Magneto-optical phenomena

> Faraday effect: Different refractive indices for left and right-circularly polarized light $=>$ Rotation of the polarization plane of linearly polarized light.

$$
\Delta \theta \approx-2 \pi \frac{\Omega d}{c} \operatorname{lm}\left[\left\langle\tilde{\alpha}_{X \gamma}(-\Omega ; \Omega)\right\rangle\right]
$$

$>$ Magnetic circular dichroism (MCD): Different adsorption of left and right$\frac{\text { circularry polarized light }}{}=>$ Transtormation of linearly polarized light to elliptically polarized light

$$
\eta \approx 2 \pi \frac{\Omega d}{c} \operatorname{Re}\left[\left\langle\tilde{\alpha}_{x \gamma}(-\Omega ; \Omega)\right\rangle\right]
$$

c is the speed of light
$\left\langle\tilde{\alpha}_{x \gamma}(-\Omega ; \Omega)\right\rangle \quad \begin{aligned} & \text { is the orientational average of asymmetrized polarizability for } \\ & \text { the sample subjected to the electric fietd in the } X Y \text { plane }\end{aligned}$
To the first order in magnetic field $\quad \tilde{\alpha}_{v u}=\tilde{\alpha}_{v 1}^{o}+\tilde{\alpha}_{v y}^{B} B_{y}$
For closed shell systems,

$$
\left\langle\tilde{\alpha}_{x \gamma}\right\rangle=\frac{1}{6} B e_{v y y} \tilde{\alpha}_{y y}^{B}
$$

Magneto-optical response of finite systems

Interactions with the electomagnetic wave and magnetic field can be considered as perturbations [1,2]
$\begin{gathered}H=H_{0}+V_{E}+V_{B}\end{gathered} H_{0}=\frac{p^{2}}{2 m_{e}}+V(\bar{x}) \quad V_{E}=\mu_{\mu} E_{\mu} \quad V_{B}=e_{\alpha \beta \beta} M_{\alpha \beta} B_{\gamma}$

$G_{l}^{\measuredangle}=\left\{\begin{array}{l}1, l=\text { occ } \\ 0, l=\text { unocc }\end{array} \quad G_{l}^{\zeta} G_{n+\Omega}^{R}=\frac{G_{i}^{\zeta}}{\varepsilon_{l}-\varepsilon_{n}+\hbar \Omega+i \delta} \quad G_{l}^{\zeta} G_{n-\Omega}^{\Lambda}=\frac{G_{l}^{\zeta}}{\varepsilon_{l}-\varepsilon_{n}-\hbar \Omega-i \delta}\right.$
 $\mu_{l l}^{v}=\left\langle\psi_{i}\right| \mu_{l}\left|\psi_{i}\right\rangle=e\left\langle\psi_{l}\right| x_{v}\left|\psi_{l}\right\rangle \quad M_{l l}^{\alpha \beta}=\left\langle\psi_{l}\right| M_{a \beta}\left|\psi_{l}\right\rangle=\frac{e}{2 c}\left\langle\psi_{i}\right| x_{a} V_{\beta}\left|\psi_{l}\right\rangle$
Problem for periodic systems: $\left\langle\langle | x_{x} \mid l\right\rangle=$?
The position operator \hat{x} and, consequently, operators of momenta $\hat{\mu}$ and \hat{M} are Id defined under periodic conditions =>
A new unified approach using a gauge-invariant expression for the position operator should be developed.

Green function in electromagnetic fields

$\frac{\text { Uniform magnetic field }}{\left[\hbar \omega-\frac{1}{2 m_{e}}\left(i \hbar \delta_{\alpha}+\frac{e}{c} A_{\alpha}\right)^{2}-V(\vec{x})\right] G\left(\vec{x}, \vec{x}^{\prime}\right)=\delta\left(\vec{x}-\vec{x}^{\prime}\right)}$

$G\left(\vec{x}, \vec{x}^{\prime}\right)=\exp \left[i \frac{e}{\hbar c} \int_{0}^{\prime} \tilde{A}(\vec{\xi}) \frac{d \vec{\xi}}{d \lambda} d \lambda\right]_{\text {Greenfunction with }} \tilde{\tilde{G}\left(\vec{x}, \vec{x}^{\prime}\right)} \quad \overrightarrow{x^{\prime}}+\lambda\left(\vec{x}-\vec{x}^{\prime}\right)$ Greenfunction with
lattice translational symmetry
$-\frac{\partial}{\partial x_{\alpha}} \int_{0}^{1} A_{v}(\vec{\xi}) \frac{d \xi^{v}}{d \lambda} d \lambda=-A_{\alpha}(\vec{x})+\int_{0}^{1} F_{v \beta}\left(\vec{\xi} \frac{\partial \xi_{v}}{\partial x_{\alpha}} d \xi_{\beta} d \lambda \quad \begin{array}{c}F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha} \\ F_{\alpha \beta}=e_{\alpha \beta \gamma} B_{\gamma}\end{array}\right.$
$=-A_{\alpha}(\vec{x})+\left(x_{\beta}-x_{\beta}^{\prime}\right) \int_{0}^{1} F_{\alpha \beta}(\vec{\xi}) \lambda d \lambda \approx-A_{\alpha}(\vec{x})+\frac{1}{2} F_{\alpha \beta}\left(x_{\beta}-x_{\beta}^{\prime}\right)$
$\left[\hbar \omega-H_{0}-\frac{i \hbar e}{2 m_{c} c} F_{\alpha \beta}\left(x_{\beta}-x_{\beta}^{\prime}\right) \partial_{x_{i}}\right] \tilde{G}\left(\vec{x}, \vec{x}^{\prime}\right)=\delta\left(\vec{x}-\vec{x}^{\prime}\right)$
$\delta \tilde{G}_{B}\left(\vec{x}, \vec{x}^{\prime}\right)=\frac{\hbar e}{2 m_{e} c} F_{\alpha \beta} \int d \vec{x}_{1} G_{0}\left(\vec{x}, \vec{x}_{1}\right)\left(x_{1 \beta}-x_{\beta}^{\prime}\right) i \partial_{x_{1}} G\left(\vec{x}_{1}, \vec{x}^{\prime}\right)$
In crystal momentum representation $\quad V_{\alpha}=\frac{\partial H_{0}(\vec{k})}{\hbar \partial k_{\alpha}} \quad G_{0}(\omega)=\sum_{n} \frac{|n\rangle\langle n|}{\hbar \omega-\varepsilon_{n}}$
$\delta \tilde{G}_{B}=-\frac{e}{2 c} e_{\alpha \beta \beta \gamma} B_{\gamma} G_{0}(\omega) V_{\alpha}\left[x_{\beta}, G_{0}(\omega)\right]=-\frac{i e}{2 c} e_{\alpha \beta_{\beta}} B_{\gamma} G_{0}(\omega) V_{\alpha} \frac{\partial G(\omega)}{\partial k_{\beta} \text { agre }}$

Density of states

$\delta \rho=\int \frac{d \omega d \vec{k}}{(2 \pi)^{4} i} \operatorname{Tr}\left(\delta G_{B}\right)=e_{\alpha \beta \beta} \frac{e B_{z}}{\hbar c} \int \frac{d \vec{k}}{(2 \pi)^{3}} \sum\left\langle=\frac{\partial l}{}\left\langle\left.\frac{\partial l}{\partial k_{\alpha}} \right\rvert\, \frac{\partial l}{\partial k_{\beta}}\right\rangle=\frac{e}{\hbar c} \frac{B C_{1}}{2 \pi} \quad\right.$ Chem number
Electromagnetic wave $\quad \vec{E}=\vec{E}_{\Omega} \exp (i \vec{q} r-i \Omega t) \quad \vec{B}=\frac{\vec{q}}{\omega} \times \vec{E} \quad q \rightarrow$ $\frac{\partial}{\partial t} \int_{0}^{1} A_{\mu}(\bar{\xi}) \frac{d \xi_{\mu}}{d \lambda} d \lambda=-c\left(x_{\mu}-x_{\mu}^{\prime}\right) \int_{0}^{1} E_{\mu}(\bar{\xi}) d \lambda \approx-c\left(x_{\mu}-x_{\mu}^{\prime}\right) E_{\mu}$
$\delta \tilde{G}_{E}=-e E_{\mu} G_{0}(\omega+\Omega)\left[x_{\mu}, G(\omega)\right]=-i e E_{\mu} G_{0}(\omega+\Omega) \frac{\partial G(\omega)}{\partial k_{\mu}}$

Optical response

The polarizability can be extracted from the current response
$j_{v}(\Omega)=e \operatorname{Tr} \int \frac{d \omega}{2 \pi i}\left\{V_{0 v} \delta \tilde{G}_{E}^{e}\right\}=\sigma_{v \mu} E_{\mu} \Rightarrow \alpha_{v \mu}=i \sigma_{v \mu} / \Omega$
Traditionally, it is assumed that $x_{\mu} \rightarrow i \partial / \partial k_{\mu}$

Indeed for $n \neq l$
$\left\langle\langle n| \bar{x}_{\mu} \mid l\right\rangle=\frac{\langle n|\left[H_{0}, x_{\mu}\right]|l\rangle}{\varepsilon_{n \mathrm{k}}-\varepsilon_{\text {k }}}=-i \frac{\langle n| \partial H_{0} / \partial k_{\mu}|l\rangle}{\varepsilon_{n \mathrm{k}}-\varepsilon_{l \mathrm{k}}}=i\left(\left\langle n \left\lvert\, \frac{\partial l}{\partial k_{\mu}}\right.\right\rangle-\left\langle l \left\lvert\, \frac{\partial l}{\partial k_{\mu}}\right.\right\rangle\right)$
However, as $\left[\bar{x}_{\mu}, \bar{x}_{v}\right] \neq 0$, it is more convinient to derive the response using a
different formulation.
According to the properties of Fourier transform, for any function F

$$
\left[x_{\mu}, F(\omega)\right]=i \frac{\partial F(\omega)}{\partial k_{\mu}}
$$

Let us introduce the position "superoperator" that acts on whole matrix elements $X_{\mu} R(\omega)|n\rangle=i \frac{\partial R(\omega)|n\rangle}{\partial k_{\mu}} \quad\left[X_{\mu}, X_{v}\right]=0 \quad\left[V_{\mu}, X_{v}\right]=-\frac{i \hbar}{m} \delta_{\mu v}$
$\sigma_{v \mu}=i \frac{e^{2} \Omega}{\hbar} \int \frac{d \vec{k}}{(2 \pi)^{3}} \sum_{l, n} G_{l}^{\kappa}\langle l|\left\{X_{v} G_{n,+\Omega}^{R} X_{\mu}+X_{\mu} G_{n, \Omega}^{A} X_{v}|l\rangle\right\}$
$=i \frac{e^{2}}{\hbar} \int \frac{d \vec{k}}{(2 \pi)^{3}} \sum_{l, n} G_{l}^{<}\{\underbrace{\left\{\frac{\partial l}{\partial k_{v}}\left|\frac{\partial l}{\partial k_{\mu}}\right\rangle-\left\langle\left.\frac{\partial l}{\partial k_{\mu}} \right\rvert\, \frac{\partial l}{\partial k_{v}}\right\rangle\right.}_{\begin{array}{c}\text { Berry curvature }=> \\ \text { Anomalous Hall effect }[4]\end{array}}\rangle \underbrace{\left\langle\hbar \Omega\langle l|\left(\bar{x}_{v} G_{n,+\Omega}^{R} \bar{x}_{\mu}+\bar{x}_{\mu} G_{n, \Omega}^{A} \bar{x}_{v}\right) \mid l\right\rangle}_{\begin{array}{c}\text { Optical response } \\ \text { for finite systems }\end{array}}\}$

Magneto-optical response

Electromagnetic wave

 +uniform magnetic field
$\delta \tilde{G}_{E B}=-\frac{e}{2 c} e_{\alpha \beta \beta} B_{\gamma} G_{0}(\omega) V_{\alpha}\left[x_{\beta}, \delta \tilde{G}_{E}(\omega)\right]-e E_{\mu} G_{0}(\omega+\Omega)\left[x_{\mu}, \delta \tilde{G}_{B}(\omega)\right]$ $=\frac{e^{2}}{2 c} e_{\alpha \beta \beta} E_{\mu} B_{\gamma}\left\{G_{+2}^{0} V_{\alpha}\left[x_{\beta}, G_{+\Omega}^{0}\left[x_{\mu}, G\right]\right]+G_{+2}^{0}\left[x_{\mu}, G^{0} V_{\alpha}\left[x_{\beta}, G\right]\right]\right\}$ $j_{v}(\Omega)=e \operatorname{Tr} \int \frac{d \omega}{2 \pi i}\left\{V_{0 v} \delta \tilde{G}_{e z r}\right\}=\sigma_{v y y} E_{\mu} B_{y} \quad \Rightarrow \alpha_{v y r}=i \sigma_{v y y} / \Omega$ $\sigma_{v y y}=-i \frac{e^{3} \Omega}{2 c} e_{a \beta \beta} B_{y} \int \frac{d \vec{k}}{(2 \pi)^{3}} \sum_{l, n, m} G_{l}^{<}\langle l|\left\{X_{v} G_{n,+\Omega}^{R} X_{\mu} G_{m, 0}^{R} \tilde{\tilde{V}}_{\alpha} X_{\beta}+X_{\mu} G_{n, \Omega}^{A} \tilde{\tilde{\sigma}}_{\alpha} X_{\beta} G_{m, \Omega}^{A} X_{v}\right.$ $\tilde{V}_{\alpha} X_{\beta} G_{n, 0}^{A} X_{\nu} G_{m+2}^{R} X_{\mu}+X_{\mu} G_{n+\Omega}^{A} X_{\nu} G_{m+0}^{R} \tilde{V}_{\alpha} X_{\beta}$ $G_{i} \tilde{V}_{\alpha}=\frac{\partial\left(H_{0}+\varepsilon_{k}\right)}{\hbar \partial k_{\alpha}}$ $\left.X_{v} G_{n+2}^{R} \tilde{F}_{\alpha} X_{\beta} G_{m, \Omega}^{R} X_{\mu}+\tilde{V}_{\alpha} X_{\beta} G_{n, 0}^{A} X_{\mu} G_{m, \Omega}^{A} X_{v}\right\}|\rangle$

$$
-i G_{l}^{E}\langle l| \tilde{V}_{\alpha}\left|\partial l / \partial k_{\beta}\right\rangle\langle l| X_{v}\left(G_{n+\Omega}^{R}\right)^{2} X_{\mu}+X_{\mu}\left(G_{n-\Omega}^{A}\right)^{2} X_{v}|l\rangle
$$

$\left.-2 i G_{l}^{\llcorner }\left\langle\partial l / \partial k_{\alpha} \mid \partial l / \partial k_{\beta}\right\rangle\left\langle\langle | X_{\nu} G_{n, \Omega}^{R} X_{\mu}+X_{\mu} G_{n, \Omega}^{A} X_{v} \mid l\right\rangle\right\}$
Berry curvature => \qquad Optical response
Density of states in magnetic field
In terms of standard operators, the same expression is derived as follows
$\left.\sigma_{v \mu \gamma}=e^{2} \operatorname{Tr} \int \frac{d \vec{k}}{(2 \pi)^{3}}\right\}_{B,+\Omega}^{R}\left[\bar{x}_{\mu}, G^{\llcorner }\right] V_{v}-\left[\bar{x}_{\mu}, G_{B, \Omega}^{R}\right] G_{B}^{<} V_{v}+G_{B}^{<}\left[\bar{x}_{\mu}, G_{-\Omega}^{A}\right] V_{v}$
$-\left[\bar{x}_{\mu}, G^{<}\right] G_{B, \Omega}^{A} V_{v}-\delta_{\mu v}\left(G_{+\Omega}^{R} G_{B}^{\llcorner }+G^{<} G_{B,-\Omega}^{A}\right)$
$+\delta_{a v}\left(G_{B,+\Omega}^{R}\left[\bar{x}_{\mu}, G^{<}\right]+G_{B}^{<}\left[\bar{x}_{\mu}, G_{-\Omega}^{A}\right]\right)$
$\left.-\partial_{k_{\alpha}}\left(G_{\beta^{\prime}+\Omega}^{R}\left[\bar{x}_{\mu}, G^{<}\right] V_{v}+G_{B^{\prime}}^{<}\left[\bar{x}_{\mu}, G_{-\Omega}^{A}\right] V_{v}\right)\right\}$
$\left.\left.G_{B}^{<}(\omega)=(A) G_{n}^{R} G_{l}^{<}\langle n| \tilde{V}_{\alpha} \bar{x}_{\beta}\left|\lambda+G_{n}^{<} G_{l}^{A}\langle n| \bar{x}_{\beta} \tilde{V}_{\alpha}\right| l\right\rangle-\partial G_{l}^{<} / \partial \omega\langle l| \tilde{V}_{\alpha} \bar{x}_{\beta}| \rangle\right\rangle$,
(B) $-\sum_{m} G_{m}^{<}\langle n| \bar{x}_{\alpha}|m\rangle\langle m| \bar{x}_{\beta}|l\rangle-\delta_{l m} G_{l}^{\langle }\langle l| \bar{x}_{\alpha} \bar{x}_{\beta}|l\rangle$
) Matrix elements
of magnetic mome
(C) $+2 \delta_{l_{h}} G_{l}^{\in}\langle l| \bar{x}_{\alpha} \bar{x}_{\beta}|l\rangle+2 \partial_{\infty} G_{l}^{<} \partial_{k_{k}} E_{l}\langle n| \bar{x}_{\beta}|l\rangle \quad$ of mag (B) $-\sum_{m}\left(G_{m}^{R}-G_{n}^{R}\right)\langle n| \bar{x}_{\alpha}|m\rangle\langle m| \bar{x}_{\beta}|l\rangle \quad(B)-\sum_{m}\left(G_{m}^{A}-G_{l}^{A}\right)\langle n| \bar{x}_{\alpha}|m\rangle\langle m| \bar{x}_{\beta}|l\rangle$
(D) $-\langle n| \bar{x}_{\beta}|\nu\rangle\left(\left(G_{n}^{R}\right)^{2} \partial_{k_{\alpha}} E_{n}+\left(G_{l}^{A}\right)^{2} \partial_{k_{\alpha}} E_{l}\right) \quad$ (D) $-\langle n| \bar{x}_{\beta}|\lambda\rangle\left(\left(G_{n}^{A}\right)^{2} \partial_{k_{\alpha}} E_{n}+\left(G_{l}^{R}\right)^{2} \partial_{k_{\alpha}} E_{l}\right)$
$G_{B^{\prime}}^{<}(\omega)=(B)\langle n| \bar{x}_{\beta}|\nu\rangle\left(G_{l}^{<}-G_{n}^{\kappa}\right)$
$G_{B^{\prime}}^{R}(\omega)=(B)\langle n| \bar{x}_{\beta}|l\rangle\left(G_{l}^{R}-G_{n}^{R}\right)$
(D) $\left(G_{l}^{R}\right)^{2} \partial_{\kappa_{\beta}} E_{l}$
$\alpha_{v y \gamma}=e_{\alpha \beta \gamma} \int \frac{d \vec{k}}{(2 \pi)^{3}} \sum_{l, n, m}$
$\bar{\mu}_{l n}^{\vee} \bar{\mu}_{n m}^{\mu} \bar{M}_{m l}^{\alpha \beta}\left(G_{l}^{<} G_{n,+\Omega}^{R} G_{m, 0}^{R}+G_{l, \Omega \Omega}^{A} G_{n}^{<} G_{m, \Omega}^{A}+G_{l, 0}^{A} G_{n,+\Omega}^{R} G_{m}^{\leftarrow}\right)$ $+\bar{\mu}_{l n}^{A} \bar{\mu}_{m m}^{v} \bar{M}_{m l}^{\alpha \beta}\left(G_{l}^{<} G_{n,-\Omega}^{A} G_{m, 0}^{R}+G_{l+, \Omega}^{R} G_{n}^{<} G_{m, \Omega \Omega}^{R}+G_{l, 0}^{A} G_{n,+\Omega}^{A} G_{m}^{<}\right)$
$+G_{l}^{\kappa} \overline{l l}_{l n}^{\nu} G_{n,+\Omega}^{R} \partial_{k_{\mu}}\left(\bar{M}_{n l}^{\alpha \beta} G_{n,+0}^{R}\right)-G_{l, \Omega}^{A} \bar{M}_{l n}^{\nu} G_{n}^{<} \partial_{k_{\mu}}\left(\bar{M}_{n l}^{\alpha \beta} G_{l+0}^{A}\right)$
$+G_{l}^{\kappa} \bar{\mu}_{l n}^{\mu} G_{n,-\Omega}^{A} \partial_{k_{v}}\left(\bar{M}_{n l}^{\alpha \beta} G_{n,+0}^{R}\right)-G_{l+\Omega}^{R} \bar{\mu}_{l n}^{\mu} G_{n}^{\kappa} \partial_{k_{v}}\left(\bar{M}_{n l}^{\alpha \beta} G_{l,+0}^{A}\right)$
$+G_{l}^{<} \bar{\mu}_{l n}^{v} G_{n,+\Omega}^{R} \tilde{V}_{n m}^{\alpha} \partial_{k_{\beta}}\left(\bar{\mu}_{m l}^{\mu} G_{m, \Omega}^{R}\right)+G_{l}^{\kappa} \bar{\mu}_{m n}^{\mu} G_{n, \Omega}^{A} \tilde{V}_{n m}^{\alpha} \partial_{k_{\beta}}\left(\bar{\mu}_{m l}^{v} G_{m, \Omega}^{A}\right)$
$-\frac{i e}{\hbar \Omega} \partial_{k_{\mu}}\left(G_{l}^{<} \bar{\mu}_{l n}^{\nu} G_{n,+0}^{R} \bar{M}_{n l}^{\alpha \beta}+G_{l}^{<} \bar{M}_{l n}^{\alpha \beta} G_{n,-\Omega}^{A} \bar{\mu}_{n l}^{v}\right)+\frac{i e}{\hbar \Omega} \partial_{k_{v}}\left(G_{l}^{<} \bar{M}_{l n}^{\mu} G_{n,+}^{R} \bar{M}_{n l}^{\alpha \beta}+G_{l}^{<} \bar{M}_{l n}^{\alpha \beta} G_{n, \Omega}^{R} \bar{M}_{n l}^{\mu}\right)$
$+\frac{i e}{2 c} \partial_{k_{\beta}}\left(G_{l}^{<} \tilde{V}_{l n}^{\alpha} G_{n+0}^{A} \bar{\mu}_{n m}^{v} G_{m,+\Omega}^{R} \bar{\mu}_{m l}^{\mu}+G_{l}^{<} \tilde{V}_{l n}^{\alpha} G_{n,+0}^{A} \bar{\mu}_{n m}^{\mu} G_{m, \Omega}^{A} \bar{\mu}_{m l}^{\nu}\right)$
$+2\langle l| \bar{x}_{\alpha} \bar{x}_{\beta}|l\rangle\left(\bar{\mu}_{m}^{v} \bar{\mu}_{n=}^{\mu} G_{n, \Omega}^{R} G_{l}^{<}+\bar{\mu}_{l n}^{\mu} \bar{\mu}_{n l}^{v} G_{l}^{<} G_{n, \Omega}^{A}\right)$
$+\left(\langle l| \bar{x}_{\beta} \bar{x}_{v}|l\rangle-\langle l| \bar{x}_{v} \bar{x}_{\beta}|l\rangle\right)\left(\bar{\mu}_{l n}^{\alpha} \bar{\mu}_{n l}^{\mu} G_{n, \Omega}^{R} G_{l}^{<}+\bar{\mu}_{m n}^{\mu} \bar{\mu}_{n i}^{\alpha} G_{l}^{<} G_{n, \Omega}^{A}\right)$
$+\left(\langle l| \bar{x}_{\beta} \bar{x}_{\mu}|l\rangle-\langle l| \bar{x}_{\mu} \bar{x}_{\beta}|l\rangle\right)\left(\bar{\mu}_{m n}^{v} \bar{\mu}_{n l}^{\alpha} G_{n, \Omega \Omega}^{R} G_{l}^{<}+\bar{\mu}_{l n}^{\alpha} \bar{\mu}_{n l}^{v} G_{l}^{<} G_{n, \Omega}^{A}\right)$

Matrix elements of electic and magnetic dipole moments of Bloch states (in agreement with $[5,6]$)
$\bar{\mu}_{n m}^{\mu} G_{l}^{<}=e\left\langle\psi_{n}\right| x_{\mu}-\left\langle\psi_{l}\right| x_{\mu}\left|\psi_{l}\right\rangle\left|\psi_{m}\right\rangle G_{l}^{<} \quad \quad \bar{M}_{n m}^{\alpha \beta} G_{l}^{<}=\left(M_{n m}^{\alpha \beta}-M_{l l}^{\alpha \beta}\right) G_{l}^{<}$ finite system $M_{n m}^{\alpha \beta} G_{l}^{<}=-\frac{e}{2 c}\left\langle\psi_{n}\right| V_{\alpha}\left(x_{\beta}-\left\langle\psi_{l}\right| x_{\beta}\left|\psi_{l}\right\rangle\right)\left|\psi_{m}\right\rangle G_{l}^{<}$
$\bar{\mu}_{n m}^{\mu} G_{l}^{<}=e\left\langle n \mid \partial_{k_{\mu}}-\left\langle l \mid \partial_{k_{\mu}}\right\rangle\right\rangle|m\rangle G_{l}^{<} \quad \bar{M}_{n m}^{\alpha \beta} G_{l}^{<}=\left(M_{n m}^{\alpha \beta}-M_{l l}^{\alpha \beta}\right) G_{l}^{<}$ $M_{n m}^{\alpha \beta} G_{l}^{<}=-\frac{e}{2 c \hbar}\langle n| \partial_{k_{\alpha}}\left(H+\varepsilon_{l k}\right)\left(\partial_{k_{\beta}}-\left\langle l \mid \partial_{k_{\beta}} l\right\rangle\right)|m\rangle G_{l}^{<}$

Computational scheme

Corrections to density matrix
$i \hbar \partial_{t} \rho-\left[H_{0}, \rho\right]=\left[H_{1}, \rho\right]$

$$
\rho\left(\vec{x}, \vec{x}^{\prime}\right)=\exp \left[i \frac{e}{\hbar c} \int_{\tilde{x}}^{\vec{x}} \vec{A}(\vec{\xi}) d \vec{\xi}\right] \tilde{\rho}\left(\vec{x}, \vec{x}^{\prime}\right)
$$

Electromagnetic field $\quad \pm \hbar \Omega \delta \tilde{\rho}_{\mathbf{k} \pm \Omega}-\left[H_{0}, \delta \tilde{\rho}_{\mathbf{k}, \pm \Omega}\right]=-i e E_{\mu} \frac{\partial \tilde{\rho}_{\mathbf{k} \pm \Omega}}{\partial k_{\mu}}$
Uniform magnetic field

$$
-\left[H_{0}, \delta \tilde{\rho}_{\mathbf{k}}\right]=-\frac{i e}{2 c} e_{\alpha \beta \beta_{\gamma}} B_{\gamma}\left(\frac{\partial \tilde{\rho}_{\mathbf{k}}}{\partial k_{\alpha}} V_{\beta}-V_{\alpha} \frac{\partial \tilde{\rho}_{\mathbf{k}}}{\partial k_{\beta}}\right)
$$

Terms within conduction or valence bands do not need solution of Liouville equation

$$
\rho=\rho \rho \quad \Rightarrow \delta \tilde{\rho}_{D}=-\frac{i e}{2 c \hbar} e_{\alpha \beta_{\gamma}} B_{\gamma} \frac{\partial \tilde{\rho}_{\mathbf{k}}}{\partial k_{\alpha}} \frac{\partial \tilde{\rho}_{\mathbf{k}}}{\partial k_{\beta}}
$$

1. First-order corrections based on approaches $[5,7,8]$
B Terms within conduction (CC) and valence (VV) bands

$$
\left.\begin{array}{cc}
\tilde{\rho}_{D}^{(1)}=-\frac{i e}{2 c \hbar} e_{\alpha \beta \gamma} B_{\gamma} \frac{\partial \rho^{(0)}}{\partial k_{\alpha}} \frac{\partial \rho^{(0)}}{\partial k_{\beta}} & \tilde{\rho}_{B}^{(1)}(V V)=-\rho^{(0)} \tilde{\rho}_{D}^{(1)} \rho^{(0)} \\
\tilde{\rho}_{B}^{(1)}(C C)=\left(1-\rho^{(0)}\right) \tilde{\rho}_{D}^{(1)}
\end{array}\right] \begin{array}{cc}
P_{c}=\left(1-\rho^{(0)}\right) \\
\text { Terms between conduction and valence bands (CV, VC) } \\
\left|\eta_{i k}^{(1)}\right\rangle=P_{c} \tilde{\rho}_{B}^{(1)}\left|u_{i k}^{(0)}\right\rangle & \left.\varepsilon_{v k}^{(0)}-H_{0}\right)\left|\eta_{i k}^{(1)}\right\rangle=P_{c} \frac{i e}{2 c} e_{\alpha \beta \gamma} B_{\gamma}\left(V_{\alpha} \frac{\partial \rho^{(0)}}{\partial k_{\beta}}-\frac{\partial \rho^{(0)}}{\partial k_{\alpha}} V_{\beta}\right)\left|u_{i k}^{(0)}\right\rangle \\
\tilde{\rho}_{B}^{(1)}(V C)=\sum_{v}\left|u_{i k}^{(0)}\right\rangle\left\langle\eta_{v k}^{(1)}\right| & \tilde{\rho}_{B}^{(1)}(C V)=\sum_{v}\left|\eta_{i k}^{(1)}\right\rangle\left\langle u_{i k}^{(0)}\right|
\end{array}
$$

E Only terms between conduction and valence bands (CV, VC) are non-zero
$\left|\xi_{v k+\Omega}^{(1)}\right\rangle=P_{c} \tilde{\rho}_{E \pm \Omega}^{(1)}\left|u_{v k}^{(0)}\right\rangle \quad\left(\pm \hbar \Omega-H_{0}+\varepsilon_{v k}^{(0)}\right)\left|\xi_{v k+\Omega}^{(1)}\right\rangle=-P_{c} i e E_{\mu, \pm \Omega} \frac{\partial \rho^{(0)}}{\partial k_{\mu}}\left|u_{v k}^{(0)}\right\rangle$ $\tilde{\rho}_{E, \pm \Omega}^{(1)}(V C)=\sum_{v}\left|u_{v k}^{(0)}\right\rangle\left\langle\xi_{i k, F \Omega}^{(1)}\right| \quad \tilde{\rho}_{E, \pm \Omega}^{(1)}(C V)=\sum_{v}\left|\xi_{v k+\Omega}^{(1)}\right\rangle\left\langle u_{v \mathbf{k}}^{(0)}\right|$
2. Second-order corrections

EB $\quad \tilde{\rho}_{D+\Omega \Omega}^{(2)}=\tilde{\rho}_{B}^{(1)} \tilde{\rho}_{E \pm \pm \Omega}^{(1)}+\tilde{\rho}_{E, \pm \Omega}^{(1)} \tilde{\rho}_{B}^{(1)}-\frac{i e}{2 c \hbar} e_{\alpha \beta \gamma} B_{\gamma}\left(\frac{\partial \tilde{\rho}_{E \pm \Omega}^{(1)}}{\partial k_{\alpha}} \frac{\partial \rho^{(0)}}{\partial k_{\beta}}+\frac{\partial \rho^{(0)}}{\partial k_{\alpha}} \frac{\partial \tilde{\rho}_{E \pm \Omega}^{(1)}}{\partial k_{\beta}}\right)$ $\tilde{\rho}_{E B, \pm \Omega}^{(2)}(V V)=-\rho^{(0)} \tilde{\rho}_{D \pm \Omega}^{(2)} \rho^{(0)} \quad \tilde{\rho}_{E B, \pm \Omega}^{(2)}(C C)=\left(1-\rho^{(0)}\right) \tilde{\rho}_{D \pm \Omega}^{(2)}\left(1-\rho^{(0)}\right)$ $\left|\eta_{i k \pm \Omega}^{(2)}\right\rangle=P_{c} \tilde{\rho}_{E B \pm \Omega}^{(2)}\left|u_{i k}^{(0)}\right\rangle$
$\left(\pm \hbar \Omega+\varepsilon_{\mathrm{kk}}^{(0)}-H_{0}\right)\left|\eta_{\mathrm{kk}, \pm 2}^{(2)}\right\rangle=P_{c}\left\{\frac{i e}{2 c \hbar} e_{\alpha \beta \gamma} B_{\gamma}\left(V_{\alpha} \frac{\partial \tilde{\rho}_{E \pm \Omega}^{(1)}}{\partial k_{\beta}}-\frac{\partial \tilde{\rho}_{E \pm \Omega}^{(1)}}{\partial k_{\alpha}} V_{\beta}\right)-\right.$

$$
\left.i e E_{\mu, \pm \Omega} \frac{\partial \tilde{\rho}_{B}^{(1)}}{\partial k_{\mu}}\right\}\left|u_{v k}^{(0)}\right\rangle
$$

$$
j_{v, \pm \Omega}=e \int \frac{d \vec{k}}{(2 \pi)^{3}} \operatorname{Tr}\left\{V_{0 v} \tilde{\rho}_{E B \pm \Omega}^{(2)}\right\}=\sigma_{v \mu \gamma} E_{\mu, \pm \Omega} B_{\gamma}
$$

Conclusions

> A unified approach to calculation of all-order response to arbitrary electromagnetic fields both for periodic and molecular systems is developed within the formalism of non-equilibrium Green functions.
> The approach is applied to derive the expression for the magneto-optical response of insulating solids in the approximation of non-interacting electrons. The obtained formula is identical to the expression for molecular systems if the proper position and orbital magnetization operators are chosen.

- A computational scheme based on density matrix-perturbation theory is suggested. The scheme involves direct calculation of corrections to the density matrix elements within the occupied and unoccupied subspaces equation for corrections to the density matrix elements between the equation for corrections to the density matrix elements between the occupied and unoccupied subspaces.

References

1. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. Cambridge University

Press, Cambridge, 2004.
2. Press, Combridgein, K. 2004. . Coud, S. Coriani, P. Norman, J. Chem. Phys. 128, 094103 (2008).
 5. A. M. Essin, A. M. Turner, J. E. Moore, D. Vanderbilt, Phys. Rev. B B1,
6. J. Shi, G. Vignale, D. Xiao Q. Nu, Phys. Rev. Let. 99, , 197202 (2007).
M. Lazzeri, F. Mauri, Phys. Rev. B 68,161101 (2003)

Acknowledgements

We gratefully acknowedge the financial support from the Marie Curie International Incoming
Fellowship within the T^{T} European Com sunity Framework Programme (Grant Agreement PIIF-
GA-2012-326435 ResppatDisp), the European Research Council Advanced Grant DYNamo GA-2012-326435 RespSSatDispen, the European Research Council Avvanced Ggrant DYNamo
(ERC-2010-AdG-267374), Spanish Grants (FIS2010-21282-C02-01 and PIB2010US-00652), (ERC-2010-AdG-267374), Spanish Grants (FIS2010-21282-C02-01 and PIB2010US-00652),
Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-578-13), Ikerbasque and European
Commission proiects CRONOS (Grant number 280879-2 CRONOS CP-FPT).

