Hybrid Quantization of Inflationary Universes

Guillermo A. Mena Marugán

Instituto de Estructura de la Materia, CSIC (Mikel Fernández-Méndez,
Javier Olmedo \& José Velhinho)

- We consider perturbed FRW universes filled with a massive scalar field.
- The scalar field is minimally coupled.
- The model can generate inflation.
- The most interesting case is flat spatial topology. It is also the simplest.
- The effects of spatial curvature can be studied by considering, e.g., spherical topology.
- We assume compact spatial sections.

The model

It's been well studied, even in LQC, though...

- Anomalies: Incorporate quantum effects, not the starting point for quantization.
- Effective dynamics: Needs a true derivation.

- Approximations: As few as possible. Should be derived or at least checked for consistency.
- In many cases these checks are only internal, within the approximated description.

Perturbations about flat FRW

- Truncation at quadratic order in the action.
- Includes backreaction at that order.
- Tests the validity of less refined truncations and provides the way to develop approximation methods, controlling their range of application.

Hybrid approach

Effects of quantum geometry are only accounted for in the background

- Succesfully applied in Gowdy cosmologies.
- In those cases there is no truncation. This is no drawback (think of the harmonic oscillator).
- In the present case, we only deal with the quadratically perturbed model.
\square

Unigueness of the Fock clescription

- Infinite ambiguity in selecting a Fock representation in QFT in curved spacetimes.
- This can be restricted by appealing to background symmetries.
- Typically this is not sufficent in non-stationarity.
- Proposal: demand the UNITARITY of the quantum evolution.

The conventional interpretation of QM is guaranteed. This goes beyond the viewpoint of algebraic quantizations.

- There is a natural ambiguity in the separation of the background from the field. In cosmology, this introduces time-dependent canonical field transformations.
- Remarkably, symmetry invariance and dynamical unitarity select a UNIQUE canonical pair and a UNIQUE Fock representation for their CCR's.

Uniqueness of the Fock description

Uniqueness of the Fock description

- Recent works DO NOT incorporate the correct scaling (AA\&N). This affects the quantum description, and in particular the effective approaches therein dereived.
- Moreover, one can even consider non-local canonical transformations, respecting the decoupling of field modes.

The UNIQUENESS of the quantization, up to unitary equivalence, is guaranteed.

Loop Quantum FRW Cosmology

- Avoids the Big Bang.
- Specific proposal such that:
\rightarrow Evolution can be defined even without ideal clocks (masless field).
\Rightarrow The WdW limit is unambiguous in each superselection sector.
\Rightarrow It is optimal for numerical computation.
- Control of changes of densitization in the scalar constraint. The lapse function is not a function on phase space.

Classical system: FRW

- Nassive scalar field minnimally coupled to a compact, flat Frivy universe,

Geometry:

$$
\begin{aligned}
& A_{a}^{i}=c^{0} e_{a}^{i}(2 \pi)^{-1} ; \quad E_{i}^{a}=p \sqrt{{ }^{0}} e^{0} e_{i}^{a}(2 \pi)^{-2} . \quad \\
& a^{2}=e^{2 \alpha}=[p, p]=8 \pi G \gamma / 3 .
\end{aligned}
$$

Matter:

$$
\varphi=(2 \pi)^{3 / 2} \sigma \phi ; \quad \pi_{\varphi}=(2 \pi)^{-3 / 2} \sigma^{-1} \pi_{\phi} .
$$

Hamiltonian constraint:

$$
C_{0}=-\frac{6}{\gamma^{2}} \sqrt{|p|} c^{2}+\frac{8 \pi G}{V}\left(\pi_{\phi}^{2}+m^{2} V^{2} \phi^{2}\right) .
$$

$$
V=|p|^{3 / 2} .
$$

Classical system: Modes

and inhomogeneities in a (real) Fourier basis:

$$
Q_{\vec{n},+}=\frac{1}{2 \pi^{3 / 2}} \cos \vec{n} \cdot \vec{\theta}, \quad Q_{\vec{n},-}=\frac{1}{2 \pi^{3 / 2}} \sin \vec{n} \cdot \vec{\theta} . \quad \vec{n} \in \mathbb{Z}^{3}, \quad n_{1} \geq 0 .
$$

- The basis is orthonormal, and we exclude the zero mode in the expansions.
- These functions are eigenmodes of the Laplace-Beltrami operator of the standard flat metric on the three-torus, with eigenvalue

$$
-\omega_{n}^{2}=-\vec{n} \cdot \vec{n} .
$$

- We only consider scalar perturbations: decoupled from vector and tensor perturbations at dominant order.

Classical systemi Inhomogeneities

lllow ennatil

- Mode expansion of the inhomogeneities:

$$
\begin{gathered}
h_{i j}=\left(\sigma e^{\alpha}\right)^{2}\left[{ }^{0} h_{i j}+2 \epsilon(2 \pi)^{3 / 2} \sum\left\{a_{\vec{n}, \pm}(t) Q_{\vec{n}, \pm}{ }^{0} h_{i j}+b_{\vec{n}, \pm}(t)\left(\frac{3}{\omega_{n}^{2}}\left(Q_{\vec{n} ; \pm}\right)_{, i j}+Q_{\vec{n}, \pm}{ }^{0} h_{i j}\right)\right\}\right], \\
N=\sigma N_{0}(t)\left[1+\epsilon(2 \pi)^{3 / 2} \sum g_{\vec{n}, \pm}(t) Q_{\vec{n}, \pm}\right], \\
N_{i}=\epsilon(2 \pi)^{3 / 2} \sigma^{2} e^{\alpha} \sum \frac{k_{\vec{n}, \pm}(t)}{\omega_{n}}\left(Q_{\vec{n}, \pm}\right)_{i,}, \\
\Phi=\frac{1}{\sigma}\left[\frac{\varphi(t)}{(2 \pi)^{3 / 2}}+\epsilon \sum f_{\vec{n}, \pm}(t) Q_{\vec{n}, \pm}\right] .
\end{gathered}
$$

The corrections include in principle higher-order perturbations.

Classical system: Action

ng the action at quadratic order in perturbations, one obtains:

$$
\begin{gathered}
H=\frac{N_{0} \sigma}{16 \pi G} C_{0}+\epsilon^{2} \sum\left(N_{0} H_{2}^{\vec{n}, \pm}+N_{0} g_{\vec{n}, \pm} H_{1}^{\vec{n}, \pm}+k_{\vec{n}, \pm} \widetilde{H}_{1}^{\vec{n}, \pm}\right), \\
H_{2}^{\vec{n}, \pm} 2 e^{3 \alpha}=-\pi_{a_{\vec{n}, \pm}}^{2}+\pi_{b_{\vec{n}, \pm}}^{2}+\pi_{f_{\vec{n}, \pm}}^{2}+2 \pi_{\alpha}\left(a_{\vec{n}, \pm} \pi_{a_{\vec{n}, \pm}}+4 b_{\vec{n}, \pm} \pi_{b_{\vec{n}, \pm}}\right)-6 \pi_{\varphi} a_{\vec{n}, \pm} \pi_{f_{\vec{n}, \pm}} \\
+\pi_{\alpha}^{2}\left(\frac{1}{2} a_{\vec{n}, \pm}^{2}+10 b_{\vec{n}, \pm \pm}^{2}\right)+\pi_{\varphi}^{2}\left(\frac{15}{2} a_{\vec{n}, \pm}^{2}+6 b_{\vec{n}, \pm}^{2}\right)-\frac{e^{4 \alpha}}{3}\left[\omega_{n}^{2} a_{\vec{n}, \pm}^{2}+\left(\omega_{n}^{2}-18\right) b_{\vec{n}, \pm}^{2}\right] \\
+e^{4 \alpha} \omega_{n}^{2}\left[f_{\vec{n}, \pm}^{2}-\frac{2}{3} a_{\vec{n}, \pm} b_{\vec{n}, \pm}\right]+e^{6 \alpha} m^{2} \sigma^{2}\left(\varphi^{2}\left(\frac{3}{2} a_{\vec{n}, \pm}^{2}+6 b_{\vec{n}, \pm}^{2}\right)+6 \varphi a_{\vec{n}, \pm} f_{\vec{n}, \pm}+f_{\vec{n}, \pm}^{2}\right] \\
H_{1}^{\vec{n}, \pm} 2 e^{3 \alpha}=2 \pi_{\varphi} \pi_{f_{\vec{n}, \pm}}-2 \pi_{\alpha} \pi_{a_{\vec{n}, \pm}}-\left(\pi_{\alpha}^{2}+3 \pi_{\varphi}^{2}\right) a_{\vec{n}, \pm \pm}-\frac{2}{3} e^{4 \alpha} \omega_{n}^{2}\left(a_{\vec{n}, \pm}+b_{\vec{n}, \pm}\right) \\
+e^{6 \alpha} m^{2} \sigma^{2} \varphi\left(3 \varphi a_{\vec{n}, \pm}+2 f_{\vec{n}, \pm}\right) \\
\widetilde{H}_{1}^{n, \pm} 3 e^{\alpha}=\pi_{b_{\vec{n}, \pm}}-\pi_{a_{\vec{n}, \pm}}+\pi_{\alpha}\left(a_{\vec{n}, \pm}+4 b_{\vec{n}, \pm}\right)+3 \pi_{\varphi} f_{\vec{n}, \pm} .
\end{gathered}
$$

Longitudinal gauge

- We can adopt longitudinal gauge by imposing:

$$
\pi_{a_{\vec{n}, \pm}}-\pi_{\alpha} a_{\vec{n}, \pm}-3 \pi_{\varphi} f_{\vec{n}, \pm}=0, \quad b_{\vec{n}, \pm}=0
$$

- This removes the constraints linear in perturbations.

$$
\pi_{b_{i}, \vec{n}, \pm}=0, \quad a_{\vec{n}, \pm}=3 \frac{\pi_{\varphi} \pi_{f_{\vec{n}, \pm}}+\left(e^{6 \alpha} m^{2} \sigma^{2} \varphi-3 \pi_{\alpha} \pi_{\varphi}\right) f_{\vec{n}, \pm}}{9 \pi_{\varphi}^{2}+\omega_{n}^{2} e^{4 \alpha}}
$$

- Together with dynamical stability, this fixes $g_{\vec{n}, \pm}=-a_{\vec{n}, \pm}, \quad k_{\vec{n}, \pm}=0$.

The shift vanishes, and the spatial metric is proportional to ${ }^{0} h_{i j}$.

Longitudinal gauge: Reduction

- After REDUCTION, a canonical set is:

$$
\begin{gathered}
\bar{\varphi}=\varphi+3 \sum a_{\bar{n}, \pm} f_{\bar{n}, \pm}, \quad \pi_{\varphi}=\pi_{\varphi}, \\
\bar{\alpha}=\alpha+\frac{1}{2} \sum\left(a_{\bar{n}, \pm}^{2}+f_{\bar{n}, \pm}^{2}\right), \quad \pi_{\bar{\alpha}}=\pi_{\alpha}-\sum f_{\vec{n}, \pm \pm}\left(\pi_{f_{\bar{n}, \pm}}-3 \pi_{\varphi} a_{\vec{n}, \pm}-\pi_{\alpha} f_{\bar{n}, \pm}\right), \\
\bar{f}_{\bar{n}, \pm}=e^{\alpha} f_{\bar{n}, \pm}, \quad \pi_{\bar{f}_{\bar{n}, \pm}}=e^{-\alpha}\left(\pi_{f_{\bar{n}, \pm}}-3 \pi_{\varphi} a_{\vec{n}, \pm}-\pi_{\alpha} f_{\bar{n}, \pm}\right) .
\end{gathered}
$$

The genuine background variables are corrected with quadratic perturbations.
We have already scaled the matter field variables.

Longitudinal gauge: Dynamics

- The modes of the scaled matter field satisfy a quasi-KG equation with time-dependent mass:

$$
\begin{gathered}
\ddot{\bar{f}}_{\vec{n}, \pm}+r_{n} \dot{\bar{f}}_{\vec{n}, \pm}+\left(\omega_{n}^{2}+s+s_{n}\right) \bar{f}_{\vec{n}, \pm}=0, \\
\pi_{\bar{f}_{\vec{n}, \pm}}=\left(1+p_{n}\right) \dot{\bar{f}}_{\vec{n}, \pm}+q_{n} \bar{f}_{\vec{n}, \pm}, \\
s=m^{2} \sigma^{2} e^{2 \bar{\alpha}}-\frac{e^{-4 \bar{\alpha}}}{2}\left(\pi_{\bar{\alpha}}^{2}+21 \pi_{\bar{\phi}}^{2}+3 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}^{2}\right) .
\end{gathered}
$$

$$
r_{n}, s_{n}, p_{n}, q_{n} \text { are of order } \omega_{n}^{-2}
$$

- For any given background, there exists a UNIQUE Fock quantization with the symmetry of the three-torus and unitary dynamics.
- The system can be put in the form of a KG field with time-dependent mass by means of a mode-dependent canonical quantization, varying in time.
- This transformation is unitarily implementable in the privileged quantization.
- The remaining Hamiltonian constraint reads:

$$
\begin{gathered}
H=\frac{N_{0} \sigma}{16 \pi G} C_{0}+\epsilon^{2} N_{0} \sum H_{2}^{\vec{n}, \pm}, \quad H_{2}^{\vec{n}, \pm} 2 e^{\bar{\alpha}_{\alpha}}=\bar{E}_{\bar{f} \bar{f}} \bar{f}_{\vec{n}, \pm}^{2}+\bar{E}_{\bar{f} \pi} \bar{f}_{\bar{n}, \pm} \pi_{\bar{f}_{\bar{n}, \pm}}+\bar{E}_{\pi \pi} \pi_{\bar{f}_{\bar{n}, \pm}}^{2}, \\
\bar{E}_{\bar{f} \bar{f} \bar{\prime}}^{n}=\omega_{n}^{2}+e^{2 \bar{\alpha}} m^{2} \sigma^{2}-\frac{e^{-4 \bar{\alpha}}}{2}\left(\pi_{\bar{\alpha}}^{2}+15 \pi_{\bar{\phi}}^{2}+3 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}^{2}\right)-\frac{3}{\omega_{n}^{2}} e^{-8 \bar{\alpha}}\left(e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}-2 \pi_{\bar{\alpha}} \pi_{\bar{\phi}}\right)^{2} . \\
\bar{E}_{\bar{f} \pi}^{n}=-\frac{3}{\omega_{n}^{2}} e^{-6 \bar{\alpha}} \pi_{\bar{\phi}}\left(e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}-2 \pi_{\bar{\alpha}} \pi_{\bar{\phi}}\right), \quad \bar{E}_{\pi \pi}^{n}=1-\frac{3}{\omega_{n}^{2}} e^{-4 \bar{\alpha}} \pi_{\bar{\varphi}}^{2 .}
\end{gathered}
$$

The corrections in cyan are of order ω_{n}^{-2}.

Longitudinal gauge: Metric (at linear order)

$$
\begin{gathered}
h_{i j}=\left(\sigma e^{\bar{\alpha}}\right)^{0} h_{i j}\left[1+\epsilon 2(2 \pi)^{3 / 2} \sum a_{\vec{n}, \pm} Q_{\vec{n}, \pm}\right], \\
N=\sigma N_{0}\left(1-\epsilon(2 \pi)^{3 / 2} \sum a_{\vec{n}, \pm} Q_{\vec{n}, \pm}\right), \quad N_{i}=0, \\
a_{\vec{n}, \pm}=\frac{3}{\omega_{n}^{2}} e^{-3 \bar{\alpha}}\left[\pi_{\varphi} \pi_{\bar{f}_{\bar{n}, \pm}}+e^{-2 \bar{\alpha}}\left(e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}-2 \pi_{\bar{\alpha}} \pi_{\varphi}\right) f_{\bar{n}, \pm}\right], \\
\Phi=\frac{1}{\sigma}\left(\frac{\bar{\varphi}}{(2 \pi)^{3 / 2}}+\epsilon e^{-\bar{\alpha}} \sum \bar{f}_{\vec{n}, \pm} Q_{\vec{n}, \pm}\right) .
\end{gathered}
$$

Gauge invariants

- The Mukhanov-Sasaki modes and their momenta have the expression:

$$
\begin{aligned}
& v_{\vec{n}, \pm}=A_{n} \bar{f}_{\vec{n}, \pm}+B_{n} \pi_{\bar{f}_{\vec{i}, \pm}}, \quad \pi_{v_{n, \pm}}=\dot{v}_{\vec{n}, \pm}=F_{n} \bar{f}_{\vec{n}, \pm}+G_{n} \pi_{\bar{f}_{n, \pm}}, \\
& A_{n}=1+\frac{3 e^{-4 \bar{\alpha}} \pi_{\overline{\bar{\varphi}}}}{\omega_{n}^{2} \pi_{\bar{\alpha}}}\left(e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}-2 \pi_{\bar{\alpha}} \pi_{\bar{\phi}}\right), \quad B_{n}=\frac{3 e^{-2 \bar{\alpha}} \pi_{\overline{\bar{\varphi}}}^{2}}{\omega_{n}^{2} \pi_{\bar{\alpha}}}, \\
& F_{n}=-\frac{3 e^{-2 \bar{\alpha}} \pi_{\bar{\Phi}}^{2}}{\pi_{\bar{\alpha}}}-\frac{3 e^{-6 \bar{\alpha}}}{\omega_{n}^{2} \pi_{\bar{\alpha}}}\left[e^{12 \bar{\alpha}} m^{4} \sigma^{4} \bar{\varphi}^{2}-\frac{e^{6 \bar{\alpha}} \pi_{\varphi}}{2 \pi_{\bar{\alpha}}} m^{2} \sigma^{2} \bar{\varphi}\left(5 \pi_{\bar{\alpha}}^{2}-3 \pi_{\bar{\varphi}}^{2}+3 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}^{2}\right)\right] \\
& -\frac{3 e^{-6 \bar{\alpha}} \pi_{\overline{\bar{q}}}^{2}}{2 \omega_{n}^{2} \pi_{\bar{\alpha}}}\left(11 \pi_{\bar{\alpha}}-15 \pi_{\bar{\varphi}}^{2}-3 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}^{2}\right), \\
& G_{n}=1+\frac{3 e^{-4 \bar{\alpha}} \pi_{\bar{\varphi}}}{2 \omega_{n}^{2} \pi_{\bar{\alpha}}}\left[-2 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}+\frac{\pi_{\bar{\varphi}}}{\pi_{\bar{\alpha}}}\left(\pi_{\bar{\alpha}}^{2}-3 \pi_{\bar{\phi}}^{2}+3 e^{6 \bar{\alpha}} m^{2} \sigma^{2} \bar{\phi}^{2}\right)\right] .
\end{aligned}
$$

- If we construct annihilation and creation variables with these invariants (for zero mass), the Bogoliubov transformation, which is mode dependent, is UNITARY in the privileged Fock quantization.

- Similar results are obtained in the gauge of flat spatial sections $a_{\vec{n} \pm}=b_{\vec{n}, \pm}=0$.
- Moreover, the same symplectic structure for gauge invariants is obtained.

Quantization: Homogeneous sector

We quantize the homogeneous sector with standard loop techniques, using improved dynamics and the MMO proposal.

- In the volume basis $\{|v\rangle ; v \in \mathbb{R}\}$, with $\hat{V}=|\hat{p}|^{3 / 2}$,

$$
\hat{N}_{\bar{\mu}}|v\rangle=|v+1\rangle, \quad \hat{p}|v\rangle=\operatorname{sgn}(v)(2 \pi \gamma G \hbar \sqrt{\Delta}|v|)^{2 / 3}|v\rangle .
$$

- The kinematic Hilbert space is $H_{k i n}^{F R W-L Q C} \otimes H_{\text {kin }}^{\text {matt }}$.
- The inverse volume is regularized as usual.

$$
\left[\frac{1}{V}\right]=\left[\frac{1}{\sqrt{|p|}}\right]^{3}, \quad\left[\frac{1}{\sqrt{|p|}}\right]=\frac{3}{4 \pi \gamma G \hbar \sqrt{\Delta}} \widehat{\operatorname{sgn}(p)} \sqrt{|\hat{p}|}\left(\hat{N}_{-\mu} \sqrt{|\hat{p}|} \mid \hat{N}_{p}-\hat{N}_{\mu} \sqrt{|\hat{p}|} \hat{N}_{-\mu}\right) .
$$

Quantization: Homogeneous Hamiltonian

- After decoupling the zero-volume state, we change densitization for the FRW constraint:

$$
\left.\hat{C}_{0}=\widehat{\frac{1}{V}}\right]^{1 / 2} \hat{\boldsymbol{C}}_{0}\left[\frac{1}{V}\right]^{1 / 2} .
$$

$$
\hat{\boldsymbol{C}}_{0}=-\frac{6}{\gamma^{2}} \hat{\Omega}_{0}^{2}+8 \pi G\left(\hat{\pi}_{\phi}^{2}+m^{2} \hat{\phi}^{2} \hat{V}^{2}\right)
$$

- The gravitational part, with the MMO proposal, is:

$$
\hat{\Omega}_{0}=\frac{1}{4 \mathrm{i} \sqrt{\Delta}} \hat{V}^{1 / 2}\left[\widehat{\operatorname{sgn}(p)}\left(\hat{N}_{2 \bar{\mu}}-\hat{N}_{-2 \bar{\mu}}\right)+\left(\hat{N}_{2 \bar{\mu}}-\hat{N}_{-2 \bar{\mu}}\right) \widehat{\operatorname{sgn}(p)}\right] \hat{V}^{1 / 2}
$$

Takes into account the triad orientation (manifest in anisotropic scenarios).

- This operator has the generic form

$$
\widehat{\Omega}_{0}^{2}|v\rangle=f_{+}(v)|v+4\rangle+f(v)|v\rangle+f_{-}(v)|v-4\rangle .
$$

Quantization: Superselection

- $\hat{\Omega}_{0}^{2}$ can be seen as a difference operator.

$$
\widehat{\Omega}_{0}^{2}|v\rangle=f_{+}(v)|v+4\rangle+f(v)|v\rangle+f_{-}(v)|v-4\rangle .
$$

- The real function $f_{+}(v)\left(f_{-}(v)\right)$ vanishes in the interval $[-4,0]([0,4])$.
- The operator preserves the superselection sectors $\mathscr{L}_{ \pm \epsilon}^{(4)}:=\{ \pm(\epsilon+4 \mathrm{n}), n \in \mathbb{N}\}$

- This operator is selfadjoint in those sectors. Its eigenfunctions are real, and determined by their value at the minimum volume $\epsilon \in(0,4]$.

Quantization: Homogeneous states

- Solutions to the constraint are determined, e.g., by their initial values at minimum volume.
- If the scalar field serves as a clock, an alternate possibility is to give the value at a section of constant field. This is not always possible.
- The space of physical states can be identified, e. g., with $L^{2}(\mathbb{R}, d \phi)$.

Fock and hybrid quantizations

- We quantize the rescaled inhomogeneous modes using annihilation and creation verielbles constructed from our canonical variables and zero mass.
- We obtain a Fock space \mathscr{F}, with basis of n-particle states:

$$
\left\{|N\rangle=\left|N_{(1,0,0),+}, N_{(1,0,0),-}, \ldots\right\rangle ; \quad N_{\vec{n}, \pm} \in \mathbb{N}, \quad \sum N_{\vec{n}, \pm}<\infty\right\} .
$$

- We proceed to a hybrid quantization, with-Hilbert space

$$
H_{k i n}^{F R W-L Q C} \otimes H_{k i n}^{\text {matt }} \otimes \mathscr{F} .
$$

- The Hamiltonian constraint is not trivial.

Quantum Hamiltonian of the perturbations

－We quantize the quadratic contribution of the perturbations to the Hamiltonian adapting the quantization proposals of the homogeneous sector and using a symmetric factor ordering：

准 We symmetrize products of the type $\hat{\phi} \hat{\pi}_{\phi}$ ．
站 We take a symmetric geometric factor ordering $V^{k} A \rightarrow \hat{V}^{k / 2} \hat{A} \hat{V}^{k / 2}$ ．
$\stackrel{*}{*}$ We adopt the LQC representation $(c p)^{2 \mathrm{~m}} \rightarrow\left[\hat{\Omega}_{0}^{2}\right]^{m}$ ．
文 In order to preserve the FRW superselection sectors，we adopt the prescription $(c p)^{2 \mathrm{~m}+1} \rightarrow\left[\hat{\Omega}_{0}^{2}\right]^{m / 2} \hat{\Lambda}_{0}\left[\hat{\Omega}_{0}^{2}\right]^{m / 2}$ ，where

$$
\hat{\Lambda}_{0}=-\frac{i}{8 \sqrt{\Delta}} \hat{V}^{1 / 2}\left[\widehat{\operatorname{sgn}(p)}\left(\hat{N}_{4 \bar{\mu}}-\hat{N}_{-4 \bar{\mu}}\right)+\left(\hat{N}_{4 \bar{\mu}}-\hat{N}_{-4 \bar{\mu}}\right) \widehat{\operatorname{sgn}(p)}\right] \hat{V}^{1 / 2} .
$$

The situation is similar to that found with the Hubble parameter in LQC．

Quantum Hamiltonian of the perturbations

- With the FRW densitization:

$$
\hat{H}_{2}^{\vec{n}, \pm}=\frac{\sigma}{16 \pi G}\left[\frac{1}{V}\right]^{1 / 2} \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm}\left[\frac{1}{V}\right]^{1 / 2} .
$$

$$
\begin{aligned}
& \hat{\boldsymbol{C}}_{2}^{\bar{n}, \pm}=6(2 \pi)^{4} \sigma^{2}\left[2 \omega_{n}\left[\widehat{\frac{1}{V}}\right]^{-2 / 3}+\frac{\hat{Y}^{-}}{\omega_{n}}+\frac{\hat{Z}}{\omega_{n}^{3}}\right] \hat{X}_{\vec{n}, \pm}+4 \pi G\left[\left(\frac{\hat{Y}^{+}}{\omega_{n}}+\frac{\hat{Z}}{\omega_{n}^{3}}\right) \hat{X}_{\bar{n}, \pm}^{+}+\frac{3 \mathrm{i} \sigma^{2} \hat{W}}{\omega_{n}^{2}} \hat{X}_{\bar{n}, \pm}^{-}\right] \text {, } \\
& \hat{N}_{\bar{n}, \pm}=\hat{a}_{f_{\bar{n}}^{- \pm}}^{\dagger} \hat{e}_{f_{\bar{n}, 土}^{*}}, \quad \hat{X}_{\bar{n}, \pm}^{ \pm}=\left(\hat{a}_{f_{\bar{n}}^{-}}^{\dagger}\right)^{2} \pm\left(\hat{a}_{f_{\bar{n}+ \pm}^{-}}\right)^{2}, \\
& \hat{Y}^{ \pm}=\frac{m^{2}}{(2 \pi)^{2}}-\pi \sigma^{2}\left[\frac{1}{V}\right]^{1 / 3}\left(\frac{1}{\gamma^{2}(2 \pi)^{3} \sigma^{2}} \hat{\Omega}_{0}^{2}+3(5 \pm 2) \hat{\pi}_{\phi}^{2}+3 m^{2} \hat{V}^{2} \hat{\phi}^{2}\right)\left(\widehat{\frac{1}{V}}\right]^{1 / 3}, \\
& \hat{Z}=-\frac{3 \sigma^{2}}{2 \pi}\left[\widehat{\frac{1}{V}}\right]\left(\frac{2}{\gamma} \hat{\Lambda}_{0} \hat{\pi}_{\phi}+m^{2} \hat{V}^{2} \hat{\phi}\right)^{2}\left[\widehat{\frac{1}{V}}\right], \\
& \left.\left.\hat{W}=-\widehat{\frac{1}{V}}\right]^{2 / 3}\left(\frac{4}{\gamma} \hat{\Lambda}_{0} \hat{\pi}_{\phi}^{2}+m^{2} \hat{V}^{2}\left(\hat{\phi} \hat{\pi}_{\phi}+\hat{\pi}_{\phi} \hat{\phi}\right)\right] \widehat{\frac{1}{V}}\right]^{2 / 3} .
\end{aligned}
$$

Solutions to the constraint

- If the matter field serves as a clock:

$$
\hat{\boldsymbol{C}}_{0}+\epsilon^{2}\left(\sum \hat{\boldsymbol{C}}_{2}^{\bar{n}, \pm}\right)=0 .
$$

$$
\begin{gathered}
\left(\Psi \left\lvert\, \hat{\boldsymbol{\pi}}_{\phi}=\frac{1}{\sqrt{8 \pi G}}\left(\Psi| | \hat{\Theta}_{0}^{2}-\epsilon^{2}\left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm}\right)^{\dagger}\right]^{1 / 2} \approx \frac{1}{\sqrt{8 \pi G}}\left(\Psi| | \hat{\Theta}_{0}-\frac{\epsilon^{2}}{2} \hat{\boldsymbol{\Theta}}_{0}^{-1}\left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm}\right)^{\dagger}\right]\right.,\right. \\
\hat{\Theta}_{0}^{2}=\boldsymbol{P}\left(8 \pi G \hat{\pi}_{\phi}^{2}-\hat{\boldsymbol{C}}_{0}\right) .
\end{gathered}
$$

- We can pass to an interaction picture and use a Born-Oppenheimer-like approximation.
- This can be done even without the above perturbative expansion.
- This leads to a sort of effective QFT for the inhomogeneities.

Physical states

- An alternate perturbative scheme:

$$
|\Psi|=\left(\left.\Psi\right|^{(0)}+\epsilon^{2}\left(\left.\Psi\right|^{(2)} \ldots\right.\right.
$$

- FRW solution:

$$
\left(\left.\Psi\right|^{(0)} \hat{\boldsymbol{C}}_{0}=0,\right.
$$

$$
\hat{\boldsymbol{C}}_{0}=-\frac{6}{\gamma^{2}} \hat{\Omega}_{0}^{2}+8 \pi G\left(\hat{\pi}_{\phi}^{2}+m^{2} \hat{\phi}^{2} \hat{V}^{2}\right) .
$$

- Evolution of the perturbations:

$$
\left(\left.\Psi\right|^{(2)} \hat{\boldsymbol{C}}_{0}=-\left(\left.\Psi\right|^{(0)}\left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm}\right)^{\dagger} .\right.\right.
$$

- Solutions are characterized by their initial data at minimum volume.
- From these data we arrive, e.g., at the physical Hilbert space $H_{k i n}^{\text {matt }} \otimes \mathscr{F}$.

Conclusions

- We have considered a perturbed FRW universe with a massive scalar field.
- Two approximations:

水 The action has been truncated to second order in the perturbations.
水 A hybrid quantization scheme has been adopted.

- First complete quantization of a model with inflation within LQC ($k=1$).
- Backreaction has been included.

Conclusion

- For quantum simulations, the FRW prescription is optimal.
- Opposite to the situation in other analyses, the inhomogeneities have UNITARY dynamics in an (effective) QFT approximation.
- No internal time (matter clock) is needed. If a matter clock is available, one can obtain the inhomogeneities evolution adopting an interaction picture.
- Generally, one can construct quantum states perturbatively from data at minimum volume. This allows one to get a physical Hilbert space.

