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Abstract. Specific weed management consists on adjusting herbicide 
treatments depending on the zone infested and the type of weed. In this context, 
the discrimination between grasses (monocots) and broad-leaved weeds (dicots) 
is an important objective mainly because the two weed groups can be 
appropriately controlled by different specific herbicides. This work proposes a 
method of discrimination between these types of weeds based on a combined 
strategy, the Sugeno Fuzzy Integral, where the final decision is taken by 
combining seven attributes, the Hu moments. The main challenge in terms of 
image analysis is to achieve an appropriate discrimination between both groups 
in outdoor field images under varying conditions of lighting as well as of soil 
background texture. 
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1 Introduction 

Precision Agriculture is intended to adjust the use of resources and agronomic 
practices to the requirements of soil and crop seeking greater sustainability and 
efficiency. In other words, aims to reduce economic and environmental costs 
traditionally associated with agriculture. 

The application of herbicides for agricultural purposes has been realised for 
decades with relevant gains in crop production. However, excessive or careless use of 
certain herbicides can have detrimental effects on the surface water and ground water 
quality. There is no doubt that the use of selective herbicide application on weed-
infested areas of the field, rather than the entire field, would be of great interest [1]. 
As a result, efforts are being encouraged by concern over reducing agricultural 
chemical use without sacrificing crop yield.  

Several authors show that the distribution of the most harmful weeds for a 
particular crop is not uniform, and it generally (about a 70% of the fields) affects less 
than 40% of the crop [2, 3]. Due to this fact, the selective application of herbicides 
only on infested areas can lead to significant reductions in the amount of product 
applied and provide both economic and ecological benefits [4 - 6]. From the point of 



470 P.J. Herrera, J. Dorado, and Á. Ribeiro 

view of herbicide treatment, efficiency is higher if selective treatment is performed 
for each type of weed instead of using a wide spectrum herbicide [7]. 

To adapt the treatment to the individual needs of each kind of land, it is essential to 
have accurate information on the state of the crop to be treated, i.e. where the weeds 
are located, the degree of coverage or type of infestation present. Traditionally, 
different methods have been used to obtain information of the field from the air and 
the ground. In the case of aerial images and data coming from satellites, information 
collection depends heavily on the weather (no clouds or fog) and, although remote 
sensing in agriculture has experienced a resurgence in recent years thanks to the use 
of cameras hyper and multi-spectral [8], yet the cost is high and the resolution is low. 
Ground sampling allows a lower resolution (centimetre) although in this case the 
information contained in each image covers small crop areas. 

The development of methods of detection of weeds from images has always been 
an open field of great importance to Precision Agriculture [9 - 13]. The problem has 
no simple solution owing to the great diversity of crops and weeds, changes in 
exterior lighting, differences in the texture of the terrain (fundamentally due to 
humidity), different states of crop growth and infestation, great similarities between 
the crop and weeds that infest it, etc. [14, 15]. All this makes the discrimination 
between the crop, weed and soil a complex task, and the difficulty increases if the aim 
is to discriminate between groups of weeds or to apply herbicide in real time as the 
position of the infestation is detected [4, 16 - 20]. 

One of the key criteria for herbicide selectivity is based on differences between 
monocots and dicots. For this reason, the determination of the coverage percentages 
of both groups is essential to the development of an autonomous system of treatment 
able to adjust the type of herbicide and the dose to the dominant infestation. 

The literature contains several examples of works that propose methods of image 
processing that combine colour, position, outline, texture, size, or spectrum to 
distinguish between weeds and crops [21, 22]. Other works present combinations of 
image processing techniques as Fuzzy Clustering and a fuzzy inference neural 
network to identify plants, based on leaves [23].  

The success with which these aspects can be adapted to classification depends on 
the kind of crop, weeds, manner and moment that the images are gathered. In other 
words, early weed detection is an objective that can be planned according to criteria 
oriented to two different levels with an increasing requirement: 1) estimation of 
presence or absence of weeds by discrimination from bare soil and row crops, and 2) 
differentiation between groups of weeds e.g., monocots vs. dicots (since they can be 
controlled by different herbicides) according to one or several differential parameters 
(spectral characteristics, and other features as size or form). Previous works have 
faced this problem by means of techniques as neural networks or genetic algorithms 
[21, 24].  

Changing the subject, moment invariants were firstly introduced to the pattern 
recognition community in 1962 by Hu [25], who employed the results of the theory of 
algebraic invariants and derived his seven famous invariants to rotation of 2-D 
objects. Since that time, numerous works have been devoted to various improvements 
and generalizations of Hu’s invariants and also to its use in many application areas. 
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Invariance with respect to translation, rotation and scaling is required in almost all 
practical applications, because the object should be correctly recognized, regardless of 
its position and orientation in the scene and of the object-to-camera distance [26, 27]. 

Weed spatial distributions are unique, with monocot infestations more patchy than 
dicots [3]. Besides, monocots differ architecturally from dicots as one can see in Fig. 
1. For these reasons, a strategy based on using Hu moments in shape recognition may 
be suitable. Moreover, these moments have been used successfully in previous works 
solving different problems but where images present similar features (outdoor images, 
changes in exterior lighting, varying conditions of lighting, differences in the textures, 
overlapping, etc) [28]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

 
(f) 

Fig. 1. Images (a) and (b) show monocots (long and slender leaf), whereas images (c) and (d) 
present dicots (broadleaf and short). Images (e) and (f) display a mixture of both kinds of 
weeds. 
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This work constitutes a new approach to discrimination among groups of weeds. In 
particular, this work presents a novel method of discrimination between monocots and 
dicots, based on the support that each region belonging to weed receives by 
combining attributes. Our hypothesis is that a region belonging to a weed species can 
be characterized by a set of seven attributes based on the seven invariant moments of 
Hu. Furthermore, the Sugeno Fuzzy Integral (SFI) approach is used for the 
combination, so the decision about the kind of weed for a region, can be made 
according to the support that each region receives by combining the attributes by 
means of the SFI.  

SFI has been reported to give excellent results as a classifier combiner [29]. 
Moreover, based on the conclusions reported in [28, 30 - 32], the SFI appears as a 
suitable method for the combination of attributes. In fact, with a little adjusting it can 
be used for combining attributes in this proposal, so that a decision about a unique 
kind of weed (monocot or dicot) can be made for each region.  

Summarizing, the combined SFI strategy makes possible an automatic way to 
distinguish between different kinds of weed in outdoors images. The final purpose is 
to estimate the coverage percentages of each type of weed in the image. 

This work is organized as follows. Section 2 describes the proposed approach, 
including a brief overview of the SFI. Section 3 describes the results obtained by 
using the combined approach. Section 4 presents the conclusions and future work. 

2 Proposed Approach 

An essential issue in the field of pattern analysis is the recognition of objects and 
characteristics of these objects regardless of their position, size and orientation. The 
idea of using moments in shape recognition gained relevance when Hu [25], derived a 
set of invariants using algebraic invariants. In particular, Hu defined seven values, 
computed by normalizing central moments through order three that were invariant to 
object scale, position, and orientation. 

Based on previous invariant moments the novel proposed approach consists of four 
stages: 1) image segmentation of vegetation cover and regions definition, 2) labelling 
of disconnected regions, 3) extraction of the Hu invariant moments for each region, 
and 4) discrimination of both monocots and dicots regions by means of the SFI. 

The segmentation of the image is a two-steps process. First, it applies the equation 
(1) to each pixel of the original image with the aim of isolating the vegetation cover 
[33]. 

 
( ) ( ) ( )BIbGIgRIrIS ⋅+⋅+⋅= (1) 

 
where r = − 0.884, g = 1.262, b = − 0.311. The greyscale image resulting is then 
binarized by using a threshold that was set to 10 in this case (Fig. 2b). 

After that, an opening morphologic operation is applied for enhancing the regions, 
avoiding the overlapping among regions belonging to different weed types, and for 
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removing in the image the pixels belonging to noise with the minimum alteration of 
those belonging to monocots and dicots. 

The opening operation is accomplished with a structural element that 
symmetrically operates in all spatial directions, i.e. a 5×5 matrix known as diamond.   

 

 
(a) 

 
(b) 

Fig. 2. (a) Image with mixed monocots and dicots. (b) Segmentation of the vegetation cover of 
image (a). 

In the second stage, the regions are labelled following the procedure described in 
[34], which basically finds the connected components (regions in this case) in a 
binary image. In this method, all the pixels in the same region are given the same 
level. The searching of the connected components is done in top-to-bottom scan 
order, i.e. all pixels in the first connected component are labelled as 1, those in the 
second as 2 and so on. 

Once all regions have been labelled, the seven Hu invariant moments are computed 
for each region. Therefore, the attributes are the seven mentioned above, i.e. 

{ }7654321 ,,,,,, φφφφφφφ≡Ω , where [ ]1,0∈iφ  and it is associated to the seven Hu  

moments. 
Then each region is matched with its class of weed. This is a decision that can be 

made through the combined SFI method, such as it is briefly described below.  
The SFI requires the computation of the relevance assigned for each attribute, from 

which the so-called fuzzy densities can be computed. This is solved by computing the 
−λ fuzzy measure [29]. In the proposed approach the calculation starts with selecting 

a set of seven fuzzy measures, that we will call g1, g2, g3, g4, g5, g6, g7 according to 
[29], each one representing the individual relevance (strength or competence) of the 
associated attribute in Ω .  

The value of λ  needed for calculating gi is obtained as the unique real root greater 
than − 1 of the polynomial, 

 

( ) 0,11 ≠+=+ ∏
Ω∈

λλλ    g
i

i  (2) 

 
As it was previously mentioned, SFI is suitable for combining classifiers. 

Nevertheless, it requires a previous training stage to adjust some parameters. In that  
approach, SFI learns the relevance for each classifier, so that, during the combination, 
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every classifier intervenes with a specific different weight on the final decision. In our 
combined SFI approach, it is also computed the relevance of each attribute for  
determining its specific contribution to the decision through the fuzzy densities. As in 
[35], although with a different criterion, the relevance of each attribute is determined 
by considering a number of reliable true and false training examples obtained from a 
set of different regions. The process is as follows: for each region in an image, it is 
computed the grade of support for its class (monocot or dicot), but considering each 
one of the seven attributes separately. So, we compute the averaged percentage of 
error, p1,... p7, for the selected regions and for each attribute, based on the expert 
criterion. Thus, the relevance for an attribute i is  computed by (3), 

 

 == 7

1j ji
i ppg   (3) 

 
Once the g1, … g7 are obtained and λ is found, the SFI works as follows: 

1. For a given region, it is obtained a vector as: [ ]T7654321
''''''' ,,,,,, φφφφφφφ ; 

without lost of generality assume that 1
'φ  is the highest value and 7

'φ  the lowest. 

In this way, this vector is arranged under this criterion, i.e. 

7654321
''''''' φφφφφφφ >>>>>> . 

2. Arrange the fuzzy densities correspondingly with the mentioned arrangement, i.e. 
g1, g2, g3, g4, g5, g6, g7 and set the first fuzzy density g(1) = g1. 

3. For t = 2 to 7, g(t) is calculated recursively by (4), 
 

)1()1()( −+−+= tggtggtg ii λ  (4) 

 
4. Calculate for each candidate region i, the final degree of support to be matched 

with each class l as, 

( ) ( ){ }{ }hgmaxl h
h

i ,min φμ
Ω∈

= (5) 

5. The decision about the class a region belongs is made by selecting the maximum 
support ( )liμ  among all classes. 

3 Results 

The images used in this work were taken in maize crops sited in Madrid (Spain) on 
different days and therefore under varying lighting conditions. A conventional camera 
positioned atop a tripod was used and the images were acquired in vertical from 
heights below 1.5 meters, from a space of 50×50cm between two maize rows, with an 
original resolution of 1700×1700 pixels. Therefore the vegetation that appears in the 
images is always related to weeds, i.e. monocots, dicots or both kinds of weeds. In 
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short, given an RGB image the aim of the developed approach is to estimate in the 
image the cover percentages of each weed group as well as of soil.  

From the sixty-six images available, twenty-eight presented a mixture of weeds. 
Nineteen images presented only monocots and nineteen only dicots. An important 
infestation was observed in the 14% of the images. In this work, fourteen images were 
selected because represented a wide range of situations. After applying steps 1 
(vegetation cover segmentation) and 2 (labelling of disconnected regions) in the 
selected set of images, one-hundred different regions were extracted and analyzed. In 
general, the number of regions extracted per image ranged from five to twenty. In the 
cases where an important infestation was observed, it could be extracted less than five  
different regions. 

Fig. 3 displays, as an example, the regions extracted by the application of steps 1 
and 2 over the original image represented in Fig. 2a. Each region appears labelled 
with a unique label, represented as a colour in a scale for visualization purposes.  

 

Fig. 3. Labeling regions. Each isolate region appears identified by a unique color. 

The tests corresponding to the SFI strategy have been carried out with fourteen 
images including one-hundred different regions belonging to monocots and dicots. 
We use four of them (twenty-eight regions) for computing the relevance of each 
attribute for SFI, from which the fuzzy densities can be obtained. According to the 
explanation in section 2, the averaged percentage of error, p1,... p7, are:  p1 = 8 ( 1φ ), p2 

= 10 ( 2φ ), p3 = 15 ( 3φ ), p4 = 25 ( 4φ ), p5 = 21 ( 5φ ) , p6 = 23 ( 6φ )  and p7 = 19 ( 7φ ). 

Based on (3), the fuzzy values are exactly the following: g1 = 0.066, g2 = 0.083, g3 = 
0.124, g4 = 0.207, g5 = 0.173, g6 = 0.190 and g7 = 0.157. As one can see, the most 
relevant attribute is the first one. 

At a second stage, we apply the SFI approach region by region for the remainder 
ten images, as described in section 2. 

Furthermore, it is available the information of class membership provided by the 
expert criterion. Thus, for each region in an image it is known its correct class 
according to the expert knowledge and this information can be used to compute the 
percentage of error of the proposed approach. For each one of the seventy-two regions  
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obtained from the remainder ten images used for testing, the error for each region and 
the average of these errors are computed. 

According to the Hu moments extracted for each region, some preliminary 
conclusions can be obtained for each kind of weed. In monocot weeds, Hu moments 
tend to have negative values in the fifth, sixth and seventh moment and in the case of 
moments that give a positive value, they are close to 1 or 2. In dicot weeds, the values 
in the seven moments are close to zero and never reach 1. They may have negative 
values in the fifth, sixth and seventh moment, but these values are very close to zero. 
These assertions can be confirmed in Table 1, which shows the Hu invariant moments 
obtained from fifteen regions of each kind. These regions were randomly extracted 
from the images used in this work, belonging to the two types of weed under study, 
Fig. 4. 

Table 1. Invariant moments of Hu obtained from fifteen regions of each kind 

Weed 
1φ  2φ  3φ  4φ  5φ  6φ  7φ  

Monocot 1.7535 2.0493 2.2928 0.8794 1.1990 1.2571 − 0.3485 
 1.3380 1.3438 2.0149 1.3801 2.3014 1.5997 0.0134 
 1.6944 0.9968 2.1177 0.1024 0.0359 − 0.0080 − 0.0314 
 1.6345 1.0468 2.1471 0.4223 − 0.3960 − 0.4321 0.0702 
 1.5036 0.9277 1.0881 0.3654 0.1670 0.2495 − 0.1587 
 1.0571 0.3035 1.2304 0.0342 − 0.0023 − 0.0046 0.0066 
 1.2608 1.2070 0.2663 0.2907 0.0808 0.3193 − 0.0043 
 1.1625 0.5494 0.7047 0.0474 − 0.0016 − 0.0225 − 0.0085 
 1.7169 2.2861 2.0890 0.2256 − 0.1469 − 0.3326 0.0492 
 1.4536 1.1760 2.0314 0.4380 0.3875 0.3890 − 0.1433 
 1.6496 2.5818 0.6256 0.4177 0.2127 0.6468 − 0.0188 
 1.1978 0.3617 1.4753 0.1781 − 0.0877 − 0.1067 0.0253 
 1.6589 1.8999 2.2096 0.7830 1.0055 0.8419 − 0.2225 
 1.1070 0.2534 0.5144 0.0242 0.0013 0.0121 − 0.0024 
 1.3074 1.0152 1.6444 0.7993 0.8766 0.8044 − 0.2670 

Dicot 0.2982 0.0424 0.0030 247e − 9 − 41e − 12 − 29e − 8 − 21e − 10 
 0.2595 0.0189 0.0015 105e − 9 66e − 12 13e − 10 − 42e − 11 
 0.2605 0.0154 0.0078 0.0004 6e − 7 42e − 6 52e − 9 
 0.2799 0.0071 0.0177 0.0015 73e − 7 12e − 5 16e − 7 
 0.4753 0.1139 0.0585 0.0108 0.0003 0.0036 − 11e − 7 
 0.2690 0.0382 0.0004 0.0002 43e − 9 27e − 6 69e − 11 
 0.2343 0.0032 0.0007 0.0001 25e − 9 31e − 7 − 57e − 10 
 0.2971 0.0019 0.0261 0.0005 19e − 7 99e − 7 − 57e − 9 
 0.1981 0.0056 0.0002 59e − 7 19e − 11 37e − 8 6e − 11 
 0.1966 0.0066 0.0009 54e − 6 12e − 9 43e − 7 − 3e − 9 
 0.1926 0.0030 76e − 5 3e − 6 1e − 10 1e − 7 1e − 10 
 0.2094 0.0053 0.0018 63e − 6 − 1e − 9 5e − 7 2e − 8 
 0.2008 0.0029 0.0019 99e − 6 37e − 9 33e − 7 2e − 8 
 0.2108 0.0036 0.0041 16e − 6 37e − 10 9e − 7 2e − 10 
 0.1991 0.0086 58e − 5 3e − 5 26e − 10 1e − 6 3e − 9 

 
These conclusions allow to justify the relevance of Hu moments in this proposal to 

discriminate between monocots and dicots.  
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(a) (b) (c) (d) 

Fig. 4. (a),(b) Two regions belonging to monocots; (c),(d) two regions belonging to dicots 

Through this initial analysis, a classifier based on the Hu moments was designed in 
order to discriminate between monocots and dicots as described in section 2. The 
average percentage of error (compared to the pre-classification done by an expert) 
obtained with SFI decision making approach is 14.9. The standard deviation (σ ) 
obtained is 1.5. This means that the combination of attributes improve the results. The 
best individual criterion seems to be the first moment ( 1φ ). This implies that it is the 

most relevant attribute. This agrees with its relevance obtained above, as it has turned 
out to be the most relevant attribute. 

4 Conclusions 

In this paper we have proposed a strategy for discriminating between monocot and 
dicot. The method has proven effective and simple; furthermore it is based on colour 
segmentation, morphological operations and a well known strategy, common 
operations in image processing. 

For each region in an image the seven Hu moments are obtained for determining its 
correspondence to monocot or dicot. Under the SFI method, the values among seven 
attributes are combined and a decision for choosing the unique class for each region is 
made.  

The proposed combined strategy works properly when the weeds present an early 
stage of growth. This is the best moment for applying the herbicide. If the images 
present states of a higher crop growth, weeds will probably present overlapping and 
the segmentation process will get difficult mainly due to occlusions that do not allow 
to see the whole shape of each plant. Nevertheless, the proposed approach provides an 
useful methodology to discriminate between monocots and dicots in early growth 
stages.  

Although the results achieved can be considered satisfactory, they could be 
improved by applying Machine Learning techniques to obtain other classifiers able to 
automate the  classification, by means of some induced knowledge which implies the 
seven moments. 

The proposed combined approach can be applied to any environment. In this 
context, site-specific weed management could mean a significant reduction in 
herbicide use, which saves the farmer money and benefits the environment. As it was 
described in the section 1, efficiency is higher if selective treatment is performed for 
each type of infection instead of using a wide spectrum herbicide. For this reason, this 
proposal can be essential in the future. 



478 P.J. Herrera, J. Dorado, and Á. Ribeiro 

Acknowledgements. The Spanish Government and the European Union have 
provided full and continuing support for this research work through projects: PLAN 
NACIONAL - AGL2011 - 30442 - C02 – 02 (GroW) and UE - CP - IP245986 - 2 
(RHEA). The authors wish to acknowledge to the Spanish National Research Council 
(CSIC) and the European Social Fund (ESF) for the JAE-Doc contract with the first 
author. 

References 

1. Thompson, J.F., Stafford, J.V., Miller, P.C.H.: Potential for automatic weed detection and 
selective herbicide application. Crop Production 10(4), 254–259 (1991) 

2. Marshall, E.J.P.: Field-scale estimates of grass weed populations in arable land. Weed 
Research 28(3), 191–198 (1988) 

3. Johnson, G.A., Mortensen, D.A., Martin, A.R.: A simulation of herbicide use based on 
weed spatial distribution. Weed Research 35(3), 197–205 (1995) 

4. Tian, L., Reid, J.F., Hummel, J.W.: Development of a precision sprayer for site-specific 
weed management. Transactions of the American Society of Agricultural Engineers 42, 
893–900 (1999) 

5. Medlin, C.R., Shaw, D.R.: Economic comparison of broadcast and site-specific herbicide 
applications in nontransgenic and glyphosate-tolerant Glycine max. Weed Science 48(5), 
653–661 (2000) 

6. Timmermann, C., Gerhards, R., Kühbauch, W.: The economic impact of site-specific weed 
control. Precision Agriculture 4(3), 249–260 (2003) 

7. Tang, L., Tian, L., Steward, B.L.: Classification of broadleaf and grass weeds using Gabor 
wavelets and an Artificial Neural Network. Transactions of the ASABE 46(4), 1247–1254 
(2003) 

8. López Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la 
Orden, M., García-Torres, L.: Spatial variability of agricultural soils in southern Spain. 
Plant and Soil 246, 97–105 (2002) 

9. Onyango, C.M., Marchant, J.A.: Segmentation of row crop plants from weeds using colour 
and morphology. Computers and Electronics in Agriculture 39, 141–155 (2003) 

10. Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., García-Alegre, M.C.: Development of 
an image analysis system for estimation of weed. In: Stafford, J.V. (ed.) Proceedings 5th 
European Conf. On Precision Agriculture (5ECPA), pp. 169–174 (2005) 

11. Tellaeche, A., Burgos-Artizzu, X., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C.: A 
new vision-based approach to differential spraying in precision agriculture. Computers and 
Electronics in Agriculture 60(2), 144–155 (2008) 

12. Tellaeche, A., Burgos-Artizzu, X.P., Pajares, G., Ribeiro, A.: A vision-based method for 
weeds identification through the Bayesian decision theory. Pattern Recognition 41, 521–
530 (2008) 

13. Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: 
Improving weed pressure assessment using digital images from an experience-based 
reasoning approach. Computers and Electronics in Agriculture 65, 176–185 (2009) 

14. Tian, L.F., Slaughter, C.S.: Environmentally adaptive segmentation algorithm for outdoor 
image segmentation. Computers and Electronics in Agriculture 21, 153–168 (1998) 

 
 



 A New Combined Strategy for Discrimination between Types of Weed 479 

15. Brown, R.B., Noble, S.D.: Site-specific weed management: sensing requirements - what 
do we need to see? Weed Science 53, 252–258 (2005) 

16. Lee, W.S., Slaughter, D.C., Giles, D.K.: Robotic weed control system for tomatoes. 
Precision Agriculture 1(1), 95–113 (1999) 

17. Meyer, G.E., Mehta, T., Kocher, M.F., Mortensen, D.A., Samal, A.: Textural imaging and 
discriminant analysis for distinguishing weeds for spot spraying. Transactions of the 
ASABE 41(4), 1189–1197 (1998) 

18. Ishak, A.J., Hussain, A., Mustafa, M.M.: Weed image classification using Gabor wavelet 
and gradient field distribution. Computers and Electronics in Agriculture 66, 53–61 (2009) 

19. Hemming, J., Rath, T.: Precision agriculture: computer-vision-based weed identification 
under field conditions using controlled lighting. Journal of Agricultural Engineering 
Research 78(3), 233–243 (2001) 

20. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing 
for crop/weed discrimination in maize fields. Comput. Electron. Agr. 75, 337–346 (2011) 

21. Burks, T.F., Shearer, S.A., Heath, J.R., Donohue, K.D.: Evaluation of Neural-network 
Classifiers for Weed Species Discrimination. Biosystems Engineering 91(3), 293–304 
(2005) 

22. Panneton, B., Guillaume, S., Samson, G., Roger, J.: Discrimination of Corn from 
Monocotyledonous Weeds with Ultraviolet (UV) Induced Fluorescence. Applied 
Spectroscopy 65(1), 10–19 (2011) 

23. Camargo Neto, J., Meyer, G.E.: Crop species identification using machine vision of 
computer extracted individual leaves. In: Chen, Y.R., Meyer, G.E., Tu, S. (eds.) Optical 
Sensors and Sensing Systems for Natural Resources and Food Safety and Quality, Proc. 
SPIE, Bellingham WA, vol. 5996, pp. 64–74 (2005) 

24. Sainz-Costa, N., Ribeiro, A., Andujar, D., Dorado, J.: Optimización evolutiva para la 
construcción de un método de estimación de porcentajes de cobertura de gramíneas y 
dicotiledóneas. In: Lozano, J.A., Gámez, J.A., Moreno Pérez, J.A. (eds.) Proceedings of 
the Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011), 
vol. 1 (2011) 

25. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Information 
Theory. 8, 179–187 (1962) 

26. Mercimek, M., Gulez, K., Mumcu, T.K.: Real object recognition using moment in-
variants. Sadhana - Springer India 30(6), 765–775 (2005) 

27. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recognition. 
John Wiley & Sons, Ltd. (2009) 

28. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M., Montes, F.: A Featured-
Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest 
Environments. Sensors 9(12), 9468–9492 (2009) 

29. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004) 
30. Klaus, A., Sormann, M., Karner, K.: Segmented-Based Stereo Matching Using Belief 

Propagation and Self-Adapting Dissimilarity Measure. In: Proc. of 18th Int. Conference on 
Pattern Recognition, vol. 3, pp. 15–18 (2006) 

31. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: A Stereovision Matching 
Strategy for Images Captured with Fish-Eye Lenses in Forest Environments. 
Sensors 11(2), 1756–1783 (2011) 

32. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., Cruz, J.M.: Segmentation and 
stereoscopic correspondence in images obtained with omnidirectional projection for forest 
environments. In: Torreao, J.R.A. (ed.) Stereo Vision, ch. 3, pp. 41–56. In-Tech (2011) 



480 P.J. Herrera, J. Dorado, and Á. Ribeiro 

33. Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: 
Analysis of natural images processing for the extraction of agricultural elements. Image 
Vision Computing 28, 138–149 (2010) 

34. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I–II. Addison-Wesley, 
Reading (1992) 

35. Herrera, P.J., Pajares, G., Guijarro, M., Ruz, J.J., De la Cruz, J.M.: Combination of 
attributes in stereovision matching for fish-eye lenses in forest analysis. In: Blanc-Talon, 
J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 
277–287. Springer, Heidelberg (2009) 


	A New Combined Strategy for Discrimination between Types of Weed
	1 Introduction
	2 Proposed Approach
	3 Results
	4 Conclusions
	References




