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Abstract: A lipidomic study was developed in a human placental choriocarcinoma cell line (JEG-3) exposed to tributyltin (TBT) and to a mixture of perfluorinated chemicals (PFCs). The method was based on the application of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to data sets obtained by ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-TOF-MS) using an untargeted approach. Lipids from exposed JEG-3 cells were solid-liquid extracted and analyzed by UHPLC-TOF-MS in full scan mode, together with control samples. Raw UHPLC-TOF-MS data of the different cell samples were subdivided into 20 distinct chromatographic windows and each window was further organized in a column-wise augmented data matrix, where data from every sample was in an individual data matrix. Then, the 20 new augmented data matrices were modeled by MCR-ALS. A total number of 86 components were resolved and a statistical comparative study of their elution profiles showed distinct responses for the lipids of exposed versus control cells, evidencing a lipidome disruption attributed to the presence of the xenobiotics. Results from One-Way ANOVA followed by a Multiple Comparisons test and from Discriminant Partial Least Squares (PLS-DA) analysis were compared as usual strategies for the determination of potential biomarkers. Identification of 24 out of the 33 proposed biomarkers contributed to the better understanding of the effects of PFCs and TBT in the lipidome of human placental cells. Overall, this study proposes an innovative untargeted LC-MS MCR-ALS approach valid for -omic sciences such as lipidomics.
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1. Introduction
Lipids play essential roles in energy production and storage, structure and signaling in the human body [1,2]. Information about lipids and their individual classes can aid in understanding the pathogenesis of many disease states. Among others, obesity is characterized by a series of lipid disturbances [3], producing far-ranging effects on human health. Despite generally accepted causes for obesity are the consumption of calorie-dense food and diminished physical activity, the environmental obesogen hypothesis is raising acceptance in recent years. This hypothesis proposes that chemical exposure to molecules called “obesogens” during critical developmental stages influences subsequent adipogenesis, lipid balance and obesity [4]. Tributyltin (TBT) is a well-known endocrine disrupter previously used as a biocide in anti-fouling paints. TBT is a high-affinity agonist of the retinoic X receptor (RXR) and peroxisome proliferator activated receptor gamma (PPARɣ), which are key components in adipogenesis and the function of adipocytes. TBT exposure has reported to promote inappropriate activation of RXR-PPARɣ, causing a direct alteration of adipose tissue homeostasis [4]. Perfluorinated chemicals (PFCs) are potential obesogens used for many years in numerous industrial products, such as Teflon and have emerged as global environmental pollutants [5]. Among the variety of PFCs, perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the most deeply investigated compounds in the last decades whereas other PFC homologs have been rarely studied. Recently, shorter chain length PFCs have been proposed as safe substitutes for the longer chain length ones, since they are expected to be less bioaccumulative and less toxic [6]. PFCs have been reported to alter lipid levels in some animal species and humans [7,8], but their mechanism of action is still unknown.  
The study of lipids emerges as a complicated area of research due to their structural diversity and the considerable technical challenges associated with their identification within complex samples [9]. “The large-scale analysis of lipid profiles in cells and tissues” [10] was made possible by the dawn of lipidomics [11,12]. Lipidomics is a field that aims at the study of lipids and their interaction with other biochemicals [13]. While lipid-, and metabolome research in general, over past decades was overshadowed by the progress of genomics, recent revived and burgeoning interest in lipids illustrates their critical biological importance [14]. 
Mass spectrometry-based analytical methods come out as powerful strategies for lipidomics since they offer high sensitivity and resolution for the characterization of global lipid profiles in cells or organisms. Moreover, recent advances in mass spectrometry techniques have allowed the screening of many lipid molecular species in parallel [14]. These advances, however, pose a greater challenge for researchers to handle massive amounts of information-rich MS data from modern analytical instruments in order to understand the complexity of lipid systems. The application of modern chemometric methods to these complex megavariate data systems is opening new ways in bio and environmental sciences, facilitating a shift from the concept of studying one chemical compound or process at a single experiment. Thus, there is an urgent need to improve and automate all the steps involved in analyzing the data generated in -omic studies such as lipidomics by means of chemometric and multivariate data analysis methods. 
Chemometrics is a present well established field in chemical data analysis and has recently been proven to be valuable in the analysis of -omic data [15-17]. There is a considerable number of techniques especially suited for the study of complex megavariate –omic data sets, meant for exploratory or modelling purposes, such as principal component analysis (PCA), partial least squares (PLS) and its orthogonal variant (OPLS). Moreover, other less explored chemometric methodologies in –omic studies, such as Multivariate Curve Resolution (MCR) methods evolve as powerful tools to properly resolve the profiling problem in -omic data sets [17,18]. In addition, chemometric methods can be used for biomarker detection in the context of finding sample descriptors which show systematic differences between normal and environmentally injured organisms in an untargeted approach. However, in areas of biology and toxicology, chemometric methodologies are still largely overlooked in favor of traditional statistical methods, which are generally focused on targeted evaluation of specific classes of compounds. 
The aim of this study was to elucidate the lipidomic disruption produced in JEG-3 cells exposed to TBT and a mixture of PFCs, using MCR-ALS resolved profiles. Determination of biomarkers was based on the use of a traditional statistical approach, One-Way ANOVA followed by a Multiple Comparisons test, versus the analysis by PLS-DA. The untargeted chemometric strategy presented in this study was designed as a novel alternative to the classical targeted approach generally used in lipidomics.

2. Theory
A brief description of the chemometric and statistical methods used in this study is shown below.
2.1.  Multivariate curve resolution-alternating least squares (MCR-ALS)
Multivariate curve resolution methods [19] are based on the same bilinear decomposition of original data sets used by PCA, but under completely different constraints and with a different goal. The mathematical basis of the bilinear model used by MCR is shown in Equation 1:
		D= CST + E	(1)
In this equation, matrix D (I x J) represents the data output of a second-order instrument. In the case of LC-MS data, D matrix contains the MS spectra at all retention times (i=1,…I) in its rows, and the chromatograms at all spectra m/z channels (j=1,…J) in its columns. This matrix is decomposed in the product of two small factor matrices, C and ST. The C (I x N) matrix contains column vectors which correspond to the elution profiles of the N (n=1,…N) pure components of matrix D. In ST (N x J) matrix, row vectors correspond to the spectra of the N pure components. The part of D that is not explained by the model forms the residual matrix, E (I x J).
MCR-ALS methods assume that the variation measured in all samples in the original data set can be described by a combination of a small number of chemically meaningful profiles. In the case of LC-MS data sets, information of the data table can be reproduced by the combination of a small number of pure mass spectra (row profiles in the ST matrix) weighted by the concentration of each of them along the elution direction (the related chromatographic elution peaks, column profiles in C). 
Column-wise augmented data matrices. In second order data, MCR-ALS can be implemented through different sample types simultaneously, conforming column-wise augmented data matrices (Daug) containing distinct matrices correlated to different processes attached one at the top of each other. Thus, spectral direction is equal for all of them and the data matrix length is augmented in the process direction. Resolved pure mass spectra are equivalent to all experiments (ST) whereas concentration profiles can differ from experiment to experiment, conforming Caug, as shown in Equation 2:

 (
Process direction
)                                                           (2)
In the MCR-ALS method, bilinear models expressed by Equation 1 (single data matrix case) or Equation 2 (augmented data matrix) are solved by means of an Alternating Least Squares optimization under constraints (see [19]). In the cases under study in this work, the constraints applied during the ALS optimization were non-negativity for concentration (elution), C, and spectra, ST, profiles, and normalization for the later. See below in sections 3.5 and 4.2 a more detailed description of the adaptation of the MCR-ALS to the analysis of the lipidomic data of this work. One of the main advantages of MCR-ALS analysis of several data matrices is that the alignment of chromatograms is not necessary since single spectrum dimensions concide among matrices because are invariant for all runs [20].
 In summary, MCR-ALS procedure was applied in this work to acquire the resolved elution and mass spectral profiles corresponding to the lipidic components extracted from the distinct sample types related to the distinct stress experiments.
The quality of MCR-ALS models was measured evaluating the lack of fit, which is the difference among the input data Daug and the data reproduced from the product obtained by MCR-ALS (Caug ST) and the percent of explained variance (R2), defined in Equation 3:

                                                                                                (3)


where i= 1,…,I and j = 1,…, J, is an element of the experimental matrix D¸  is the element of the MCR-ALS reproduced matrix D* and I x J is the total number of elements in the data set.

2.2. Partial least squares-discriminant analysis (PLS-DA)
Partial least squares (PLS) was first designed as a tool for statistical regression but later modified for classification purposes. Barker and Rayens [21] showed that PLS-DA corresponds to the inverse-least-squares approach to linear discriminant analysis and produces essentially the same results but with noise reduction and variable selection advantages of PLS [22]. In fact, PLS-DA is oriented to discriminate among different groups of samples by partitioning the hyperspace in a number of regions equal than the number of groups. Thus, if a sample is represented in the region of the space corresponding to a particular category, it is classified as belonging to that category.
PLS-DA is essentially based on PLS1 and PLS2 algorithms which search for latent variables with a maximum covariance with the Y-variables. The main difference respect to these algorithms is related to the dependent variables, since these represent qualitative (and not quantitative) values, when dealing with classification. For more details about PLS-DA analysis see [21].

2.3. Statistical Tests
One-Way ANOVA. One-Way ANOVA is a statistical test oriented to determine whether data from distinct groups have a common mean. This test is a simple special case of a linear model where the input data is a matrix of observations yij in which columns represent distinct groups and rows the different samples. This matrix is decomposed into matrix a.j, whose columns represent group means and are equal for all rows, “dot j” notation, and a matrix of random disturbances ɛij (Equation 4). The model assumes that the columns of y are a constant plus a random disturbance and elucidates the similarity among these constants.
	yij= a.j + ɛij	(4)
One-Way ANOVA returns a table with information of sums of squares, degrees of freedom, mean squares and an F statistic and its P value. The F statistic is used as a hypothesis test to find out if column means of matrix yij are the same and the P value from this test is returned. The P value returned by One-Way ANOVA depends on assumptions about the random disturbances ɛij in the model equation. For the P value to be correct, these disturbances need to be independent, normally distributed, and have a constant variance. A P value lower than 0.05 indicates that means of the groups are significantly different at this significance level (i.e. only in 5% of cases or lower such a difference could be caused randomly). 
The application of ANOVA analysis requires data to accomplish some assumptions such as “normality of residuals” and “homogeneity of variance between groups”. In this study, a table of residuals was constructed and studied to ensure they varied randomly so that the “normality” assumption was fulfilled. In addition, variances among groups were compared to ensure they were homogeneous. Thus, in the present study no data transformation was required to meet the underlying assumptions of ANOVA.

Multiple Comparisons test. Comparative studies often require the contrast among various groups of samples, such as pairwise comparisons among group means. One possible strategy to perform such multiple comparisons is to assess each comparison separately by a suitable procedure (a hypothesis test or confidence estimate) at a level appropriate for that single interference. This is known as per-comparison or separate inferences approach [23]. An example of this approach is the detection of differences among the means of k≥3 treatments, performing separating  pairwise two-sided t-tests, each at level α appropriate for a single test. Such multiple t-tests (without a preliminary F-test of the overall homogeneity hypothesis H0), despite used so frequently [24], do not cope with the multiplicity or selection effect [25]. This effect is related to the fact that in a multiple t-test any significant pairwise difference also implies overall significance, that is, rejection of H0. For instance, in the example presented above of the  pairwise t-tests applied separately each at level α, the probability of concluding overall significance, when in fact H0 is true, can be well in excess of α and close to 1 for sufficiently large k. The probability of concluding any false pairwise significance will equal α when exactly one pairwise null hypothesis is true, and will exceed α when two or more pairwise null hypothesis are true. Thus, with multiple t-tests, spurious overall and detailed (pairwise) significant results are obtained more frequently than is indicated by the per-comparison level α. These are the negative consequences defined by the called multiplicity or selection effect. 
In this way, Multiple Comparisons Procedures (MCPs) are statistical procedures designed to considere and properly control the multiplicity effect through some combined or joint measure of erroneous inferences [23]. In this study, a Multiple Comparisons test from the Statistics Toolbox of MATLAB (The MathWorks Inc., Natick, MA, USA) has been used to specifically determine which pairs of means compared among the treatments are different. 
This test uses as input the stats output from ANOVA. The first output from Multcompare has one row for each pair of groups compared, with an estimate of the difference in group means and a confidence interval for that group which is 0.05 as default. The second output contains the mean and its standard error for each group. All this information can be computed in a graph which allows a simple visualization of the differences encountered among groups. 
Distinct types of critical values can be used for the multiple comparison procedures, and must be specified before computing them. Among all the possibilities the most common are the turkey-kramer, bonferroni, dunn-sidak, lsd or scheffe. The type of critical value used as default in the MATLAB implementation is the tukey-kramer and is the one used in the present study. Tukey-kramer test [26,27] is based on a formula very similar to that of the t-test but using a studentized range distribution (q). The formula for Tukey's test is the one of Equation 5.
					(5)
where Ya is the larger of the two means being compared, Yb is the smaller of the two means being compared, and SE the standard error of the data in question. This qs value can then be compared to a q value from the studentized range distribution. If the qs value is larger than the qcritical value obtained from the distribution, the two means are said to be significantly different.
Since the null hypothesis for Tukey's test states that all means being compared are from the same population (i.e. μ1 = μ2 = μ3 = ... = μn), the means should be normally distributed. This gives rise to the normality assumption of Tukey's test. The other assumption of this test is that observations being tested must be independent. 

3. Experimental
3.1. Chemicals and reagents 
Minimum Essential Medium, foetal bovine serum, L-glutamine, sodium pyruvate, nonessential amino acids, penicillin G, streptomycin, PBS and trypsin-EDTA were from Gibco BRL Life Technologies (Paisley, Scotland, UK). Tributyltin (TBT), perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA) and perfluorohexanesulfonate (PFHxS) were purchased from Sigma Aldrich (Steinheim, Germany) and perfluorobutanesulfonate (PFBS) and perfluorooctanesulfonate (PFOS) were obtained from Fluka (Austria). Stock standard solutions containing the mixture of the eight PFCs were prepared in ethanol and the stock solution of TBT was prepared in dimethyl sulfoxide (DMSO). These solutions were stored at -20 oC. HPLC grade water, methanol (> 99.8%) and acetonitrile (> 99.8%) were purchased from Merck (Darmstadt, Germany). Chloroform was supplied by Carlo-Erba (Peypin, France) and butylated hydroxytoluene (BHT) by Sigma Aldrich (St.Louis, MO, USA). 

3.2. Instrumentation
LC separation of lipids was carried out with an Acquity UHPLC system (Waters, USA) coupled to a Waters/ LCT Premier XE time-of-flight (TOF) analyzer. The analytical separation was performed with an Acquity UPLC BEH C8 column (1.7 µm particle size, 100 mm x 2.1 mm, Waters, Ireland). A positive ESI interface was used to detect the compounds in the LC column effluent. The chromatographic conditions and MS parameters used were the ones reported in previous studies [28,29].

3.3. Sample preparation and experimental design
Cell culture. JEG-3 cells derived from a placental carcinoma in humans were obtained from American Type Culture Collection (ATCC HTB-36, passage 127). They were grown in Eagle’s Minimum Essential Medium supplemented with 5% foetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 1.5 g/L sodium bicarbonate and 50 U/mL penicillin G/ 50 g/mL streptomycin in a humidified incubator with 5% CO2 at 37ºC. Cells were routinely cultured in 75 cm2 polystyrene flasks. When 90% confluence was reached, cells were dissociated with 0.25% (w/v) trypsin and 0.9 mM EDTA for subculturing and experiments. Experiments were carried out on confluent cell monolayers [28].

Cell exposure to PFCs and TBT. Three different cell stress treatments were designed in order to study the effects of TBT and two distinct concentrations of a mixture of PFCs, separately, in the lipidome of JEG-3 cells. Treatment A consisted in the addition of a stock solution containing the mixture of the eight PFCs (PFBA, PFHxA, PFOA, PFNA, PFDoA, PFBS, PFHxS and PFOS) so that the final concentration of each PFC in cells was 0.6 µM. Treatment B consisted in the addition of a stock solution containing the same mixture of the eight PFCs at a final concentration of 6 µM each. Treatment C was based on the addition of a stock solution of TBT at a final concentration of 0.1 µM. The selected concentrations were nontoxic for JEG-3 cells, as shown in a previous study [28] and were similar to the ones reported in a study carried out in occupationally exposed workers [30]. Control samples consisted of cells exposed to 0.4% ethanol. In all cases, addition of xenobiotics was done in triplicate so that a total of 12 samples were obtained, grouped in 4 classes (treatments A, B, C and controls). 
As shown in one of the images of Figure 1, cells were seeded in 6-well plates at a rate of 0.67·106 cells per well and allowed to attach overnight in an incubator at 37 ºC, 5% CO2. For the exposure to the xenobiotics, 6 µL of a 0.02 mM stock solution of TBT or 6 µL of 0.1 and 1 mM stock solutions containing the eight PFCs of study. After 24 h of exposure, the medium was aspirated and cells were washed with PBS, trypsinized and centrifuged at 5,400 g for 10 min. The supernatant was aspirated and cells were stored at -80 ºC until analysis [28]. 
Extraction step and UHPLC-TOF-MS analysis. Lipids were extracted from JEG-3 cells with similar extraction conditions of a previous study [31]. To the cell pellets, 540 μL of a methanol: chloroform (1:2, v/v) solution containing 0.01% of butylated hydroxytoluene (BHT) were added. Samples were shaken with a vortex mixer (1 min) and after 30 min, extracted in an ultrasonic bath for 5 min at room temperature (2 times). Between each period of 5 min, samples were thoroughly mixed. Afterwards, samples were centrifuged at 13000 rpm for 5 min. The supernatant was transferred to a new micro vial, evaporated to dryness, reconstituted with 160 µL of acetonitrile and stored in an argon atmosphere. 
The chromatographic separation was that of a previous study, using the instrumentation previously described [29].

3.4. Peak assignment and identification of lipids
Positive identification of lipids was based on the accurate mass measurement with an error < 5 ppm using high resolution TOF and its relative LC retention times, compared to that of some standards (±2) used in a previous study, analyzed under the same chromatographic conditions [32]. In addition, a homemade database generated in a previous study [29], working under the same LC-MS conditions, was also used to enable the identification of lipid species. 

3.5. Data sets arrangement and their multivariate analysis by MCR-ALS
The workflow used in this study was similar to a previous work [17] with some modifications, specially focused on biomarker selection approach.
Once samples were analyzed by UHPLC-TOF-MS in positive ESI and full scan mode, every sample was represented by a 1726 x 7000000 data matrix, being the first number, the  acquired retention times (20 min of chromatographic run with 1726 time points) and the second number, the detected m/z values (300-1000 amu with 0.0001 of resolution). These data files were stored in raw formats by the Masslynx Software and they were transformed to ASCII by the Databridge function of MassLynxTM V 4.1 software to be further processed with MATLAB. According to this selected data arrangement, the simultaneous analysis of the whole data set (augmented data matrix of Equation 2) from the 12 samples would require 1.16 (12 x 1726 x 7000000 x 8) terabytes of storage, which is not currently feasible for standard laboratory computers. 
Therefore a proper data compression strategy was required, and data matrices in ASCII format from every sample were undergone to a reduction in its dimensionality in order to facilitate MCR-ALS modeling. This reduction was carried out by using a homemade routine which allowed m/z-mode dimension binning compression (grouping mass values into a number of “bins” containing values within a particular mz range covering 1 amu) by ten thousand times its size. Thus, the obtained matrices were reduced to a size of 1726 x 700, so that final mass information obtained from spectra profiles (ST in Equations 1 and 2) of MCR-ALS resolved components was limited to 1 amu resolution. In addition to these matrices, a vector of retention times (1726) and a vector of m/z values were generated (700). Due to the complexity of the data sets (large number of possible components to be resolved by MCR-ALS in the simultaneous analysis of all cell samples) and to hardware limitations, each data matrix was also further reduced in its time-mode dimension by dividing the chromatogram in 20 different time windows. For each time window, a new column-wise augmented data matrix was generated, arranging all the 12 samples one at the top of each other (sample x elution time of the corresponding time window, m/z values). Finally and previous to the MCR-ALS analysis, the intensity scale of all chromatograms was divided by 104 so that data values were scaled to more computationally manageable sizes and facilitated their evaluation and graphical representation and comparison. 
MCR-ALS was applied to the 20 windowed augmented column-wise matrices containing information of the 12 samples simultaneously. The elution profiles were compared against sample classes in other to elucidate the possible effects of the different cell stress treatments. Calculated areas of the MCR-ALS resolved elution profiles of the different components were further used to determine potential biomarkers for lipid disruption by the use of two strategies: One-Way ANOVA followed by a Multiple Comparisons test and a PLS-DA discrimination analysis by the use of VIP-Scores. Then, only for compounds determined as potential biomarkers, information of their ST at low resolution from MCR-ALS analysis was used for their tentative identification. Figure 1 shows a scheme of the steps involved in this study.

3.6. Software
MATLAB 8.1.0 R2013a (The MathWorks Inc., Natick, MA, USA) was used as the development platform for data analysis and visualization. A graphical interface was used to apply MCR-ALS, which additionally provided detailed information about the implementation of this algorithm [33]. Statistics ToolboxTM for MATLAB, PLS Toolbox 7.3.1 (Eigenvector Research Inc., Wenatchee, WA, USA) and homemade routines were used in this work.  Waters/Micromass MassLynxTM V 4.1 software was used for data set conversion from raw into ASCII format and as the formula identification platform through its Elemental Composition tool.

4. Results and discussion
4.1. Reduction of the time-mode dimension
After applying the reduction of the m/z-mode dimensions of original data matrices, time-mode dimensions were also reduced by subdividing chromatograms in 20 different time windows, as previously represented in Figure 1. 
The distinct time windows were established according to the position and shape of chromatographic profiles in the chromatogram, considering regions of peak clusters and avoiding the halving peaks, i.e. trying always to keep the full peak in the window. When time windows are selected avoiding halving peaks, the regions start one right after the end of its previous. For that cases in which it is impossible to avoid the splitting of a peak in two windows, the solution is the overlapping of these consecutive regions. As shown in Figure 2, most of them covered a time interval between 0 and 1 min with the exception of three extensive zones 1, 14 and 20, which contained very little relevant chromatographic peaks. The dimensions of the resulting 20 submatrices are shown in Table 1. 

4.2. MCR-ALS results
MCR-ALS allowed the resolution of multiple coeluted chromatographic peaks generated during the LC-MS analysis of complex lipid samples together with the evaluation of possible xenobiotic effects in the lipidome of cells.
As previously stated in section 3.5, MCR-ALS analysis was performed simultaneously over the 12 samples (control and stressed samples with treatments A, B and C), but considering separately the 20 different chromatographic time windows (Figure 1). Thus, a total number of 20 different column-wise augmented data matrices (Dk,aug where k=1 to 20; Equation 2) were generated, one for each time window, containing in all cases the same number of columns (700 m/z values) and 12 submatrices, with the time-dimension of the individual time windows, which were different in each case. The dimensions of the new 20 column-wise augmented data matrices are also shown in Table 1.
Previous to the MCR-ALS analysis, the number of components explaining a reasonable amount of the total variance of each augmented data matrix at a particular time window was initially estimated throughout SVD algorithm [34], choosing those with a large size (larger than noisy ones). The number of selected components for each augmented data matrix at the different time windows was related to the number of identifiable chromatographic peaks but also considering extra components to explain the background noise. In order to select the optimum number of components, MCR-ALS was first undergone with an initial estimation considering few components and was consecutively repeated increasing this number. After each of these MCR-ALS analyses, the incorporation of a new component was considered appropriate only if a diminution in the lack of fit and an increase in the explained variance were observed. Thus, the addition of an extra component which caused a superior or equal value of lack of fit and a lower variance explained was considered incorrect and the corresponding component was automatically rejected. The number of selected components for each time window in the present study is shown in Table 1. 
 MCR-ALS was then directly applied to the 20 column-wise augmented data matrices (without applying any background correction) and matrices Ck,aug and SkT (where k=1 to 20; Equation 2) were estimated. Initialization of MCR-ALS was performed using estimates of spectra profiles, using those measured experimentally at elution times giving the purest ones (like in the SIMPLISMA algorithm, [35]), and setting the noise level at 10% to avoid the selection of pure noise ones. Distinct constraints were considered during ALS optimization to diminish rotational and intensity ambiguities [24,36,37]. In the present study, non-negativity constraints for both elution and mass spectra profiles and pure mass spectra normalization (spectra equal length) were applied to reduce rotational and intensity ambiguities, respectively. ALS optimization resulted to be fast and reliable due to the high selectivity of MS measurements. Once ALS optimization reached its optimum, the resulting elution profiles were integrated and areas of the resolved peaks were obtained. Thus, areas of all resolved components present in control and exposed samples were estimated for each time window.
The number of the estimated components, the number of resolved peaks in each region, the percentage of the variance explained in each case (see Equation 3) and the assigned numbers of the resolved peaks are summarized in Table 1. As it can be noticed, the number of estimated components was in all cases superior to the number of well resolved components with reliable chromatographic peak shape features, due to other possible signal contributions (such as background instrumental noise or solvent contributions). However, this small additional number of estimated components was required to better build and fit an adequate model where peaks corresponding to chemical compounds could be more properly resolved. Moreover, most of MCR-ALS analysis resulted in a percentage of lack of fit lower than 20% and in a percentage of explained variances higher than 96% with the exception of time window 5, with a lack of fit of 31.6% and an explained variance of 90%, possibly due to the low signal-to-noise ratio of that window, as observed in Figure 2. Addition of extra components did not improve the results in any case.
The total number of MCR-ALS resolved components considering the 20 chromatographic time windows was 86.

4.3. First evaluation of raw LC-MS data and MCR-ALS results
Effects of treatments were first visible when raw UHPLC-TOF-MS chromatograms of distinct sample classes were compared. Figure 3 is a mesh representation of four UHPLC-TOF-MS chromatograms corresponding to a control and 3 lipid samples exposed to the cell stress treatments A, B and C. Chromatographic separation of lipids was the same to the one achieved in  a previous study [29], carried out in the same LC and MS conditions, and is shown in Figure 3 (I).  The more significant change among control and stressed samples was observed in lipids eluting at the final minutes of the chromatogram, expected to correspond to families of diacylglycerols (DAG), triacylglycerols (TAG) and cholesterol esters (CE). Compared to the control (Figure 3 (I)), amount of these lipid species was superior in lipid samples from treatments A and B (Figure 3 (II and III)) and even higher in lipid sample from treatment C (Figure 3 (IV)). 
Moreover, representation of the calculated areas of the 86 MCR-ALS resolved components for the distinct cell stress treatments allowed a detailed observation of the effects produced by the xenobiotics. Area values were stored in one data table containing the information of the 20 chromatographic time windows, conformed by a number of rows equal to the number of studied samples and a number of columns corresponding to all the MCR-ALS resolved components. 
Correlations between cell stress treatments (A, B and C) and areas of the 86 MCR-ALS resolved components is shown in Figures 4A and 4B. In both representations, intense red colors represent high correlations, so this means high amount of lipids produced by the treatments, whereas intense blue colors symbolize low correlations, so this means basal amount of lipids, as in controls. As shown in Figure 4A, when the totality of variables were represented, no significant differentiation among control lipid samples and exposed lipid samples was noticeable. Thus, most of the correlation map was blue-colored, indicating a similar basal lipid abundance among samples, except for an intense  red region between compounds 30 and 40. The high amount of those lipid species impeded the observation of the effects produced by the xenobiotics in the rest of compounds. Thus, when variables starting from 41 to 86 were only considered (Figure 4B), the contrast in lipid abundance among different sample types became more evident, specially in compound 49 and in a major extent in compounds 63, 64, 68 and 69. Interestingly, the observed differences in the latter four compounds were higher in cells exposed to TBT (treatment C, up to 8-fold)  whereas the exposure to the mixture of PFCs produced minor increse in lipid content (treatments A,B, aproximately up to 5-fold). In contrast, no significant effects were noticed in the representation of variables 1 to 29. Thus, the prelimiary study of raw LC-MS data and MCR-ALS results concluded that exposure to xenobiotics caused a change in the lipidome of JEG-3 cells, producing an increase in some lipid areas, mainly attributed to the prensence of TBT (treatment C). 

4.4. Comparison of elution profiles among treatments 
Exhaustive study of the MCR-ALS results was necessary in order to draw significant conclusions of the disruption caused by the xenobiotics. Thus, effects of distinct cell stress treatments were thoroughly studied by a statistical comparison of the calculated areas of the 86 MCR-ALS resolved chromatographic peaks. One-Way ANOVA was applied to these data followed by a Multiple Comparisons test (see section 2.3). A rearrangement of the data output of MCR-ALS calculated areas was necessary previous to the ANOVA test. Thus, calculated areas of resolved MCR-ALS components, which were disposed in a matrix of size number of components x 12 samples, were further rearranged for every component in a 3 x 4 table disposition (sample replicates x sample classes). Figure 5A represents an example of the One-Way ANOVA & Multcompare evaluation of component 40 of chromatographic window 11, in which it is shown that treatment C produces an increment respect to controls whereas no significant effects are derived from treatments A and B. 
The One-Way ANOVA & Multcompare analysis of the 86 MCR-ALS resolved components evidenced that 23 of them showed significant differences (P ˂ 0.05) respect to controls, indicating a disruption caused by the xenobiotics. 
Detailed evaluation of those 23 components evidenced three distinct patterns of disruption. Figures 5B (I, II, and III) show elution profiles of 6 components, grouped in three classes, as an example of the three patterns of disruption observed within the 23 components. In contrast, in Figure 5B IV is represented one component as an example of the 63 remaining components not showing significant differences in the One-Way ANOVA & Multcompare analysis. In each case, elution profiles represented with distinct colors correspond to mean area values of the three replicates of the four sample classes (treatment A, treatment B, treatment C and controls). 
First pattern of disruption explained significant effects produced by the mixture of the eight PFCs at both levels of concentration but no significant consequences derived from TBT exposure (Fig. 5B I). As observed in Figures 5B (I a) and 5B (I b), both doses of exposure of the mixture of PFCs, 0.6 and 6 µM, respectively, produced significant increments in lipid areas of exposed cells compared to controls. However, significant effects of the mixture of PFCs at the lower dose occurred in 3 components (8, 36 and 83) but only in compound 23 at the higher dose. Second pattern of disruption explained changes exclusively caused by the presence of TBT (Fig. 5B II). Exposure to the organotin compound caused an increase or a decrease in some lipid areas of exposed cells respect to controls. In 16 MCR-ALS resolved components (10, 11, 12, 40, 44, 57, 59, 63, 64, 65, 66, 68, 69, 71, 72 and 79), effects of TBT resulted in an increase in lipid areas and in only one case, compound 27, the effects ended in a decrease, Figures 5B (II a) and 5B (II b), respectively. The third pattern of disruption explained few cases in which the effects produced in the lipidome of JEG-3 cells were attributed to the presence of both xenobiotics, the mixture of PFCs and TBT (Fig. 5B III). In compound 20, TBT produced and increase in the lipid area whereas the mixture of PFCs at 6 µM caused a decrease (Fig. 5B (III a)). In contrast, in compound 56, both TBT and the mixture of PFCs at 0.6 µM produced an increase in the lipid area (Fig. 5B (III b)). 
Thus, among the distinct models of disruption, the more common was the one attributed exclusively to the presence of TBT, producing an increment in lipid areas, which occurred in 16 out of the 23 components (Fig. 5B (II a)).  The second model with a higher contribution was the one linked to the effects of the mixture of PFCs at the lower dose (0.6 µM), also causing an increase in lipid areas, which was observed in 3 components (Fig. 5B (II a)). Finally, in all other cases, PFC effects at the higher dose, TBT effects producing a diminution in lipid areas and combined effects of both xenobiotics (Figures 5B (I b), 5B (II b) and 5B III (a and b) respectively), disruption was only noticeable in one MCR-ALS resolved compound each. These results highlighted the important effect of treatment C in the increment of some lipid areas respect to controls and were in accordance to the observed in the first interpretation of raw LC-MS data and MCR-ALS results (see section 4.3).

4.5 Determination of potential biomarkers for lipid disruption
Potential biomarkers for lipid disruption in JEG-3 cells were determined using two distinct strategies. 
First, the same statistical approach used to study the differences produced in elution profiles was utilized. Thus, components showing significant differences in the One-Way ANOVA analysis followed by Multiple Comparisons test were proposed as potential biomarkers. 
As a second approach, a PLS-DA analysis was performed in order to obtain the Variables Importance in Projection (VIP) Scores [27,38,39], which were used to reveal which variables (lipid compounds) had a greatest influence on the discrimination among controls and exposed samples. VIP Scores, defined by Wold [38] as a weighted sum of squares of PLS weights described for each variable which measure the contribution of each predictor variable to the model, is frequently used as a parameter for variable selection [40,41,42]. 
For the PLS-DA analysis, calculated areas from all the MCR-ALS resolved components were compiled in a single data matrix which size was 12 x 86 (samples x components). This data matrix was used in three different approaches of classification, all of them considering two group classes; a) controls and treatment A, b) controls and treatment B and c) controls and treatment C. Prior to PLS-DA model calculation, peak areas were autoscaled to give equal relevance to their possible change due to stressing conditions in control and exposed samples. No outlier samples were detected using leave-one-out cross-validation (small number of samples). Therefore, PLS-DA analysis was applied three times, considering one pair of classes each time, categorizing in class 0 control samples and in class 1 the different samples corresponding to the distinct cell stress treatments. In the three analysis, two components were selected to built the model, explaining a cumulative Y-variance of 97.66%, 99.28% and 96.21%, respectively. 
Table 2 shows a summary of the results obtained from One-Way ANOVA followed by Multiple Comparisons test and the three PLS-DA models. For both approaches, biomarkers are indicated separately for the distinct cell stress treatments (A, B and C). With the One-Way ANOVA-Multiple Comparisons test strategy, potential biomarkers where those  within a statistical significance  level  of 5% (P ˂ 0.05). The total number of identified biomarkers was 23. Comparison of these results with those of the PLS-DA analysis required a pre-adjustment of the VIP Scores threshold value, despite the general criterion for variable selection has been the “greater than one” rule [40]. As observed in Table 2, the number of potential biomarkers proposed by PLS-DA analysis was higher when reducing VIP Scores threshold value. Total number of biomarkers was 39, 21 and 7 for threshold values higher than 1.5, 1.8 and 2, respectively. Thus, conditions at which both approaches resulted in similar number of biomarkers where the second ones, with the VIP Scores threshold value higher than 1.8 units. Figure 6 shows VIPs of the three PLS-DA analysis (A, B and C) for the selected threshold value of 1.8.
When comparing the results of One-Way ANOVA-Multiple Comparisons test and PLS-DA analysis with VIP Scores threshold value ˃ 1.8, the number of coincident biomarkers was high (highlited with a line mark in Table 2). For treatment A, 3 biomarkers coincided, corresponding to compounds 8, 56 and 83. For treatment B, compound 23 was coincident and for treatment C other five biomarkers were common (10, 11, 56, 72 and 79). The combination of the results of both approaches resulted in a total of 8, 10 and 22 biomarkers of lipid disruption for treatments A, B and C, respectively. The sum of these compounds produced a total of 40 biomarkers but since 7 of them were coincident among treatments, final number of biomarkers proposed by the combination of both strategies was 33 (Table 2). 
  Furthermore, the type of effects (upregulation or downregulation) explained by the biomarkers was separately studied for both approaches. In the first statistical approach, the study of the elution profiles revealed that in only 2 out of the 23 potential biomarkers the xenobiotics caused a diminution in lipid areas. For the rest of biomarkers, the disruption occurred in the inverse way, producing an increase in the area. In the PLS-DA analysis, Weight loadings of the different components allowed the determination of the sign of the contribution. All the 21 biomarkers were indicators of an increase in lipid areas caused by the presence of xenobiotics. Only in compounds 40 and 27, potential biomarkers if considering VIP Scores ˃ 1.5, the effects were in the inverse way, i.e decreasing their peak areas. 
Thus, within the 33 biomarkers proposed by the combination of both strategies, only two were indicators of a diminution of lipid areas produced by the xenobiotics, whereas all the rest explained an increase. Interestingly, components 49, 63, 64, 68 and 69, observed as altered in the correlation map presented in the first evaluation of MCR-ALS results (see section 4.3) were within the 33 proposed biomarkers. 
These results reasserted that the predominant pattern produced by the presence of PFCs and TBT was an increment in the amount of lipids. Moreover, the higher amount of biomarkers of treatment C respect to treatments A and B highlited the stronger disruption effects of TBT in comparison to PFCs. 

4.6. Tentative identification of potential biomarkers
Information of pure mass spectra (ST) at 1 amu resolution of the 33 biomarkers was used to find out their exact mass (0.0001 amu resolution) when searching in the original raw full scan UHPLC-TOF-MS chromatograms. Isolated chromatographic peaks corresponding to the 33 unknown compounds were obtained when selecting their mass at low resolution in the raw chromatogram, with a permissible mass error of 0.5 Da. In each case, retention times were used to ensure the correspondence between the isolated chromatographic peaks in the raw chromatogram and their concentration profiles in the MCR-ALS analysis. Exact mass was finally obtained when looking at the spectra of the isolated peaks. 
Tentative identification of biomarkers was based on the criteria of low mass error (difference among measurated and calculated mass) using the formula identification tool of Micromass MassLynx software called Elemental composition search. The formula constraints were C, H, O ≥ 1, P ≥ 0 and N ≥ 1, following the nitrogen rule. The number of double-bond equivalents (DBEs) was set between -0.5 and 15.0. In addition, information of LC retention times and of a homemade database from a previous study was also used for positive identification (see section 3.4). 
A total number of 24 lipid species were tentatively identified out of the 33 potential biomarkers (Table 3). Identified lipid species included 2 sphingomyelin (SM), 1 phosphocoline (PC), 3 Plasmalogen PC, 1 Lyso Plasmalogen PC, 6 DAG and 11 TAG. 
[bookmark: OLE_LINK215][bookmark: OLE_LINK216][bookmark: OLE_LINK217]Annotation of lipid species in Table 3: PC and its derivatives with plasmalogens, DAG and TAG are annotated as <lipid subclass> <total fatty acyl chain length>:<total number of unsaturated bonds> and SM as <total fatty acyl chain length>:<total number of unsaturated bonds in the acyl chain>.

4.7. Biological interpretation of the changing lipids
Tentative identification of 24 out of the 33 potential biomarkers showed that about 70% of the identified species corresponded to families of DAG and TAG. Moreover, as shown in Table 2, most of them were indicators of the disruption caused by the presence of TBT. These results were in accordance to a previous study [29], in which the effects of the same xenobiotics (PFCs at 0.6 and 6 µM and TBT at 0.1 µM) were evaluated in the same cellular line (JEG-3) but in a classical targeted approach. In that study, effects of TBT were  also highly visible in families of TAG and DAG. Even more, 6 of the 24 potential biomarkers tentatively identified here (DAG 34:1, 36:2 and TAG 48:2, 50:3, 50:2, 52:3) also showed significant increments respect to controls in that study. These results confirm the ability of TBT to induce the synthesis of DAG and TAG in the placenta cell line, in agreement with the obesogenic effect reported for TBT in other organisms and cell lines [43,44]. TBT has been reported to induce differentiation of 3T3-L1 cells, increasing the formation of intracellular lipid droplets, mainly formed by TAG and DAG [45]. 
Apart from DAG and TAG species, other biomarkers tentatively identified corresponded to Lyso Plasmalogen PC 18:0, PC 30:2, SM 14:0 and 14:1 and Plasmalogen-PCs 32:1, 36:1 and 44:4. As shown in Table 2, these biomarkers were indicators of lipid disruption caused by the three treatments. However, special relevance is posed in relation to the mixture of PFCs due to their previous reported effects on membrane lipids [28,46,47] such as Plasmalogen-PC species, which has been confirmed in this work. Exposure to TBT and PFCs may promote lipid peroxidation in JEG-3 cells, which will damage cell membrane and stimulate lipid signaling pathways [48]. Although the functions of plasmalogens have not yet been fully elucidated, it has been demonstrated that they can protect mammalian cells against the damaging effects of ROS [49,50], facilitating signaling processes and protecting membrane lipids from oxidation. Thus, the observed increase in lyso plasmalogen and plasmalogen PC species may act as a defense mechanism against PFC and TBT induced oxidative stress.

5. Conclusions
The chemometric strategy proposed in this study based on MCR-ALS analysis of UHPLC-TOF-MS lipidomic data allowed the resolution of a large number of coeluted chromatographic peaks, the calculation of their respective peak areas and the resolution of their corresponding pure mass spectra. Changes in MCR-ALS chromatographic peak areas of the resolved lipid comstituents among control and stressed cells were evaluated in order to find out potential biomarkers for lipid disruption. One-Way ANOVA followed by a Multiple Comparisons test and a PLS-DA analysis were the selected strategies for biomarker selection. The combination of the results of both strategies gave rise to a total of 33 lipids showing differences respect to controls. Identification of 24 out of the 33 potential biomarkers was positively achieved, using the resolved pure MS spectra from MCR-ALS analysis together with the high mass accuracy of the TOF analyzer.  
The untargeted methodology proposed in this study noticeably simplifies the interpretation of the lipidome, exclusively foccusing the attention on lipids showing important differences among normal and stressing conditions. Thus, the presented chemometric workflow appears as a powerful alternative to the time-demanding extensive screening of LC-MS data required for targeted lipidomics. 
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Table 1. Dimensions of the k=1 to 20 chromatographic windows for one sample (Dk) and for the 12 samples distributed one at the top of each other conforming augmented data matrices (Dk,aug) (see Equation 2). MCR-ALS data fitting results are shown for the analysis of the augmented data matrices (Dk,aug).
	Time window (k)
	Dimensions of Dk
	Dimensions  of Dk,aug
	RT     (min)
	Nr. estimated components 
	Nr. resolved components
	Lack of fit (%)
	R2 a(%)
	Resolved peak Nr.

	1
	190 x 700
	2280 x 700
	0.0- 2.2
	-
	-
	-
	-
	-

	2
	85 x 700
	1020 x 700
	2.2- 3.2
	11
	9
	15.4
	97.6
	1-9

	3
	65 x 700
	780 x 700
	3.1- 3.8
	12
	8
	6.3
	99.6
	10-17

	4
	50 x 700
	600 x 700
	3.8- 4.4
	8
	5
	10.9
	98.8
	18-22

	5
	68 x 700
	816 x 700
	4.4- 5.2
	4
	2
	31.6
	90.0
	23-24

	6
	42 x 700
	504 x 700
	5.2- 5.7
	5
	3
	5.1
	99.7
	25-27

	7
	95 x 700
	1140 x 700
	5.6- 6.7
	6
	4
	9.2
	99.1
	28-31

	8
	82 x 700
	984 x 700
	6.6- 7.5
	4
	2
	18.2
	96.7
	32-33

	9
	77 x 700
	924 x 700
	7.5- 8.4
	4
	3
	15.1
	97.7
	34-36

	10
	80 x 700
	960 x 700
	8.3- 9.2
	4
	3
	13.2
	98.2
	37-39

	11
	80 x 700
	960 x 700
	9.1- 10.0
	10
	8
	11.2
	98.7
	40-47

	12
	67 x 700
	804 x 700
	10.0- 10.8
	7
	5
	10.7
	98.9
	48-52

	13
	60 x 700
	720 x 700
	10.7- 11.4
	4
	3
	13.4
	98.2
	53-55

	14
	275 x 700
	3300 x 700
	11.4- 14.6
	-
	-
	-
	-
	-

	15
	75 x 700
	900 x 700
	14.6- 15.5
	9
	6
	8.5
	99.3
	56-61

	16
	55 x 700
	660 x 700
	15.4- 16.0
	8
	5
	5.1
	99.7
	62-66

	17
	67 x 700
	804 x 700
	15.9- 16.7
	8
	6
	5.6
	99.7
	67-72

	18
	65 x 700
	780 x 700
	16.6- 17.4
	9
	7
	7.1
	99.5
	73-79

	19
	55 x 700
	660 x 700
	17.3- 18.0
	10
	7
	9.1
	99.2
	80-86

	20
	176 x 700
	2112 x 700
	18.0- 20.0
	-
	-
	-
	-
	-


- Regions of the chromatogram with background noise.
a R2 explained data variance according Equation 3.

Table 2. Potential biomarkers for lipid disruption produced by three different treatments: A) mixture of PFCs at 0.6 µM, B) mixture of PFCs at 6 µM and C) TBT at 0.1 µM. Results are shown for the two distinct approaches used, One-Way ANOVA followed by a Multiple Comparisons test and a PLS-DA analysis for the extraction of Variables Important in Projection (VIPs), fixing distinct VIP Scores threshold values. 
	Biomarkers for lipidome disruption

	Treatment
	ANOVA & Multcompare test
	PLS-DA
	Combination of both strategies 

	
	(P ˂ 0.05)
	VIP Scores 
˃ 1.5
	VIP Scores 
˃ 1.8
	VIP Scores 
˃ 2.0
	(considering VIP Scores ˃ 1.9)

	A
	8, 36, 56, 83
	8, 10, 13, 15, 16, 36, 56, 75, 76, 77, 82, 83, 84, 86
	8, 10, 56, 76, 82, 83, 86
	83, 86
	8, 10, 36, 56, 76, 82, 83, 86

	B
	20a, 23
	8, 12, 14, 21, 23, 25, 28, 36, 40a, 48, 49, 53
	8, 12, 14, 21, 23, 25, 36, 49, 53
	23, 36, 53
	8, 12, 14, 20, 21, 23, 25, 36, 49, 53

	C
	10, 11, 12, 20, 27a, 40, 44, 56, 57, 59, 63, 64, 65, 66, 68, 69, 71, 72, 79
	7, 8, 10, 11, 12, 17, 20, 21, 27a, 53, 56, 59, 64, 68, 69, 71, 72, 79
	7, 10, 11, 17, 53, 56, 72, 79
	10, 79
	7, 10, 11, 12, 17, 20, 27, 40, 44, 53, 56, 57, 59, 63, 64, 65, 66, 68, 69, 71, 72, 79

	Total(*)
	23
	39
	21
	7
	33

	(*)Total number of biomarkers count coincident components among treatments only one time.
a Diminution of peak areas respect to controls.
Underlined components are common among the two preferred strategies.
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	Peak  number
	MCR-ALS resolved mass (1 amu)
	RT   (min)
	Measured mass (0.0001 amu)
	Lipid specie
	Elemental composition
	Lipid                 class
	Adduct
	Calculated mass (Da)
	Error (ppm)
	DBE

	14
	511
	3.5
	510.3912
	18:0
	C26H57NO6P
	Lyso Plasmalogen-PC
	[M + H]+
	510.3918
	-1.2
	-0.5

	23
	674
	5.0
	673.5286
	14:1
	C37H74N2O6P
	SM
	[M + H]+
	673.5279
	1.0
	2.5

	25
	676
	5.5
	675.5435
	14:0
	C37H76N2O6P
	SM
	[M + H]+
	675.5436
	-0.1
	1.5

	27
	703
	5.5
	702.5069
	30:2
	C38H73NO8P
	PC
	[M + H]+
	702.5068
	0.1
	3.5

	36
	719
	7.8
	718.5750
	32:1
	C40H81NO7P
	Plasmalogen-PC
	[M + H]+
	718.5745
	0.7
	1.5

	40
	613
	9.5
	612.5588
	34:1
	C37H74NO5
	DAG
	[M + NH4]+
	612.5562
	4.2
	1.5

	44
	639
	9.9
	638.5723
	36:2
	C39H76NO5
	DAG
	[M + NH4]+
	638.5718
	0.8
	2.5

	49
	775
	10.3
	774.6365
	36:1
	C44H89NO7P
	Plasmalogen-PC
	[M + H]+
	774.6371
	-0.8
	1.5

	56
	881
	15.2-15.4
	880.7170
	44:4
	C52H99NO7P
	Plasmalogen-PC
	[M + H]+
	880.7159
	1.2
	4.5

	57
	821
	15.0
	820.7393
	48:2
	C51H98NO6
	TAG
	[M + NH4]+
	820.7389
	0.5
	3.5

	59
	847
	15.2-15.4
	846.7552
	50:3
	C53H100NO6
	TAG
	[M + NH4]+
	846.7545
	0.8
	4.5

	63
	849
	15.6
	848.7706
	50:2
	C53H102NO6
	TAG
	[M + NH4]+
	848.7702
	0.5
	3.5

	64
	875
	15.8
	874.7863
	52:3
	C55H104NO6
	TAG
	[M + NH4]+
	874.7858
	0.6
	4.5

	65
	923
	15.6
	922.7883
	56:7
	C59H104NO6
	TAG
	[M + NH4]+
	922.7858
	2.7
	8.5

	66
	949
	15.7
	948.8021
	58:8
	C61H106NO6
	TAG
	[M + NH4]+
	948.8015
	0.6
	9.5

	68
	877
	16.2
	876.8029
	52:2
	C55H106NO6
	TAG
	[M + NH4]+
	876.8015
	1.6
	3.5

	69
	903
	16.4
	902.8170
	54:3
	C57H108NO6
	TAG
	[M + NH4]+
	902.8171
	-0.1
	4.5

	71
	901
	16.0-16.1
	900.8021
	54:4
	C57H106NO6
	TAG
	[M + NH4]+
	900.8015
	0.7
	5.5

	72
	927
	16.2-16.3
	926.8185
	56:5
	C59H108NO6
	TAG
	[M + NH4]+
	926.8171
	1.5
	6.5

	76
	837
	16.9
	836.8062
	50:1
	C53H106NO5
	DAG
	[M + NH4]+
	836.8066
	-0.5
	1.5

	79
	955
	16.8
	954.8480
	58:5
	C61H112NO6
	TAG
	[M + NH4]+
	954.8484
	-0.4
	6.5

	82
	891
	17.8
	890.8508
	54:2
	C57H112NO5
	DAG
	[M + NH4]+
	890.8535
	-3.0
	2.5

	83
	915
	17.4
	914.8497
	56:4
	C59H112NO5
	DAG
	[M + NH4]+
	914.8535
	-4.2
	4.5

	86
	865
	17.7
	864.8375
	52:1
	C55H110NO5
	DAG
	[M + NH4]+
	864.8379
	-0.5
	1.5



Table 3. Tentative identification of 24 out of the 33 potential biomarkers calculated by mass accuracy within an error of 5 ppm, with atom constraints C, H, O, N ≥ 1, P ≥ 0, and with -0.5 ≤ DBE ≤ 15.0. DBE: double-bond equivalent.
Figure 1. Scheme of the steps of the untargeted LC-MS MCR-ALS strategy proposed in this study for the analysis of lipid profiles in order to determine potential biomarkers for lipid disruption.

Figure 2. UHPLC-TOF-MS chromatogram of a control sample divided in 20 time windows for the MCR-ALS analysis, after the m/z compression to 1 amu resolution. Colored lines are indicators of distinct m/z values. 

Figure 3. Mesh plot of raw UHPLC-TOF-MS chromatograms corresponding to I] control sample, II] lipid sample from treatment A, III] lipid sample from treatment B and IV] lipid sample from treatment C.

Figure 4. Correlation  map of sample type and components considering the calculated areas of MCR-ALS analysis. A] For all the 86 resolved components and B] For components 41 to 86.

 Figure 5. A] Example of results from One-Way ANOVA followed by Multiple Comparisons test for component 40 of time window 11. B] Elution/concentration profiles of 7 MCR-ALS resolved components (one per time window) as a representation of the distinct patterns of disruption observed: I] Effects of PFCs, II] Effects of TBT, III] Effects of both xenobiotics, IV] No significant effects.  Elution profiles are from mean areas of the three replicates from controls (_ _ _), cells exposed to PFCs at 0.6 M (__), cells exposed to PFCs at 6 M (__) and cells exposed to TBT (__). Thicker lines represent significant changing elution profiles. Bar graphics inside the boxes represent the means ± SEM (n=3) of the controls and the three cell stress treatments. *Statistical significant differences respect to controls (P < 0.05).

Figure 6. Variables importance in projection (VIP Scores) plot from PLS-DA analysis of the 86 MCR-ALS resolved peak areas, when selecting as groups: A] Controls and Treatment A, B] Controls and Treatment B and C] Controls and Treatment C.  Horitzontal red lines show threshold values of 1 (dotted line) and 1.8 (thicker solid line) and numbers inside the plot indicate most important variables according to the highest threshold value. 
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