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Introduction
● Quantum Field Theory in Curved Spacetime provides 

a good description of formation of primordial structure
during inflation.

● Loop Quantum Cosmology gives a rigorous quantization 
of FLRW spacetimes in which the singularities are avoided.

Besides, its effective dynamics favours inflation.

 The hybrid approach combines Fock and loop representations 
to quantize inhomogeneous models. 

We have quantized a (scalarly) perturbed FLRW model with
● a (massive) scalar field as matter content,
● compact spatial sections.

[Martín-Benito, Garay & Mena Marugán]



(Classical)
Cosmological Perturbations



4/29

3+1 decomposition

 Let           be a globally hyperbolic spacetime.
Let t be a global time function.
t foliates the spacetime in spacelike hypersurfaces    . 

shift vector
lapse function

We define

The line element can be written as
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Parametrization
   FLRW (with a scalar field) + inhomogeneities 

The inhomogeneities can be Fourier expanded, e.g. 

are real eigenfunctions of the Laplace-Beltrami operator,

fiducial metric on

[Halliwell & Hawking 85]
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Constraints
 
  We truncate the action at quadratic order 

in the coefficients of the inhomogeneities expansions. 

After a Legendre transform, we obtain a Hamiltonian 
which is a linear combination of constraints:

● The corrected Hamiltonian constraint 
(which appears with the homogeneous lapse).

● Linear constraints 
(with the perturbations of the lapse and the shift, resp.).

 We fix the linear constraints classically. 
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Gauge fixing
 

 Consider e.g. the longitudinal gauge, in which

After the reduction, one is left with the homogeneous 
the field-like     , and their former momenta, 

which do no longer have canonical (Dirac) brackets. 

Nonetheless, we can find a new set of canonical variables.

We take advantage of this change to introduce 
a field description adapted to the quantization.
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 We scale the field and change its momentum in the following way: 

while the homogeneous variables 
get 2nd-order corrections 

 In these variables,       adopts a Klein-Gordon-like form     
       with background-dependent mass and             corrections.

background functions

Reparametrization of the system

Dynamical equations: 
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Choice of the field description
  Classically, the parametrization of the inhomogeneities is irrelevant.
 But different parametrizations lead to inequivalent quantum theories. 

 In a classical background, the scaling and the momentum redefinition  
 are necessary if we require

●  a vacuum invariant under the spatial isometries and
●  unitarily implementable field dynamics.

 Moreover, these criteria select 
 a class of unitarily equivalent Fock representations for the field. 

 A representative of the class of preferred Fock representations 
can be constructed from the annihilation-like variables 

[Cortez, Mena Marugán, Olmedo & Velhinho]



Quantization
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Hybrid Quantization
 We adopt

●  a polymer representation of the homogeneous gravitational d.o.f.,
●  a Schrödinger representation for the homogeneous field, 

●  a standard Fock quantization for its field-like perturbation.
  
 

Fock space 

The kinematical Hilbert space of the theory 
is constructed as the product

In this approximation, 
  only the background incorporates the effects of quantum geometry

but an infinite number of d.o.f. can be treated. 
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 In a homogeneous and isotropic universe, 
the Ashtekar-Barbero connection and the densitized triad 

can be parametrized by two variables, c and p, satisfying

Homogeneous sector: Ashtekar variables

 In terms of these variables, 
   the classical Hamiltonian constraint of the homogeneous system is 

Flat case: Σ = T 3
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 However, the fundamental variables for quantization 
  are not the connection and the triad, but 

Holonomy-flux algebra

● Holonomies of the connection along straight edges of length 
 parametrized by the functions 
The improved dynamics scheme has been adopted: 

where Δ is an imput from Loop Quantum Gravity: 
the minimum non-zero eigenvalue of the area operator.

Fundamental algebra: 

● Fluxes of the densitized triad (proportional to p).
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Representation
 
Mimicking the representation employed in LQG, the holonomy-flux 

algebra is represented in 

The momentum representation is more frequently employed: 
● Orthonormal basis: 
● Fundamental operators:  

 As this representation is not continuous, there is no operator for c.
The Hamiltonian constraint must be regularized. 

 This is done by following the programme of Loop Quantum Gravity



Regularization
 The term cp can be expressed in terms of a holonomy
around a closed squared loop in the limit of vanishing area of the loop.

 Thus, we obtain    where  

 In addition, inverse powers of p are regularized expressing them
in terms of Poisson brackets of the fundamental operators. 

Then, the brackets are promoted to commutators. The result is 

Instead of a vanishing area, we take a loop with the minimum one, Δ.
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Second-order constraint
 The 2nd-order Hamiltonian has the structure

The prescription we follow to quantize it is:     
● Normal ordering for annihilation and creation operators.

● Symmetrizations: 
●

●

In this way, the superselection sectors are preserved. 

where the E-coefficients are functions of the homogeneous variables.



Effective Dynamics
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Derivation of the effective dynamics
 Now we have a quantum model, but it is very intrinate

As a first approach we studied its effective dynamics
in the massless case. 

There are two types of corrections: 
● Regularization of  → inverse-triad corrections
● Regularization of cp → holonomy corrections

This algorithm has proven useful in more involved systems 
(of course, one should check its validity!) 

In simple models, the peaks of certain semiclassical states 
follow simple trajectories 

which obey the effective constraint obtained by
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Implementation  
  We introduce holonomy corrections in our model by making 

This implementation of the effective dynamics, with two steps, 
has qualitative as well as quantitative consequences, e.g. 

 the bounce in the volume does not coincide with the max. density.

   Nonetheless, we would expect other effects of the backreaction 
to appear in other prescriptions as well. 

E.g., the energy transfer between background and perturbations.
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Effects of the backreaction (I)
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Effects of the backreaction (II)
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Effects of the backreaction (III)
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Perturbation amplification (I)
 We studied the evolution of the system 

setting initial conditions well before the bounce  
and evolving them until long after the bounce 

Initial conditions for the inhomogeneities: 
● Gaussian distribution for the amplitude
● Homogeneous distribution for the phase

(idea: mimicking a vacuum state)

Statistically, the perturbations are amplified through the bounce.
The average amplification is modulated by the frequency. 

Besides, there is an effect of alignment of the phases. 
The following figures were obtained neglecting the backreaction

and choosing 
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Perturbation amplification (II)
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Modulation of the amplification (I)
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Modulation of the amplification (II)
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Modulation of the amplification (III)
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Conclusions
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Conclusions
 We have studied the plausible effective dynamics 

of the hybrid quantization of the perturbed FLRW model.

 Results:  
● The perturbations are boosted in the bounce. 

The average amplification oscillates with the frequency.
The ultraviolet modes are not amplified significantly. 

● There is a parallel effect of alignment of the phases. 
● There is an energy transfer between the background 

and the perturbations. 



Thank you!
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