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We discuss, within the simplified context provided by the polymeric harmonic oscillator, a construction
leading to a separable Hilbert space that preserves some of the most important features of the spectrum of
the Hamiltonian operator. This construction may be applied to other polymer quantum mechanical systems,
including those of loop quantum cosmology, and is likely generalizable to certain formulations of full loop
quantum gravity. It is helpful to sidestep some of the physically relevant issues that appear in that context,
in particular those related to superselection and the definition of suitable ensembles for the statistical
mechanics of these types of systems.
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I. INTRODUCTION AND
PRELIMINARY REMARKS

Canonical loop quantum gravity [1,2] (LQG) is at
present one of the most advanced approaches to address
the quantization of general relativity. Recent progress in
this field, involving in particular the application of depar-
ametrization techniques with respect to the matter frames
[3–5], has brought LQG to a level which makes it possible
to probe its dynamical predictions [5].
Despite this progress, some critical problems of the

theory remain open. One of the principal issues is the
construction of suitable Hilbert space(s), which is essential
to extract dynamical predictions out of the models. The
standard constructions lead to an orthonormal basis labeled
by spin-networks—graphs embedded in three-dimensional
differential manifold with colored edges and vertices [1].
Unfortunately, the noncountable number of spin networks
renders the Hilbert space nonseparable. This feature creates
some difficulties in the development of the formalism both
to define unitary evolution and to build suitable statistical
ensembles. This problem arises both at the level of the full
theory and in its symmetry reduced quantum-mechanical
versions [6], in particular the ones applied in loop quantum
cosmology (LQC) [7].
This issue has been substantially addressed in the LQG

literature over the years (see for example the review [8]).
The attempts on solving it start with a proposal presented
by Zapata in [9] where a method that avoids the non-
separability of the LQG Hilbert space by using piecewise

linear graphs in a piecewise linear manifold is proposed.
Other ideas in the same direction appear in [10] where, as a
cure to nonseparability, the authors extended the diffeo-
morphism group and, hence, enlarged the group of gauge
transformations by allowing them to act as homeomor-
phisms at spin network nodes.
There is however no consensus about these proposals

within the general community as (i) necessary modifica-
tions to the underlying classical framework deviate too
far from general relativity [8] and (ii) their inclusion
could deprive the theory of certain desirable properties.
In particular it is not known how the proposal of [10] would
mesh with the strong uniqueness theorems [11] about the
representation of the kinematical algebra of basic observ-
ables in LQG or with the absence of a classical counterpart
of the proposed enlarged symmetry group.
The purpose of this article is to present a construction of

the physical Hilbert space used in loop quantization (in
particular in LQC) which avoids the nonseparability issues
while retaining the correct low energy (large scale) behavior
of the resulting framework. The construction is exemplified
in the particular case of the polymer quantum harmonic
oscillator. This particular system is of critical relevance to
inhomogeneous LQC frameworks as the harmonic oscillator
is the main building block of the Fock spaces representing
the inhomogeneity modes [12,13], thus its loop quantization
is a necessary step to go beyond the hybrid quantization
scheme [12,14] (which is the core of almost all the present
treatments of inhomogeneous scenarios in LQC [13,14]) and
implementing the loop quantization to all degrees of freedom
(see for example the construction in [15]).
This particular system (the polymer quantized harmonic

oscillator) has been recently analyzed in [6]. The conclusion
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of that analysis is that the treatments presented up to date in
the literature were insufficient, especially for the applications
listed in the paragraph above. However, no suitable solution
to the problem has been found there. In our present work we
fill this gap, providing the precise construction of a suitable
(separable) Hilbert space. An important consequence of the
analysis presented in this article is the possibility of defining
suitable statistical ensembles appropriate for the discussion
of thermodynamical problems for these kinds of systems.
The construction that we provide here is based on the use

of certain “foliations” of the original nonseparable Hilbert
spaces by means of separable subspaces and a natural
Lebesgue measure on it. This construction follows from
observations of [16] and was successfully applied in [17] to
the case of the polymer-quantized scalar field.
We will illustrate the procedure that we suggest in the

case of the harmonic oscillator quantized via polymer
techniques as specified in [6].

II. POLYMERIC QUANTUM HARMONIC
OSCILLATOR

Let us start by briefly recalling the quantization pro-
cedure and the features of the polymer harmonic oscillator
leading to the problems indicated in [6].
The main properties of the system are as follows:
(1) The Hilbert space is the (nonseparable) space of

square integrable functions on the Bohr compacti-
fication of the real line H ¼ L2ðRBohr; dμÞ.

(2) The spectrum of the Hamiltonian features a (con-
tinuous) band structure; however, it remains a
pure point spectrum.

Classically, the time evolution of the harmonic oscillator
is generated by the Hamiltonian

Hðq; pÞ ¼ ℏ2

2ml2
p2 þml2ω2

2
q2; ð2:1Þ

where the canonical variables p, q are dimensionless, while
l and ω are the oscillator’s characteristic length and
frequency respectively.
In loop quantization it is impossible to promote p and q

to operators simultaneously. Among the infinite number of
nonequivalent representations of the Weyl algebra in non-
separable Hilbert spaces there are two natural nonequiva-
lent choices in the context of quantum cosmology: the
position representation where the operator q̂ is well
defined, and the momentum one, where p̂ is well defined.
In both representations the remaining variable has to be
approximated (“regularized”) in terms of other Weyl
algebra elements and then promoted to be an operator.
To focus our attention we choose the position repre-

sentation. A similar procedure works for the momentum
one. In order to regularize the momentum we approximate
it by using VðqÞ ¼ e−ipq. Thus the quantum Hamiltonian
takes the form

Ĥ ¼ ℏ2

2mð2q0lÞ2
ð2I − V̂ð2q0Þ − V̂ð−2q0ÞÞ þ

ml2ω2

2
q̂2;

ð2:2Þ
where q0 is a regularization constant. The quantity q0l can
be interpreted as a polymer scale.
The above Hamiltonian, when acting on the physical

states represented respectively by the wave function
~Ψ ∈ L2ðRBohr; dμÞ, or in terms of its Fourier-Bohr trans-
form Ψ ∈ l2ðRÞ [where l2ðRÞ is the space of square
summable functions on R] can be written as a difference
operator in q and a differential one in p

½ĤΨ�ðqÞ ¼ ℏ2

8mq20
ð2ΨðqÞ −Ψðqþ 2q0Þ −Ψðq − 2q0ÞÞ

þml2ω2

2
q2ΨðqÞ; ð2:3aÞ

½Ĥ ~Ψ�ðpÞ ¼ −
ml2ω2

2
~Ψ00ðpÞ þ ℏ2

2mðq0lÞ2
sin2ðq0pÞ ~ΨðpÞ:

ð2:3bÞ

The eigenvalue problem Ĥ ~Ψ ¼ E ~Ψ defined by (2.3b) takes
the form of the Mathieu equation and the differential
symbols appearing in the Hamiltonian have the same form
of the ones describing a particle in periodic potential—a case
well studied in the literature (see [18] for relevant math-
ematical details). We have to remember, however, that here
the Hilbert space is different (in particular nonseparable).
If we consider the form of the Hamiltonian specified via

(2.3a) it is a difference operator coupling the points
separated by 2q0. One can thus divide the domain of
ΨðqÞ onto the set of uniform lattices—sets preserved by the
action of Ĥ

R ¼ ⋃
ϵ∈½0;1Þ

Lϵ; Lϵ ≔ 2q0ðϵþ ZÞ: ð2:4Þ

This observation has led to the solution presented in [19].
Since the lattices are preserved by the time evolution we
can treat the subspaces Hϵ spanned by the cutoff of the
wave function support to a single Lϵ as “superselection”
sectors. The customary way to proceed in such case is to
select the single sector (represented by a single value of ϵ)
and work just with it. This approach has been applied, for
example, in LQC [20,21].
Under this choice, the Hilbert space H gets restricted

to a subspace Hϵ defined by the projection H∋ ~Ψ ↦ ~Ψϵ ¼
~ΨjLϵ

∈ Hϵ. The subspace Hϵ is then a space of quasiperi-
odic functions of p satisfying

~Ψϵðpþ π=qoÞ ¼ e−2πiϵ ~ΨϵðpÞ: ð2:5Þ
Such subspace is homeomorphic to a space of square
integrable functions (in momentum representation) on a
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unit circle L2ðS1; dpÞ with the gluing (boundary) conditions
depending on ϵ. In particular, the case ϵ ¼ 0 corresponds to
periodic conditions, whereas ϵ ¼ 1=2 corresponds to the
antiperiodic ones. The spectrum S of the Hamiltonian Ĥ is a
point spectrum and can be written as the union S ¼ ∪ϵSϵ.
On the other hand, the reasoning presented in Sec. 4 of

[17] and references therein shows that—in the context of
LQC—a similar approach based on working within the
subspaces Sϵ may be problematic because the dynamics
may connect different sectors. To avoid this kind of
problem one should take into account all the sectors. In
the case of the polymer harmonic oscillator this means that
all the points of the bands describing the spectrum must be
considered as for the particle in periodic potential in
standard (Schrödinger) quantization. Notice, however, that
the spectrum remains a pure point one despite having an
uncountable number of elements. This immediately implies
the nonseparability of the physical Hilbert space (con-
structed through the spectral decomposition of Ĥ) which is
not a surprise as it should be equivalent to a nonseparable
L2ðRBohr; dμÞ. This severely hinders the application of this
construction to analyze the physical properties of the loop
quantum harmonic oscillator, in particular the statistical
mechanics of the system as explained in detail in [6].

III. INTEGRAL HILBERT STRUCTURE

Nonseparability is a source of problems for some
systems of physical interest related to LQC, in particular
in the polymer quantization of the scalar field as discussed
in [17]. There, the time dependence of the “lattice gap”
causes a mixing of the putative “superselection” sectors
during the time evolution, thus preventing one from work-
ing with just one superselected subspace. This feature
seems to be a generic one in LQC models beyond the
isotropic ones. On the other hand, in the case of the flat
anisotropic Bianchi I universe with massless scalar field
one can show, using the spectral properties of the evolution
operator for the model, that the single sector Hilbert spaces
do not admit a semiclassical sector [22].
In the context of LQC a possible solution to the problem

has been presented in Appendix C of [23]. There the action
of the evolution operator (playing the role of a
Hamiltonian) is introduced via an action of its adjoint on
a (bigger) dual to the original Hilbert space. Next one
projects onto a single superselection space (this is known as
the shadow states technique [24]). Finally the dual space is
equipped with a postulated inner product defined by a
Schrödinger quantization.

A. The construction

Here we present a systematic construction of a separable
Hilbert space for LQC in terms of an integral of super-
selection sector Hilbert spaces: “H̄ ¼ R

½0;1ÞHϵdϵ” with the
induced scalar product making it separable. The specific

construction is inspired by the Hilbert space structures
observed in LQC in the presence of a positive cosmological
constant: more precisely the dependence of these structures
on the lapse function [16]. The goal of that work was to
construct the physical Hilbert space generated by the
Hamiltonian constraint (isotropic and flat Friedmann-
Lemaître-Robertson-Walker background with a scalar field
source) through group averaging for various choices of
the lapse N. Two examples, leading to distinct results, were
considered: (i) N ¼ a3 (where a is a scale factor) and
(ii) N ¼ 1. In (i) the Hamiltonian constraint admits a
1-parameter family of self-adjoint extensions. Each exten-
sion has a discrete spectrum consisting of isolated points. In
(ii) the Hamiltonian constraint admits a unique extension—
its spectrum is purely continuous (well-defined Lebesgue
measure). As a set, the spectrum is the union of the spectra
of all the extensions found in the case (i).
By comparing the inner product structures in the Hilbert

space H̄ constructed in the case N ¼ 1 with the ones that
appear in each extension Hβ of the case N ¼ a3 we notice
that

H̄ ¼
Z

HβdσðβÞ; hΨjχiH̄ ¼
Z

hΨβjχβiHβ
dσðβÞ;

ð3:1Þ

where ΨβðωÞ ≔ ΨðωÞjω2∈SpðHÞ and the measure dσ is
induced by the Lebesgue measure on the spectrum of
the constraint for N ¼ 1.
Following the previous observation, and noticing that

the set of the ϵ-lattice labels is Lebesgue measurable, we
suggest one to introduce in LQC an analogous structure in
terms of the superselection sectors Sϵ, by defining

H̄ ≔
Z

½0;1Þ
Hϵdϵ; hΨjχiH̄ ¼

Z

½0;1Þ
hΨϵjχϵiHϵ

dϵ; ð3:2Þ

where Ψϵ ¼ ΨjLϵ
. Notice that the measure dϵ can be

replaced by fðϵÞdϵ (that takes into account the density
of states in a suitable way) giving a unitarily equivalent
Hilbert space structure.
In the particular case of the polymeric harmonic oscil-

lator the resulting Hilbert space H̄ is mathematically
equivalent to the one appearing in the Schrödinger quan-
tization of a particle in a periodic potential. The main
difference is that we have the standard band structure and
the spectrum of H is purely continuous. As a consequence
all the standard quantum mechanical tools can be used and,
in particular, the quantum statistical mechanics of the
system can be studied by following the usual approach.
It is worth noting that in the Schrödinger quantization of

the particle in a periodic potential present in (2.3b) the
Hilbert space admits a natural fiber bundle decomposition
[18], the fibers of which are exactly the spaces Hϵ specified
earlier. In the polymer quantization considered here the fiber
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structure is not present. Our construction can be seen as a
recomposition of the (original) Hilbert space so that Hϵ are
its fibers, using the natural Lebesgue measure on the space of
superselection sector labels. The construction can be applied
directly to existing models of isotropic (FRW) universe in
LQC, as the structure of superselection sectors (in particular
the topology of the space of sectors) is the same as in
presented example. For example when applied to the flat
FRW universe with massless scalar field it gives a result
equivalent to construction specified in Appendix C of [23].

B. Comparison with previous constructions

A word of caution is necessary here. While in order to
deal with the mixing of lattices by time evolution described
in [17] it was convenient to introduce a separable Hilbert
space as above, it is not clear why we cannot just consider a
single superselection sector in the context of the polymer
harmonic oscillator. This question is of particular relevance
for LQC as the latter approach is, precisely, the one that
has been followed there. Technically, as long as the
“polymerization scale” q0 is constant in time, restricting
the quantum dynamics to a single superselection sector is
both correct and consistent. The situation changes if we
allow q0 to be time dependent. In such a case, similarly to
what happens in [17], one expects to have the phenomenon
of “sector mixing” and then something should be done in
order to avoid the problems associated with nonseparabil-
ity, for instance, using the construction described before.
This observation may be relevant for the loop quantization
of the inhomogeneity modes in LQC as an explicit time
dependence naturally arises there [14]. If one wants to have
a uniform treatment for all the relevant cases, one should
also follow the same approach when the polymerization
scale is a constant. One has to understand, however, how
the different choices can affect the physical results. In the
studies of isotropic universes in LQC the dependence on
the choice of the superselection sector has been system-
atically analyzed (see for example [21,25]). The differences
in exact physical predictions appeared to be minor (con-
fined to dispersion differences in the scattering picture [26]
and the fine details of the near-bounce dynamics [27]),
especially when appropriate quantization prescriptions
were chosen [27]. Furthermore, for models with non-
compact spatial slices the discrepancies vanished in the
infrared regulator removal limit (see the discussion in [28]),
whereas for the compact ones the differences became
relevant only for “very quantum,” physically uninteresting
universes [29]. Since the sectors (the “fibers” in our
approach) are orthogonal to each other, these features
transfer directly to the theory arising from the construction
proposed here. Thus, at least in the case of models studied
so far, one can safely work with just one superselection
sector without introducing significant errors in physical
predictions as long as that choice does not violate the
consistency of the model.

IV. GENERALIZATIONS AND OUTLOOK

The construction presented here can be applied in a
straightforward way to more general models within LQC
featuring quasiglobal degrees of freedom. This is so
because in many such models (see for example [30]) there
is a natural division into a family of separable super-
selection sectors Hλ with λ belonging to a set that can be
equipped with the Lebesgue measure. However, the present
construction may be relevant not only for simplified
cosmological models but also for full LQG. Finding a
suitable separable space is still an open problem. Our
construction appears to be applicable at least in some of the
approaches to the theory featuring spin network graphs of
fixed topology, a feature present for example in algebraic
quantum gravity [31].
In the standard formulation of LQG the Hilbert spaces

are spanned by states supported on (piecewise analytic)
graphs embedded in a differential manifold. The disjoint
graphs are orthogonal, which together with (at least)
continuum number of the graphs leads directly to the
conclusion, that any such Hilbert space is nonseparable.
If the action of the Hamiltonian constraint (or suitable
deparametrized Hamiltonian) is graph preserving the
functions supported on the particular single graph can be
treated as a superselection sector (provided of course that
all the observables used in the description are also graph
preserving operators). Given that, one can construct the
integral Hilbert space applying directly the technique
introduced in this article, that is build the separable
Hilbert space of which the distinguished superselection
sectors are single fibers. However for this step it is essential
to equip the family of the superselection sectors with a
Lebesgue measure. While at present there is no indication
of any significant problem with defining such measure, this
step has not been performed yet. One promising direction
in this regard is to use the natural measures of the
embedding manifold. While in principle it can be seen
as a breaking of the diffeomorphism invariance, the integral
Hilbert spaces resulting from distinct embeddings (diffeo-
morphism gauge fixings) will be equivalent.
The presented technique may also be in principle appli-

cable to the original (pioneering) formulation of LQG [32]
where the Hamiltonian constraint operator is graph chang-
ing [33]. In that construction the Hamiltonian constraint
operator always acts by adding new triangular (planar) loops
and the new nodes are always three valent. This implies the
existence of a certain “core” of the graph (edges connected to
nodes of higher valence) which is preserved. These “cores”
can then be used to define the equivalent of superselection
sectors from graph preserving formulations. These “single
sector” subspaces would be however still nonseparable and
thus would require introduction of the integral structure on
each sector separately. Building such “internal” integral
structure would require in turn the detailed analysis on
how precisely the construction of the Hamiltonian constraint

BRIEF REPORTS PHYSICAL REVIEW D 90, 067505 (2014)

067505-4



specified above modifies the graph and is expected to be
much more difficult than the construction in graph preserv-
ing formulations.
Apart from possible generalizations, it is important to

point out one relevant feature of the construction introduced
here. In principle, instead of following the loop quantiza-
tion program strictly, one could regularize the Hamiltonian
at the classical level (by introducing by hand a periodic
potential) and quantize it in the standard Schrödinger
representation. The final result would be identical to the
one resulting from the point of view presented here.
Whether such approach should be taken depends of the
goals of the program. The alternative mentioned here gives
rise to a consistent treatment deviating from LQG more
than the standard polymeric quantization but still incorpo-
rating some of its central features. While without a direct
reference to loop quantization the regularization of the
Hamiltonian would not be justified, the present approach
may be interesting at a phenomenological level. When

exploring the consequences of the polymer quantization no
such shortcut should be permitted and the precise con-
struction of the separable Hilbert space must be provided.
Skipping this step may lead to an incorrect description of
the dynamical sector of the theory, as discussed in [17].
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