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ABSTRACT
By projecting the Schrödinger equation on the actual configuration of an infinite set of electronic trajectories, an ensemble of conditional equations of motion for the
nuclei is obtained. These equations do not rely on any tracing-out of degrees of freedom and their propagation does not require a prior knowledge of the involved
potential-energy surfaces. Using an exact factorization of the full molecular wave function, we establish a formal connection with the recently proposed exact potential
energy surfaces. This connection is used to gain insight from a simplified propagation scheme, which is demonstrated to capture non-adiabatic dynamics accurately in
the limit of weak nuclear splitting. For pronounced branchings, we show how this simple algorithm partially captures dynamical steps between adiabatic surfaces.

BOHMIAN MECHANICS
The electron-nuclear wave function evolving under a time-
dependent external potential obeys the following TDSE

i∂tΨ(r,R, t) =
{
T̂e(r) + T̂n(R) + Ŵ (r,R, t)

}
Ψ(r,R, t). (1)

Equation (1) satisfies a continuity equation,

∂t|Ψ|2 +

Ne∑
ξ=1

∇ξ
(
|Ψ|2 · veξ

)
+

Nn∑
ν=1

∇ν
(
|Ψ|2 · vnν

)
= 0, (2)

where veξ(r,R, t) = jξ/|Ψ|2 and vnν (r,R, t) = Jν/|Ψ|2, and
jξ(r,R, t) and Jν(r,R, t) are respectively the ξ, ν−th compo-
nents of the electronic and nuclear probability current densi-
ties.
Sampling the initial wave function, Ψ(r,R, t0), according to
the Quantum Equilibrium Hypothesis [1],

|Ψ(t0)|2 = lim
Ω→∞

1

Ω

Ω∑
α=1

δ(r− rα(t0))δ(R−Rα(t0)), (3)

guarantees that any observable can be exactly computed, at
any time, from the following trajectories:

rαξ (t) = rαξ (t0) +

∫ t

t0

veξ(r
α(t′),Rα(t′), t′)dt′, (4)

Rα
ν (t) = Rα

ν (t0) +

∫ t

t0

vnν (rα(t′),Rα(t′), t′)dt′. (5)

THE CONDITIONAL WAVE FUNCTION
Theorem.— Any nulcear trajectory, Rα

ν , can be equivalently obtained from the following non-unitary
conditional wave functions,

ψn(R, t; rα) = (P̂αe ⊗ 1̂)Ψ(r,R, t), (6)

being P̂αe = |rα〉〈rα| projectors acting on the electronic subspace and fulfilling an overall unitary
condition,

∑∞
α=1 P̂

α
e = 1̂. The wave functions in (6) evolve non-unitarily obeying:

idtψn(R, t; rα) =
{
T̂n + Ŵ (rα,R, t)

}
ψn(R, t; rα) + T̂eΨ(r,R, t)

∣∣
rα

+ i

Ne∑
ξ=1

∇ξΨ(r,R, t)
∣∣
rα
· ṙαξ . (7)

Notice that the above decomposition can be subsequently used to split up equation (7) into single-
particle conditional wave functions of the same species ψn,ν(Rν , t; r

α,Rα

−ν
) [2,3].

CONNECTION WITH THE EXACT TDPES
Corollary.— Factorizing the full wave function as Ψ(r,R, t) = ΦR(r, t)χ(R, t), the exact solution of (7)
can be rewritten in terms of unitary electronic and nuclear wave functions, ΦRα(r, t) and χ(R, t), obeying

idtΦRα(r, t) =

{
T̂e + Ŵ (r,Rα, t)− i

∂tχ(Rα, t)

χ(Rα, t)
+
T̂nΨ

Ψ

∣∣∣∣∣
Rα

+ i

Nn∑
ν=1

∇νΦR

ΦR

∣∣∣∣∣
Rα

· Ṙα
ν

}
ΦRα(r, t), (8)

i∂tχ(R, t) =

{
Nn∑
ν=1

1

2Mν

(
− i∇ν + Aν(R, t)

)2
+Wn

ext(R, t) + ε(R, t)

}
χ(R, t), (9)

where Aν(R, t) and ε(R, t) are respectively the time-dependent Berry connections and the exact TD-
PES defined in [4]. Notice that Ṙα

ν = vnν (rα,Rα, t), and cannot be computed from χ(R, t) alone.

AN HERMITIAN PROPAGATION SCHEME
We consider the hermitian limit of (7). We then introduce an auxiliary con-
ditional wave function ψe(r, t;Rα) = (1̂⊗ P̂αn )Ψ(r,R, t) approximated also
to evolve unitarily. We are left with two coupled equations of motion:

idtψn(R, t; rα) =
{
T̂n + Ŵ (rα,R, t)

}
ψn(R, t; rα), (10)

idtψe(r, t;R
α) =

{
T̂e + Ŵ (r,Rα, t)

}
ψe(r, t;R

α), (11)

Equations (10) and (11) are formally equivalent to solve an approximated
equation of motion for Φ̃Rα(r, t)

idtΦ̃Rα =

{
T̂e + Ŵ (r,Rα, t)− i

∂tχ̃(Rα, t)

χ̃(Rα, t)

}
Φ̃Rα , (12)

together with an equation of motion for χ̃(R, t) identical to (9) but with an
approximated TDPES, ε̃(R, t), defined as

ε̃(R, t) = ε(R, t)−

〈
T̂e − i

Ne∑
ξ=1

∇ξΦ̃R

Φ̃R

∣∣∣
rα
· ṙα
〉

rα

. (13)

FUTURE WORK
We are currently trying to improve the algorithm by including some non-
hermitian effects into equations (10) and (11). The conditional decomposi-
tion used in this work can be, in principle, formulated within any scheme
with an underlying continuity equation. In this regard, we have also started
to derive a set of conditional equations of motion departing from the time-
dependent Kohn-Sham scheme for multi-component systems [6].

TEST MODEL: THE SHIN-METIU HAMILTONIAN

Ŵ (r,R) =
1

|L
2
−R|

+
1

|L
2

+R|
−
erf
( |R−r|

Rf

)
|R− r| −

erf
( |r−L

2
|

Rr

)
|r − L

2
|
−
erf
( |r+L

2
|

Rl

)
|r + L

2
|

. (14)
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