We formulate the government’s problem as a Ramsey problem but in which the planner
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faces an additional constraint of the form:

(βEt
uc(ct+1, ξt+1)
uc(ct, ξt)

Pt
Pt+1

)−1 = it = 1
β

(Yt
Y

)φy(πt)φπ (5.1)

where it denotes the gross nominal one period interest rate in the economy and φy and φπ
are coefficients that govern the response of interest rates to the output gap variable Yt

Y

(expressed as deviation from its steady state level and which in our model is identical toht
h

)
and inflation πt respectively. On the LHS of (5.1) we equate the nominal rate of interest to
the inverse of the marginal rate of substitution of consumption between periods t and t+ 1.

As the government is unable to control bond prices its budget constraint is:

qNt b
N
t = qN−1

t

bNt−1
πt

+ gt − (1 + vh(ht)
uc(ct, ξt)

)wtht (5.2)

and the Phillips curve is given by:

πt(πt − 1) = η

θ
htuc(ct, ξt)(

1 + η

η
− wt)) + EtF (5.3)

where F = β uc(ct+1,ξt+1)
uc(ct,ξt) πt+1(πt+1 − 1) denotes inflation expectations for the next period.

The planner will maximize households’ utility subject to the resource constraint and (5.1),
(5.2) and (5.3). We attach a multiplier λi,t to the Taylor rule constraint and in an appendix
derive the Lagrangian that describes the optimal allocation.

Optimality Conditions.
The first order conditions for the optimum are given by:

uc(ct, ξt)− λf,t + λs,tucc(ct, ξt)(βNEt
uc(ct+N , ξt+N)Pt
uc(ct, ξt)Pt+N

bNt − βN−1Et
uc(ct+N−1, ξt+N−1)Pt
uc(ct, ξt)Pt+N−1

bNt−1

−λs,tucc(ct, ξt)(gt − wtht)− λp,tucc(ct, ξt)(πt(πt − 1)− βuc(ct+1, ξt+1)
uc(ct, ξt)

πt+1(πt+1 − 1))+

+λp,t
η

θ
htucc(ct, ξt)(

1 + η

η
− wt)) = 0 (5.4)

vh(ht) + λf,t + λs,t(wtuc(ctξt) + vh(ht) + vhh(ht)ht) + λp,t
η

θ
uc(ct, ξt)(

1 + η

η
− wt))

+λi,t
1
β
φy
h
φy−1
t

h
φy

πφπt = 0 (5.5)

−λf,tθ(πt − 1) + λs,tβ
N−1Et

uc(ct+N−1, ξt+N−1)Pt+1

Pt+N

bNt−1
π2
t

− λp,tuc(ct, ξt)(2πt − 1)

+λi,t
1
β
φπ
h
φy
t

h
φy
πφπ−1
t = 0 (5.6)

λs,tEt
uc(ct+N , ξt+N)
πt+1...πt+N

= Et
λs,t+1uc(ct+N , ξt+N)

πt+1...πt+N
(5.7)
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Equation (5.4) is the optimality condition for consumption, (5.5) for the choice of
hours, (5.6) for inflation and (5.7) determines the choice of debt.7 Note that from (5.7)
in an economy with only an initial shock (as in Section 3) λs,t = λs,t+1 holds whilst in
general (5.7) suggests λs,t follows a risk adjusted random walk so that tax distortions
are persistent as they were under optimal policy in Section 2 . However, λs,t exerts a
different influence over the allocation in this case. Unlike in (3.2) it is the level and not
the first difference of the multiplier which enters in (5.4) and (5.6). After a spending or
preference shock it is the stock of debt in each period and not only the initial liability
which influences the allocation, and changes in inflation continue even after period t+N .
By assuming that the government cannot control bond prices and expectations of future
inflation in this model, the planner does not internalise that higher inflation leads only
to higher interest rates and so persists with inflation for longer than the case of optimal
policy. Similarly with interest rates now set by the independent monetary authority the
interest rate twisting of Faraglia, Marcet and Scott (2012) is no longer used to manipulate
bond prices to minimise fluctuations in the excess burden of taxation. The kinks in the
interest rate profile that arise from the government trying to alter the terms of its funding
are overridden by the Taylor rule and the interest rate dynamics it provides. As well as
overriding interest rate twisting, the Taylor rule also provides an additional objective to
the planner - to smooth fluctuations in hours worked in response to shocks. To understand
how this impacts on fiscal policy assume that the planner wishes to set ht = h for each
period after an adverse preference shock. Given the nature of this shock a fall in hours
can be avoided by timing taxes appropriately. If ξt falls the government would like to
lower tax rates in every period where the influence of the shock is still present, and then
increase them in the future in order to balance the budget. Ultimately whether the planner
will sacrifice the goal to stabilize prices, now implicit in the Taylor rule, depends on the
magnitude of the coefficients φπ and φy.

5.1 Responses to Shocks

To examine the model properties quantitatively we need to calibrate the coefficients φπ
and φy which we take from Rudebusch (2009) who estimates the following Taylor rule :

ı̂t = a0 + a1(π̂t − π∗) + a2(ût − u∗) (5.8)

where ı̂ and π̂ denote the nominal interest and inflation rate respectively; π∗ is the central
banks inflation target and u∗ is the natural rate of unemployment as defined by the
Congressional Budget Office. According to Rudebusch (2009) a rise in the inflation rate by
one percentage point leads to a rise in the interest rate by 1.3 percentage points and a rise
in the unemployment rate by one percentage point reduces the interest rate by roughly
2%.

In order to map (5.1) into (5.8) we take a first order Taylor expansion giving:

ı̂t = γ0 + φπ
β

(π̂t − 0) + φy

βh
(ht − h) (5.9)

where the right hand side of (5.9) features hours not unemployment. To make the
necessary transformation we assume aggregate hours are the product of a 60% employment

7The analogous first order condition for wages wt is unchanged relative to the model of section 2 and
is therefore omitted for the sake of brevity.
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to population ratio multiplied by individual hours, which we normalize to a third of the
unitary time endowment. Formally let ht = (1 − Ut − LFt)1

3 where LFt denotes labor
force participation and Ut denotes the unemployment population ratio. To be consistent
with an unemployment rate of 6.25% (average for the years 1994-2011 in the CPS) the
mean level of Ut is 0.04. A first order approximation gives ht − h = −1

3(Ut −U) under the
assumption that the labor force is constant over the business cycle8. Since ut = Ut

LFt
we

get ût−u = 1
LF

(Ut−U t). Making use of this derivation we get φy
βh

1
3LF = 2 so that φy = 1.8.

Finally since φπ
β

= 1.3 we obtain a value of the inflation coefficient equal to 1.248.
The top panels in Figure 3 plot the response of inflation to a positive innovation to

government spending and the bottom panels plot the same for a negative innovation to
the preference shock. The left panels corresponds to the short bond economy where we set
N = 1 and the right panels show the long bond model (N = 10). The solid lines in each
figure are the actual responses in the Taylor rule model of this section. For the sake of
comparison the responses under the optimal policy model are shown as dashed lines. As
previously, after a spending or a preference shock, inflation increases but in contrast to
the mechanisms identified in Section 2 the rise in inflation is now nearly permanent. As
discussed the dynamics of government debt and the way the multiplier λs,t enters the first
order conditions in levels and not as a first difference are the key to understanding this
sustained increase in inflation.

Our results also differ from previously in terms of how the response of inflation changes
with the maturity of government debt. For example, when the spending shock hits and
the government issues only short term debt inflation increases by roughly 0.2 percentage
points initially and after 20 periods inflation is 0.23 percentage points above the steady
state. In the N = 10 economy these numbers are 0.1 and 0.118 respectively. In this case
extending maturity leads to lower inflation. As a general rule the longer the maturity
the smaller is the inflationary pressure to the economy. This difference can be traced to
the behavior of the governments liability immediately after the shock. With N = 10 a
strong response of inflation in the first ten periods amounts to a huge adjustment of the
inherited real stock of debt. But if N = 1 then it is only the initial response of inflation
that matters.

Figure 3 also shows considerable differences with the optimal commitment policy of
Section 2. The impact of the preference shock on inflation is more than 6 times larger
here. As discussed previously this is a consequence of the objective to smooth the effect
of the shock on hours, measured by the coefficient φy, and the definition of the output
gap according to which the planner wishes to smooth deviations from the steady state
level of hours h . In the bottom panels of Figure 4 we show the response of the tax rate to
the preference shock. The solid lines correspond to the model of this section. When the
preference shock hits the economy, the tax rate must drop by nearly 15 percentage points
regardless the maturity of the debt. Taxes rise above zero only after 20 periods when the
influence of the shock nearly dies out. It is the drop of taxes that causes the government
to run a deficit and not the response of hours, nearly constant after a fall of ξt.

Our calibration of the Taylor rule therefore suggests that in response to preference
shocks the incentive to smooth hours dominates over price stability concerns. The rise of
inflation is sizable precisely because price changes help to improve the governments fiscal
position and therefore to hedge against the shock. However the results are sensitive to the

8Given that labor force participation does not have a strong cyclical component in the US this seems a
reasonable assumption to make (see Veracierto (2008) and Shimer (2009)).
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specification of the Taylor rule. Suppose now we use a different output gap definition and
we replace h with the complete market (efficient) output as the target for monetary policy.
After the shock inflation increases to one percentage point if N = 1 and roughly by 0.75
percentage points if N = 10. The effect of the shock on inflation remains large at impact
although it dies out more quickly. Regardless the structure of debt, the tax rate decreases
on impact but the fall is shortlived. 9

[ Figure 3 About Here.]

[ Figure 4 About Here.]

In the top panels of Figure 4 we show the time path of taxes after a spending shock.
In this case the government wants to frontload tax distortions, since spending shocks lead
to an initial slight increase in hours due to the familiar wealth effect.

5.2 Stochastic Simulations

In Table 3 we show key moments generated from a long sample of 100000 observations.
The specification of the model is exactly that of Section 4 e.g. we impose a no lending
constraint and an upper bound on debt of 100% of steady state GDP. The Table shows
the model statistics under four different maturities; one, five, ten and twenty years.

[ Table 3 About Here.]

The top panel shows the case where the monetary authority sets the target for output
equal to the steady state. As explained in the previous section, inflation volatility is
considerably larger in this model. Moreover the standard deviation of inflation drops as
we lengthen maturity. When N = 1 the model produces a standard deviation of 19.95%
but when N = 20 this falls to 8.23%. The persistence of inflation on the other hand shows
little difference with maturity. In all cases we obtain a value of about 0.94, substantially
larger than the persistence implied by the optimal commitment policy of Section 4.

In the bottom panel we show how the policy differs in the case where the Taylor rule sets
the complete market output as the target. If markets are incomplete targeting the efficient
outcome is not an easy task. Notice that as a result of the change in the target rule for
the nominal interest rate the standard deviation of hours (output) increases considerably.
The models generate a number for this quantity of around 0.025. In contrast when the
output gap is given by ht

h
in the top panel, the standard deviation is tiny. Interestingly

this gives rise to a discernible pattern of the volatility of tax rates by model specification
and maturity. In the top panel of the table the volatility of tax rates is considerably higher
and rises with maturity. In the bottom panel it drops with maturity. These results imply
that the way the Taylor enters in the model is very important for the optimal allocation.

9We also experimented with a Taylor rule that sets φπ = 1.5 and φy = 0.5. This specification yields a
slightly greater incentive to stabilize prices. The rise in inflation to the preference shock is in the order of
1.6%. Tax rates drop initially by roughly 8% and rise after 10 periods. We leave for future work the task
of investigating how alternative specifications of the Taylor rule affect the results.
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To establish further that the monetary policy rule is an important constraint for the
planner, we estimated the Taylor rule implied by the stochastic model of Section 4. When
maturity of debt is equal to one year the optimal commitment policy gave a value for
φy = 0.034 and for φπ = −1.04. With N = 10 we got φy = 0.017 and φπ = −0.37.
Clearly the path of interest rates is quite different in the model of commitment with the
empirically motivated Taylor rule placing a much greater concern towards output stability
than in the unconstrained optimal policy problem where price stability is key.

6 The Relative Importance of Inflation and Interest
Rates

In this section we examine the relative importance of inflation and interest rates in driving
the behaviour of debt and assess how this varies as we change the maturity of government
debt and the institutional environment. To answer this question we use the government
budget constraint as in Hall and Sargent (2010) and decompose the change in the market
value of debt following a shock to either spending or preferences into a component due to
inflation and a component due to movements in interest rates.

The law of motion of the market value of debt is given by:

MVt = (1− it,N−1(N − 1) + it−1,NN − π̂t)MVt−1 + gt − wthtτt (6.1)

where it,j is the maturity j nominal interest rate ( (1 + it,j)j is the inverse of the price
of a bonf of maturity j ). 10 π̂t denotes net inflation in period t. In order to quantify
the effect of interest rates and inflation we create two series. The first sets π̂t equal to
zero. The second sets it,N−1 and it−1,N equal to their steady state values. Our accounting
exercise is to look at percentage differences between these series and the market value of
debt in (6.1).

Figure 5 shows the decomposition in the case of coordinated optimal monetary and
fiscal policy. The top panels illustrate the dynamics of debt after the spending shock and
the bottom panels after the preference shock. The left panels plot N = 1 and the right
ones N = 10. The solid lines trace the effect of inflation as the percentage increase in
the market value of debt that would have occurred had the inflation rate been held at its
steady state value after the shock. The dashed lines represent the effects of interest rates.

Inflation has a small contribution towards sustainability of debt. Keeping inflation
constant to zero with a short maturity and an increase in government spending, the market
value of debt would be only 0.17 percentage points higher on impact and 0.35% after
15 periods. The results are similar when a long maturity is considered. In the case of

10To derive (6.1) we write the government budget constraint as follows:

qNt b
N
t = qNt−1b

N
t−1 + gt − wthtτt = qN−1

t

qNt−1
qNt−1b

N
t−1 + gt − wthtτt (6.2)

Since MVt = qNt b
N
t and 1

qj
t

= (1 + it,j)j we write (6.2) as:

MVt = (1 + it−1,N )N

(1 + it,N−1)N−1
MVt−1

πt
+ gt − wthtτt (6.3)

Linearizing (6.3) we get (6.1)
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preference shocks we expect a greater contribution of inflation on the dynamics of debt
because changes in prices are larger. However in the absence of inflation it takes 25 periods
and a long maturity to have an effect of only two percentage points on debt. Therefore we
can conclude that the contribution of price adjustments is modest.

Now we turn to the contribution of interest rates to debt dynamics. Interest rates,
represented by the dashed lines in Figure 5, have a slightly larger effect than inflation. In
the case of spending shocks keeping interest rates constant causes the market value of debt
to increase by 0.3% if N = 1 and by 0.6% points if N = 10 (from 6.1 it takes one period
for interest rates to have an effect if N = 1 ). When we consider preference shocks the
effect of interest rates is smaller. Although it persists to have a stronger influence in the
dynamics of short term debt, the two margins (inflation and interest rates) bear an equal
effect when long maturities are considered. Interest rates become a less effective policy
tool when asset prices are influenced by a shock to ξt.

The level of initial debt does not affect the role of inflation on debt dynamics. Figure
6 shows the contribution of inflation and interest rates when the initial condition of debt
is equal to 90% of GDP. Inflation continues to play a minor role when fiscal and monetary
policies are coordinated.

[ Figure 5 About Here.]

[ Figure 6 About Here.]

The picture changes when we consider the case of uncoordinated fiscal and monetary
policies (Figure 7). Removing the effect of inflation causes the market value of debt to
increase more regardless the type of shock. In the case of spending shocks the government
will have to increase short debt by 10% more and long debt by 5% after 25 periods. In the
case of preference shocks constant inflation causes a more than doubling of debt over the
same horizon. It is interesting to notice that interest rates have no contribution towards
debt sustainability because they are no longer under the direct control of the government.
All these results are reinforced when we consider a high initial conditions of debt (Figure
8).

The results presented in this section confirm the conclusions of the previous analysis:
the institutional environment matters. When monetary and fiscal policy are coordinated
the government has almost no incentive to use inflation as a debt stabilization instrument.
However when the two policies are not coordinated inflation becomes a key instrument in
driving debt dynamics.

[ Figure 7 About Here.]

[ Figure 8 About Here.]
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7 Conclusions
With currently high levels of government debt there is increasing interest and concern
that governments may resort to inflation to achieve fiscal sustainability and that they are
more likely to do so when they issue long maturity bonds. We consider the impact of
the debt level and the debt maturity on inflation in a model of monopolistic competition
and sticky prices building on the work of Schmitt-Grohe and Uribe (2004), Siu 2004) and
Lustig, Sleet and Yeltekin (2008) and Faraglia Marcet and Scott (2012). We identify two
key channels through which the government wants to use inflation for fiscal purposes, a
real liability effect and an implicit profit tax. Using the computational method of Faraglia
Marcet and Scott (2012) we are able to consider incomplete market models with debt of
up to twenty years maturity. Our results suggest that when monetary and fiscal policies
are jointly optimal in the sense that they are controlled by a single authority, debt and
debt maturity have only a small impact on inflation. The optimal policy does not call
for using inflation to reduce the deficit or lower the level of debt, but rather adjustments
that follow shocks to the governments budget are accompagnied by persistent increases in
tax rates. This result holds even for maturities as long as twenty years. If monetary and
fiscal policies are uncoordinated, on the other hand, and the short term interest rate is set
according to a Taylor rule our model assigns an important role to inflation. In response
to shocks that lead to deficits the government wants to enginneer large and persistent
increases in inflation. We show that the tax policy of the government is accomodative to
the objective of output stability that is implicit in the Taylor rule.
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8 Appendix

8.1 Numerical Procedures

One period uncertainty model.
We briefly describe the numerical algorithm that we use to solve the one period

uncertainty model of section 3. To simplify we assume that there is a shock to government
spending (the algorithm to solve for preference shocks is identical). Our approach is to
find a value for λs,1 for every contingency g1 and a value λs,0 that satisfies the Euler
equation (first order condition for bonds in period zero), such that after the shock the
model economy converges to a long run steady state.

Step 1. Given initial conditions for λs,t and λp,t for t = −N,−N + 1, ...0, the initial
value of the government real liability bN0 , and a value of the spending process in period
one g1, we pick an initial value for λs,1 and a simulation length T . We solve the system
of optimality conditions to determine all of the endogenous variables from period 1 to
period T . We assume that in period T the economy converges to a new long run steady
state. Notice that since the first order conditions involve both lags and expectations of
endogenous variables, an inner loop is necessary to guarantee that the values of these
variables converge.

Step 2. With the sequence of endogenous variables we construct the present value of
the government’s surplus in period one for each contingency g1 as follows:

−
∞∑
1
βT (gtuc(ct, ξt) − wtuc(ct, ξt)ht − vh(ht)ht)

+ βT+1

1− β (gTuc(cT , ξT ) − wTuc(cT , ξT )hT − vh(hT )hT ) (8.1)

Convergence obtains when the surplus in 8.1 is close enough to the initial liability. Otherwise
we need to update the value of λs,1. We repeat steps 1 and 2 for every contingency g1.

Step 3. We compute a new value for λs,0. From the first order condition of bN0
the multiplier in period zero satisfies λs,0 = E0

uc(cN ,ξN )λs,1
ΠN1 πj

/ E0
uc(cN ,ξN )

ΠN1 πj
. To produce the

figures in the main text we force the history of multipliers λs,t and λp,t for t = {−N, ...,−1}
to be equal to λs,0 and λp,0 respectively. We do this because we want to avoid having the
endogenous variables in the model be affected by the initial conditions. 11 With the new
updated values of λs,0, λp,0 and bN0 we repeat steps 1 to 3. The algorithm converges when
successive updates of the date zero endogenous variables are not far apart.

Stochastic Simulations Algorithm.
We briefly describe the numerical procedure that we use to solve for the equilibrium in

the model of section 4. Our algorithm is standard Parametrised Expectations algorithm
as in Den Haan and Marcet (1990). Our approach is to approximate the condtional
expectations in the first order conditions 2.14 to 2.13, the government budget constraint
and the Phillips curve with polynomials of the states. For example we approximate the

11Otherwise the system of first order condions in the one period uncertainty model would include the
terms λs,−1 − λs,0 and λp,−1 − λp,0.
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terms Et uc(ct+k,ξt+k)
Πk1πt+j

for k = 1, ...N , with a functional form Φ(Xt, δ
k) where Xt denotes the

state vector in period t, and δk is the vector of coefficients attached to these polynomials.
The algorithm proceeds as follows: First we pick an order of the polynomial and

initial values for the coefficients δk0 . We use these objects to solve the system of first
order conditions of the Ramsey problem. We store the simulated series for consumption,
bonds, inflation and the multipliers. With the simulated paths we create the integrands
in the conditional expectation terms (for example the term uc(ct+k,ξt+k)

Πk1πt+j
). To update the

coefficients in δk we regress these expressions on the state variables in Xt. This gives us a
new set of coefficients δk1 . We iterate on this procedure until we obtain convergence in the
coefficients.

We mentioned in the main text that ours is a large scale application with many of state
variables. To give an idea of the size of Xt note that if N = 10 there are 31 state variables
in the model. To reduce the number of state variables used in the approximating functions
we apply the methodology of Faraglia Marcet and Scott (2012). The formal description of
the algorithm and an application to an economy with real debt is contained in that paper.

Finally when we introduce bounds in the stochastic simulations we treat them as
follows: The condition βNbNt ∈ {M,M} implies that the Euler equation of government
debt will not be satisfied with equality when the constraint binds. To see this consider
the planners problem outlined in section 2 but add to it two constraints of the form
v1,t(bNt − MN

βN
) and v2,t(MN

βN
− bNt ). v1,t and v2,t are the corresponding multipliers of the

debt and upper and lower bound constraints. The first order condition for bNt is given by:

βN(Etλs,t
uc(ct+N , ξt+N)

Πt+N
t+1 πj

− Etλs,t+1
uc(ct+N , ξt+N)

Πt+N
t+1 πj

) + v1,t − v2,t = 0 (8.2)

which clearly shows how hitting the bounds invalidates the risk adjusted random walk
property of the multiplier λs,t. In fact as we explained in the text, in our simulations we
found that near these bounds, the multiplier λs,t displays strong mean reverting behavior.
In order to deal with the bounds our approach is to replace bNt = MN

βN
or bNt = MN

βN
when

the bound is hit (clearly both bounds cannot be hit simultaneously) and use the remaining
first order conditions along with the Phillips curve, the budget constraint and the resource
constraint to determine the endogenous variables.

8.2 Accuracy of the solutions

In order to access the accuracy of our solution of our optimal model we perform two tests:
we evaluate the Euler Equation Errors (Judd (1998)) generated by our model and we
perform an informal Den Haan and Marcet test (1994).

Here we present results for the optimal model solved with Parameterised Expectations
in Section 4. First we calculate the Euler Equation Errors. Given our approximated
policy function, φ (st), where st is the vector of state variables, we simulate the model for
N = 5, 10 and 20 for T = 200000 and we evaluate the Euler Equation Errors in T̂ = 1000
points equally spaced in the sample. For every t̂ we recalculate the conditional expectations
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using φ (st):

R1 =
Et̂

(
λs,t̂+1

uc(ct̂+N ,ξt̂+N)
Πt+N
j=t̂+1πj

)

Et̂

(
uc(ct̂+N ,ξt̂+N)

Πt+N
j=t̂+1πj

)

R2 = Et̂

uc
(
ct̂+N , ξt̂+N

)
Πt̂+N
j=t̂+1πj


R3 = Et̂

uc
(
ct̂+N−1, ξt̂+N−1

)
Πt̂+N−1
j=t̂+1 πj


R4 = Et̂

(
uc
(
ct̂+N , ξt̂+N

) (
πt̂+1 − 1

)
πt̂+1

)
.

drawing 50000 realizations of the shocks for every j = t̂ + 1, .., t̂ + N, using φ (st+j) to
pin down the allocation in every period and performing a Montecarlo integration. Given
the new expectations we recalculate the implied solution for period t̂ and evaluate the
percentage difference between the allocation given by the approximated policy rule φ (st)
and the one implied by R1, R2, R3 and R4. The results are reported in Tables 4 to 6.

Table 4 reports the average of the Euler Equation Errors
(
EEEt̂ =

∣∣∣∣∣ωi,t̂−ω
impl

i,t̂

ωi,t̂

∣∣∣∣∣
)
implied

by the three Euler equations of the model in terms of the multiplier of the government
budget constraint, ω1 = λs, and the gross nominal interest rates for maturity N and N − 1,
ω2 = iN and ω3 = iN−1. The results show that the errors are low and the approximations
are accurate. Moreover in all the models roughly 50% of the errors have a positive sign
highlighting that the errors are equally distributed around the average. We have also
checked that more than 90% of the times the errors are below one percent and no bigger
than 2%. To further evaluate the accuracy of the solution we report the average and
the standard deviation of some key variables generated by our approximation and the
ones implied by R1, R2, R3 and R4. Tables 5 and 6 report the results. The averages are
close to each other as well as the standard deviations. This evidence confirms that our
approximation is accurate.

[ Tables 4, 5 and 6 About Here ]

To further reinforce this result we check the accuracy of our method by performing
some simple, informal tests based on the insights of Den Haan and Marcet (1994). We
run NN = 10000 simulations of T = 3500 periods, of which we discard the first 500 before
reporting the statistics using our approximation. We calculate:

ε1
t = λs,t

uc (ct+N , ξt+N)
Πt+N
j=t+1πj

− λs,t+1
uc (ct+N , ξt+N)

Πt+N
j=t+1πj

ε2
t = pNt −

uc (ct+N , ξt+N)
Πt+N
j=t+1πj

ε3
t = pN−1

t − uc (ct+N−1, ξt+N−1)
Πt+N−1
j=t+1 πj

.

25



If the solution is accurate, then these errors should be small relative to the long run average
of the multiplier and the the bond prices respectively. Table 7 reports these ratios and all
the results indicate a good accuracy.

[Table 7 About Here ]

8.3 Ramsey Problem for the Model of section 5

In this section we briefly describe how we set up the planners program in the model of
section 5. As we explained in the text the government cannot control bond prices and
expectations of future inflation and faces the additional constraint of the monetary policy
rule. We attach a multiplier λi,t to that constraint.

The budget set of the government is off the following form:

qNt b
N
t = qN−1

t

bNt−1
πt

+ gt − (1 + vh(ht)
uc(ct, ξt)

)wtht (8.3)

and further on the Phillips curve is given by:

πt(πt − 1) = η

θ
htuc(ct, ξt)(

1 + η

η
− wt)) + EtF (8.4)

where F = β uc(ct+1,ξt+1)
uc(ct,ξt) πt+1(πt+1 − 1), is the inflation expectation for the next period. We

multiply both 8.3 and 8.4 by the marginal utility of consumption uc(ct, ξt). The Lagrangian
can be written as:

L = E0
∑
t

βt(u(ct, ξt) + v(ht) + λf,t(ht − ct − gt −
θ

2(πt − 1)2)

+λs,tuc(ct, ξt)(bNt qNt − bt−1
qN−1
t

πt
) − λs,t(gtuc(ct, ξt)− (wtuc(ct, ξt)ht + vh(ht)ht))

−λp,t(uc(ct, ξt)(πt(πt − 1)−F) + λp,t
η

θ
htuc(ct, ξt)(

1 + η

η
− wt))

+ λi,t(
1
β

(ht
h

φy

)πφπt − it) (8.5)

It is straightforward to show that taking the first order conditions from 8.5 and substituting
out prices leads to equations 5.4 to 5.7 in the main text. The planners program is easy to
extend in order to incorporate debt limits as we described above.
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The left panels show the optimal inflation path for the short bond economy ( N = 10).
The solid lines represent the inflation path when the governments inherited liability bN0
is 60% of the steady state GDP in market value . The dashed lines show the analogous
path starting from initial position of - 60% of GDP. The right panels show the responses
for the long maturity ( N = 10). Top plots correspond to the spending shock. Bottom
plots show the responses for the preference shock.

Figure 1: Reponses of inflation to spending and preference shocks
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The right panel shows the optimal tax schedule for the long bond economy ( N = 10).
The left panels represent the short bond model. The top two plots correpond to the
spending shock. The bottom to the preference shock.

Figure 2: Reponses of tax rates to spending and preference shocks
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The right panels (top and bottom) show the case of the one period bond economy. The
left ones show the case of N = 10. The solid lines represent the inflation response
under the Taylor rule economy. The dashed lines plot the analogous response under
the optimal policy for the sake of comparison. The figures are generated assuming an
initial level of the governments inherited liability equal to bN0 is 60% of the steady
state GDP in market value. Top panels show responses to spending shocks. Bottom
panels show responses to preference shock.

Figure 3: Reponses of inflation to spending and preference shocks
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The left panels show the case of the one period bond economy. The right panels
show the case of N = 10. The solid lines represent the inflation response under the
ucoordinate monetary and fiscal policy model. The dashed line (right axis) plots the
analogous response under the optimal coordinated policy. The top plots show the
response of the tax schedule to the spending shock. The bottom plots are the analogous
responses to the preference shock. The figures are generated assuming an initial level
of the governments inherited liability equal to bN0 is 60% of the steady state GDP in
market value.

Figure 4: Reponses of tax rates to spending and preference shocks
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The top panels plot the decomposition after a spending shock for N = 1 (left) and
N = 10 (right). The bottom panel shows the decomposition after the preference
shock. The solid line illustrates the dynamics of the market value (in percentage
changes relative to the actual market value) when we remove the influence of inflation.
The dashed line illustrates the behavior of debt if inflation is the only variable that
contributes to debt dynamics.

Figure 5: Debt Decomposition: Responses of the Market Value of Debt
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The top panels plot the decomposition after a spending shock for N = 1 (left) and
N = 10 (right). The bottom panel shows the decomposition after the preference
shock. The solid line illustrates the dynamics of the market value (in percentage
changes relative to the actual market value) when we remove the influence of inflation.
The dashed line illustrates the behavior of debt if inflation is the only variable that
contributes to debt dynamics.

Figure 6: Debt Decomposition: Responses of the Market Value of Debt (High
Initial Debt)
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The top panels plot the decomposition after a spending shock for N = 1 (left) and
N = 10 (right). The bottom panel shows the decomposition after the preference
shock. The solid line illustrates the dynamics of the market value (in percentage
changes relative to the actual market value) when we remove the influence of inflation.
The dashed line illustrates the behavior of debt if inflation is the only variable that
contributes to debt dynamics.

Figure 7: Debt Decomposition: Responses of the Market Value of Debt, Taylor
Rule Model
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The top panels plot the decomposition after a spending shock for N = 1 (left) and
N = 10 (right). The bottom panel shows the decomposition after the preference
shock. The solid line illustrates the dynamics of the market value (in percentage
changes relative to the actual market value) when we remove the influence of inflation.
The dashed line illustrates the behavior of debt if inflation is the only variable that
contributes to debt dynamics.

Figure 8: Debt Decomposition: Responses of the Market Value of Debt, Taylor
Rule Model (High Initial Debt)
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Model N = 1 N = 5 N = 10 N = 20
b
N 33.0% 31.9% 49.0% 62.7%

MV 31.7% 26.2% 33.0% 29.0%
σπ 0.429% 0.462% 0.470% 0.557%

corr (π, πt−1) 0.136 0.27 0.338 0.534
σY 0.0279 0.0283 0.0282 0.0283
στ 0.0333 0.0354 0.0354 0.0352

Notes: σx is the standard deviation of variable x; corr(x, y) denotes
the correlation between variables x and y. Upper bars denote
sample means. The market value of debt is constructed using the
formula MVt = βNEt

uc(ct+N ,ξt+N )
Πt+Nt+1 πjuc(ct,ξt)

bNt . The mean values of bonds
and the market value of debt reported in the first and second rows
are expressed relative to average output in our economy.

Table 1: Moments: Long samples

Debt/GDP 0% 30% 60% 90%
Model Short Maturity N = 1
σπ 0.44% 0.42% 0.45% 0.53%

corr (π, πt−1) 0.195 0.163 0.133 0.087
Model Long Maturity N = 10
σπ 0.46% 0.44% 0.47% 0.60%

corr (π, πt−1) 0.256 0.271 0.288 0.290

Notes: σx is the standard deviation of variable x; corr(x, y) denotes
the correlation between variables x and y. The top (bottom) panel
corresponds to the short (long) bond economy.

Table 2: Moments: Short samples
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Model N = 1 N = 5 N = 10 N = 20

Target Steady State Output

σπ 19.95% 12.33% 9.88% 8.23%
corr (π, πt−1) 0.937 0.939 0.938 0.941
σY 0.0085 0.0060 0.0052 0.0046
στ 0.0407 0.0702 0.0790 0.0869

Target Complete Market Output

σπ 6.09% 3.89% 3.04% 2.50%
corr (π, πt−1) 0.942 0.938 0.939 0.941
σY 0.0259 0.0250 0.0249 0.0246
στ 0.0268 0.0157 0.0119 0.0089

Notes: σx is the standard deviation of variable x; corr(x, y) denotes
the correlation between variables x and y. The top four rows
correspond to the economy where the target output is the steady
state output. The bottom panel corresponds to the model where
the target is the complete market (efficient) output.

Table 3: Moments: Long samples Constrained Model

Model N = 5 N = 10 N = 20
λs 0.0048 0.0083 0.0061
iN 0.0064 0.0041 0.0025
iN−1 0.0084 0.0047 0.0028

Table 4: Euler Equation Errors

Model λs λs,impl pN pNimpl pN−1 pN−1
impl

N = 5
ave 0.513 0.512 0.816 0.815 0.850 0.849
σ 0.082 0.081 0.016 0.019 0.014 0.016

N = 10
ave 0.510 0.510 0.668 0.668 0.695 0.696
σ 0.084 0.083 0.018 0.020 0.017 0.020

N = 20
ave 0.512 0.512 0.452 0.453 0.470 0.472
σ 0.077 0.077 0.015 0.018 0.015 0.018

Table 5: Euler Equation Errors actual and implied moments
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Model c cimpl bN bNimpl π πimpl Y Yimpl
N = 5
ave 0.165 0.165 0.068 0.068 1.000 1.000 0.205 0.205
σ 0.030 0.028 0.057 0.056 0.005 0.005 0.030 0.028

N = 10
ave 0.165 0.165 0.077 0.076 1.000 0.999 0.205 0.205
σ 0.030 0.028 0.066 0.065 0.005 0.006 0.030 0.028

N = 20
ave 0.165 0.164 0.128 0.129 0.999 0.998 0.205 0.204
σ 0.030 0.028 0.096 0.097 0.005 0.006 0.030 0.027

Table 6: Euler Equation Errors actual and implied moments

Model N = 5 N = 10 N = 20
λ -0.00000452 -0.00001530 -0.00002671
pN 0.00000828 -0.00006826 -0.00000649
pN−1 0.00000344 -0.00004483 -0.00003533

Table 7: Simple Den Haan and Marcet Test
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