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Coexisting rogue waves within the (2+1)-component long-wave–short-wave resonance
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The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations
describing the (2+1)-component long-wave–short-wave resonance. For a wide range of asymptotic background
fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration
to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from
similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent
in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and
may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear
optics.
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Rogue waves, a term originally coined to provide a vivid
description of the mysterious monstrous ocean waves [1],
have recently attracted much interest in the study of their
fundamental origin and complex dynamics [2,3]. In addition
to being manifested in the open ocean and deep water
related experiments [4,5], these extreme wave events were
also observed in a wide class of physical systems, including
capillary waves and surface ripples [6,7], plasmas [8], optical
fibers [9,10], mode-locked lasers [11], and filaments [12].
These studies have uncovered general features of nonlinearity
and complexity shared by rogue waves, e.g., they are extremely
large and steep compared with typical events, occur in a
nonlinear medium, and follow an unusual L-shaped statis-
tics [9,11–13]. Despite these diverse features, mathematical
solutions of rogue waves can be expressed as rational functions
localized in both space and time. One typical example is the
Peregrine soliton [14], a well-known rogue wave prototype in
various experimental fields [4,8,10], which is the lowest-order
rational solution to the nonlinear Schrödinger (NLS) equation.

Following the need to model complex physical systems
more precisely, it has become important to study rogue wave
phenomena beyond the framework of the NLS equation.
Recent developments have taken into account dissipative
effects [11,15,16], included higher-order nonlinear terms [17–
19], or considered the coupling between several fields [20–25].
The latter investigations have led to the discovery of intricate
rogue wave structures that are generally unattainable in the
scalar models. In particular, we showed in Ref. [25] that
the long-wave–short-wave (LWSW) resonance interaction can
result in stable dark and bright rogue waves in spite of the
onset of modulational instability (MI). This finding brings
about the possibility to observe dark rogue waves in LWSW
resonance systems such as negative index media [26] and
capillary-gravity waves [6,27].

Basically, the LWSW resonance is a general parametric
process that manifests when the group velocity of the short
wave matches the phase velocity of the long wave [28].
It has been predicted in different disciplines such as fluid
dynamics [27], plasma physics [29], oceanography [30], and
nonlinear optics [26,31]. Early works showed that both the

LWSW and the NLS equations could be obtained from the
same Davey-Stewartson system under the appropriate param-
eter conditions [27,32,33], although the former is currently
less popular in use than the latter.

In fact, it is possible to consider multiple interactions
in a vector LWSW resonance system, corresponding to the
interaction between N short waves and one long interfacial
wave. We shall refer to such a vector system as the (N+1)-
component LWSW resonance system [34–36]. With N = 2,
the intrinsic complexity of the LWSW resonance system leads
to the discovery of original vector multisoliton dynamics [37].
We anticipated that, if rogue wave solutions could be found
in the (2+1)-component (C) LWSW resonance model, they
would feature unique properties.

In this paper, we report the compossibility of two different
families of fundamental (first-order) rogue wave solutions,
which exist simultaneously in the (2+1)-C LWSW resonance
system. We demonstrate explicitly that, due to the specific
three-wave resonance, one family of three rogue wave compo-
nents can coexist with the other for the same initial parameters.
Finally, the robustness of these coexisting rogue waves as well
as the ability to trigger them is confirmed numerically.

The nonlinear interaction between two complex short-wave
field envelopes, u and v, and the real long-wave field, φ,
can be modeled by the (2+1)-C LWSW resonance equation,
expressed in a normalized form

iut + 1
2uxx + uφ = 0,

ivt + 1
2vxx + vφ = 0, (1)

φt − (|u|2 + |v|2)x = 0,

where t and x are two independent evolution variables and
the subscripts stand for the partial derivatives. Here, the first
two of Eq. (1) have been arranged into a form similar to the
standard NLS equation, making it clear that the nonlinearity
experienced by each short wave is driven by the long-wave
field, φ, rather than by |u|2 or |v|2. In optical contexts,
while the short-wave components u and v are called optical
waves, the long-wave component φ could be thought of as
the induced optical rectification [31] or the low-frequency
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terahertz wave [26]. As one can check, this system of equations
can be readily cast into a 4 × 4 linear eigenvalue problem (one
can refer to the Lax pair provided in Ref. [38] or refer to
Ref. [39] for technical details) and thus can be solved, although
cumbersome, by use of the inverse scattering transform or
Darboux transformation.

Here we exploited the Hirota bilinear method, which is
expedient and efficient when the trial solutions can be easily
deduced from the known solutions of a less complicated
system [25]. After a little algebra, we obtain the exact
fundamental rogue wave solutions of Eq. (1) as

u = u0

{
1 − 2in2t + 2i(m − k)(x − mt) + 1

[n2 + (m − k)2]
[
(x − mt)2 + n2t2 + 1

4n2

]
}
,

(2)

v = v0

{
1 − 2in2t + 2i(m − K)(x − mt) + 1

[n2 + (m − K)2]
[
(x − mt)2 + n2t2 + 1

4n2

]
}
,

(3)

φ = b + 2
n2t2 − (x − mt)2 + 1

4n2[
(x − mt)2 + n2t2 + 1

4n2

]2 , (4)

where the initial plane waves u0,v0 are defined by their re-
spective amplitude (a,A), wave number (k,K), and frequency
(ω,�) according to

u0(t,x) = a exp(ikx − iωt), (5)

v0(t,x) = A exp(iKx − i�t). (6)

The dispersion relations for the above seeding plane waves
are given by ω = 1

2k2 − b and � = 1
2K2 − b (here b � 0

defines the background of the real long-wave field). The real
parameters m and n in Eqs. (2)–(4) must satisfy

m + a2[n2 − (m − k)2]

[n2 + (m − k)2]2
+ A2[n2 − (m − K)2]

[n2 + (m − K)2]2
= 0, (7)

1

2
+ a2(m − k)

[n2 + (m − k)2]2
+ A2(m − K)

[n2 + (m − K)2]2
= 0. (8)

As a result, for given initial plane-wave parameters, one can
use Eqs. (7) and (8) to determine the values of m and n, hence to
determine the rogue wave solutions (2)–(4). Since the above
solutions involve n2 only, thus for clarity we shall assume
n > 0 below.

Equations (2)–(4) represent general families of fundamental
rogue wave solutions of Eq. (1), with intricate rogue wave
structures that resemble those displayed in the two-wave
resonance case [25]. Indeed, when one field vanishes, these
solutions can be readily reduced to those presented in Ref. [25].
In most cases, m and n are implicitly determined by the system
of coupled algebraic equations (7) and (8), and thus one needs
to solve for them numerically in order to find all possible rogue
wave states.

Let us first explore the asymptotic behaviors of Eqs. (7)
and (8) analytically as K → ±∞, for a given k value without
loss of generality. There are the following two considerations.

On one hand, for a finite m in the limit of K → ±∞, the
third term on the left-hand side of both Eqs. (7) and (8) can be
neglected, resulting in

2(m − k)(2m − k)2 + a2 = 0, (9)

n =
√

(m − k)(3m − k). (10)

These give the asymptotic solutions, m and n, of Eqs. (7)
and (8) provided that k � 3(2a2)1/3/2 ≈ 1.89a2/3. On the
other hand, if n is kept finite but m ∼ K as K → −∞, we
can also reduce Eqs. (7) and (8) into

2(m − K)(2m − K)2 + A2 = 0, (11)

n =
√

(m − K)(3m − K). (12)

In this case, the asymptotic solutions, m and n, will be
independent of k for K approaching −∞. It is of interest to
note that the above two sorts of asymptotic behaviors are able
to exist simultaneously if k � 3(2a2)1/3/2, otherwise only the
second sort can survive.

We solved Eqs. (7) and (8) numerically for all allowed
(m,n), using k = 0, −1, or 2, and letting A = a = 1 for
simplicity. These results are plotted in Figs. 1(a) and 1(b),
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FIG. 1. (Color online) Allowed real parameters m and n versus
K for (a) k = 0 and (b) k = −1 (solid lines) or k = 2 (dashed lines).
The inset in (a) shows the existence of two pairs of real solutions
(m,n) of Eqs. (7) and (8) for K = −1.2469.
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showing that as k = 0 or −1, m and n have valid values in
the whole regime of K , with the asymptotic behaviors exactly
described by Eqs. (9)–(12) [see the solid lines (1,1′) and (2,2′)
therein]. However, once k is larger than 1.89 (here we chose
k = 2), the valid domain of K will be greatly reduced and
only the asymptotic behavior given by Eqs. (11) and (12)
remains, as indicated by the dashed lines (3,3′) and (4,4′)
in Fig. 1(b). We should point out that all the red circles
in Figs. 1(a) and 1(b) must be excluded, because they give
the trivial value n = 0 that is not allowed by the rogue wave
solutions (2)–(4).

Intriguingly, Fig. 1 reveals that for given initial plane-wave
parameters, coexisting rogue wave solutions are possible.
Specifically, as seen in Fig. 1(a), when k = 0 and K < 2.4600
(truncated to four decimal places and the same below),
each nonzero K value yields two sets of valid (m,n) which
correspond to two coexisting rogue wave families. This can be
understood from the inset in Fig. 1(a) where the n versus
m trajectory of Eq. (7) (black line) can intersect that of
Eq. (8) (red line) twice for K = −1.2469. In the same
way, Fig. 1(b) shows that there exist two different families
of rogue waves for k = −1 and K < 2.1544 (solid lines),
or for k = 2 and −2.2586 < K < 3.6734 (dashed lines), of
course excluding the decoupled case K = k. These remarkable
coexisting behaviors can be reminiscent of the bistable states
occurring in soliton evolutions [40–45], although typically
rogue waves are transients while solitons are stationary states.
As an illustration, we demonstrate in Fig. 2 the formation of the
coexisting rogue wave states at the points M (−1.3514,0.7803)
and N (−0.4287,0.6442) in the inset in Fig. 1(a). Here,

FIG. 2. (Color online) Two distinct yet fundamental rogue wave
families for identical initial plane-wave parameters (letting b = 0).
The left (right) column illustrates the rogue wave family developed
at the M (N ) point, as seen in the inset in Fig. 1(a).

FIG. 3. (Color online) Numerical results showing the stability
of two coexisting rogue wave families against initial white-noise
perturbation, under otherwise identical conditions as in Fig. 2. The
contour plots have the same layout as in Fig. 2.

the value of K = −1.2469 was chosen so that the |u| field
component may feature a black rogue wave structure, namely,
can fall to zero in the dip center. It is shown that the rogue
wave family at the M point (see left column) consists of
black, bright, and bright structures for the corresponding
three field components, while the one at the N point (see
right column) takes a different combination of rogue wave
structures. Obviously, these two families of fundamental rogue
waves can coexist for the same initial parameters.

It is noteworthy that similar analytical solutions for the
vector LWSW equations were recently given in Ref. [38], but
those only correspond to the special case of our solutions, i.e.,
to Eqs. (2)–(4) with K = b = 0. In particular, the remarkable
coexisting rogue wave behaviors that we are primarily con-
cerned about were not shown there.

We have also performed extensive numerical simulations to
study the formation, the stability, and the triggering character-
istics of these coexisting rogue wave families. First, we solved
the underlying model equation (1) by using a split-step Fourier
method [25], with the analytical solutions (2)–(4) at t = −5 as
initial conditions. These initial conditions correspond to faint
perturbations of the asymptotic plane waves. We corroborated
that our numerical code gave precisely the solution profiles
predicted analytically until t = 5. Secondly, we studied numer-
ically the stability of the rogue wave solutions by perturbing the
above initial conditions. We multiplied the real and imaginary
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FIG. 4. (Color online) Excitation of two different families of
fundamental rogue waves from a slight deterministic alteration to
the otherwise identical background of the φ field. The top panel
represents the initial profile of φ and the lower ones display the
evolution of the three field components with time.

parts of both the u and v fields, and the real φ field by the
factor [1 + μri(x)] (i = 1,2, . . . ,5), respectively, where ri(x)
are uncorrelated random functions uniformly distributed in the
interval [−0.5,0.5], and μ is a constant defining the noise level
(here we used μ = 10−4). Our simulation results are illustrated

in Fig. 3, where for comparison we adopted the same initial
parameters and the same layout as in Fig. 2. It is revealed
that these two coexisting rogue wave families are stable on
an unstable background, despite the fact that the MI tends
to interfere strongly with the trailing edge of the localized
solutions after some propagation time.

Thirdly, in order to see whether these rogue wave solutions
would be easily triggered in realistic conditions, we intended
to excite them numerically by using initial conditions signif-
icantly different from the exact solution profiles. To reduce
the number of variables to play with, we used the plane-wave
solutions (5) and (6) at t = 0 as initial conditions for u and v,
each with the amplitude and wave number as used in Fig. 2 or 3,
and the ansatz φ(t = 0,x) = p cos(2πx/q)sech[(x − x0)/w],
with p, q, x0, and w being free parameters. Surprisingly, for
certain of these free parameters, we found it possible to excite
both types of fundamental rogue waves on a background. An
example is provided with Fig. 4, where the initial condition
φ(t = 0,x) is plotted in the top panel. In the evolution plots
for |u|, |v|, and φ, the first five time units have been removed,
as hardly no visible changes appear on the chosen scale. Then,
at around t = 10, there appear simultaneously two markedly
different rogue wave types, well separated and corresponding
to those shown in Fig. 3. This demonstrates further, from the
numerical perspective, the coexistence of diverse fundamental
rogue waves. The temporal evolution that follows features
additional rogue wave dynamics, all with a combination of
both rogue wave types. The latter behavior could be linked to
the existence of high-order multiple rogue wave solutions of
Eq. (1), in analogy to the multiple rogue wave solutions found
within the scalar NLS equation [46–48]. These subsequent
multiple rogue waves could also be triggered by the onset
of MI, which promotes quasiperiodic structures by patterning
the continuous-wave background. Our other simulation results
suggest that a deterministic change of the above asymmetric
profile of φ could trigger either of the rogue wave types
as well.

In conclusion, we have unveiled the remarkable feature that
different fundamental rogue wave solutions of the (2+1)-C
LWSW resonance system could coexist for the same initial
plane-wave parameters. A slight change in the initial condition
is able to make the rogue wave type hop from one family
to the other. The stability of these coexisting rogue wave
solutions was numerically proven to be strong enough that
they can develop in the presence of noise. We attributed such
a compossibility to the specific three-wave interaction process
that occurs universally in many multicomponent systems.
Finally, numerical simulations have indicated the tendency to
generate multiple, or high-order, vector rogue wave events. The
last point opens the door to further theoretical and numerical
investigations.
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