JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. B6, PAGES 13,581-13,594, JUNE 10, 1996

Horizontal viscoelastic-gravitational displacement due to
a rectangular dipping thrust fault in a layered Earth model
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Abstract. Calculations of horizontal displacements due to a rectangular finite thrust fault in a
viscoelastic-gravitational layered Earth model are presented. The Earth model consists of a single
elastic-gravitational layer overlying a viscoelastic-gravitational half-space. A review of the full three-
dimensional theoretical solutions is presented along with the explicit solutions for horizontal
displacements. Several examples of computations for dipping faults with various angles, and located
at different depths, are shown. The results indicate that viscoelasticity introduces a long-wavelength
component into the interseismic deformation field which is not present in published elastic techniques
and also that a proper consideration of gravity is necessary only for near-field computatlons at longer

periods of time. A pattern is found in the cumulative displacement of cycled earthquakes, which
indicates that the viscoelastic displacements are visible for longer recurrence time events and that
these may serve as a time index for the various stages between cycles.

Introduction

One important goal in crustal deformation research is to under-
stand the postseismic deformation following large earthquakes.
High-precision data obtained by modemn land- and space-based
mstrumentation provide a feasible monitoring technique for such
deformation processes, ially for horizontal movements.

Nur and Mavko [1974), Smith [1974), Bischke [1974], Rundle
[1978], Thatcher and Rundle [1979), Thatcher et al., [1980] and
Matsu'ura and Tanimoto [1980] focused on explaining crustal
motions in areas of thrust faulting. Tn most of the previous work
the omission of gravitational effects is justified [Rundle, 1982a]
because only deformation for the short time periods following
earthquakes was modeled. The gravitational effect must be
included for deformations that involve longer periods of time, for
the reason that gravity will affect both the magnitude and pattern
at longer periods of time, as shown in the following plots.

Thatcher and Rundle [1979) and Rundle and Thaicher [1980]
have made use of inelastic displacement models to explain
patterns of crustal deformation based on a numerical technique
developed by Rundle [ 1978]. This method enables one to calculate
surface displacements occurring after the insertion of a displa-
cement into a medium consisting of an elastic layer over a linear,
viscoelastic half-space.

The two principal defects in the work cited above were the lack
of inclusion of gravitational effects in the calculations and the
inability to calculate viscoelastic displacements for long periods of
time afterward (tens to hundreds of Maxwell times). For purely
elastic calculations, gravitational effects manifest themselves over
distances greater than 1000 km and thus have little relevance to
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deformation in the near-source region. However, this is not the
case for viscoelastic calculations [Rundle, 1981a, b], and for
viscoelastic-gravitational deformation the inclusion of gravity will
affect the postseismic displacement field even in the vicinity of the
fault [Yu, 1995].

A series of recent calculations have examined various aspects
of this problem. Ma and Kusznir [1992, 1993, 1994] simulate
multilayered relaxed viscoelastic gravitational models by setting
the elastic Lame parameters in one or more layers to zero. No time
dependence is examined. Cohen [1994] models the earthquake
cycle in thrust domains using a plane-strain finite element
calculation. Our present calculations extend these results to a
systematic examination of three-dimensional thrust faulting in
viscoelastic-gravitational models using the techniques developed
by Rundle [1981a].

Rundle [1980] explicitly solved the coupled elastic-
gravitational field equations and derived the displacements
resulting from the insertion of point sources in a layered half-
space. Rundle [1981a] obtained the solution of the coupled
viscoelastic-gravitational problem These solutions generally
proceed in three steps. First, the Green’s functions for the elastic-
gravitational field equations are computed. Next, the corres-
pondence principle that relates the elastic-gravitational solutions to
the Laplace-transformed viscoelastic-gravitational solutions is
applied. Upon completion of the inverse transform into the time
domain, the Green’s function is integrated over the finite source
region to obtain the time-dependent near-field displacements.
Rundle [1981a] collected the necessary numerical techniques and
produced calculations of the elastic dip-slip Green’s functions for
vertical deformation. He found that as i, the half-space rigidity,
decreases in magnitude, the absolute effects of gravity become
more important. This property implies that for the time-dependent
displacements which are the result of faulting in a viscoelastic
medium, the effects of gravity will only become important over
sufficiently long time intervals, e.g., when p has relaxed to some
small value.
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Rundle [1981a] compares the relative effects of nonzero value
of G, the gravitational constant, with g, surface acceleration due to
gravity, in modifying the purely elastic surface displacement.
Rundle [1982a] computes vertical displacements due to thrust
faulting in a viscoelastic-gravitational layered Earth model and
compares them to data from the south Kanto region of Japan.
Time-dependent horizontal deformations were not computed by
this technique, and high-precision observations of horizontal
deformation using space geodetic techniques make the need for
such a computation essential.

In the next sections we present a brief review of the theoretical
method outlined by Rundle [1980, 1981b, 1982a] and the
extension to horizontal viscoelastic-gravitational displacements
due to a rectangular thrust fault We then conclude with some
examples of theoretical computations.

Model

Rundle [1980] solves the elastic-gravitational problem for a
thrust fault in a layered elastic medium. Green’s functions, which
are the response of a point source for a layered medium, are
computed using propagator matrices [Thomson, 1950; Haskell,
1953; Gilbert and Backus, 1966] and source functions located at
an appropriate source depth. The necessary numerical techniques
were collected by Rundle [1981a], and calculations of the elastic
dip-slip Green’s finctions for vertical deformation were carried
out. One of the major difficulties encountered in that work was the
existence of poles in the integration of the Green’s function along
the strike and dip of the fault plane. The integration over the poles,
when they exist, can be accomplished using a simple technique
[Longman, 1960]. We have found that these poles play an
insignificant role in the solution and the speed of calculation can
be increased considerably by setting the kernels equal to zero at
these locations.

Rundle [1981a] found that for displacements due to dip-slip
faulting in a layered elastic-gravitational medium, self-gravitation
effects arising from the nonzero value of G were generally much
smaller than effects related to the surface gravitational acceleration
g (the "reduced problem"). We present a short summary of this
problem and its solution as given by Rundle [1981a].

Reduced Problem

This result is implemented by Rundle [1981b] by considering
the governing equations [Love, 1911, Rundle, 1980] and setting

N
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G =0, which implies that ¢, the gravitational potential, is constant

and gives as a result the following vector equation for an infinite

space:
Au+

VVu+

V(u e )-T'ge Vau=0 (1)

Hetegisthepextmbeddisp]acementinthedefoxmedcylindxical
coordinate system (7,6,2), and e, is the orthogonal unit vector in the
z direction. The method and technique used to solve equation (1)
and to obtain the corresponding solution for a layered medium are
outlined in detail by Rundle [1980].

We shall be concerned with an Earth model consisting of one
layer over a half-space. The layer, thickness H, has elastic-
gravitational properties. The half-space has viscoelastic-
gravitational properties and can relieve imposed stresses by
flowing in response. We shall refer to the layer properties as 4,
M, o, and the half-space properties as Ay Ym py. With these
definitions, we write the elastic-gravitational displacements at the
surface z = 0 due to a dipping, rectangular thrust fault of length
along strike 2L, with downdip width # and dip angle y (Figure 1)
as
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where & is an integration coordinate downdip, { is a coordinate
along strike, J,,(kr) are cylindrical Bessel functions of order m

_ BJy(kr) ]e"'""

Half space

Figure 1. Geanetryandcomdmalesystmnforarectangtﬂar ﬁmte dipping fault in elastic-gravitational layer over a
viscoelastic-gravitational half-space. D is depth, ¥ is fault plane width, 2L is length along strike, ¥ is dip angle, and

H is layer thickness [after Rundle, 1982a].
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Figure 2. Surface horizontal (U, and U)) displacements due to a 90° dipping thrust fault in an elastic-gravitational
layer over a viscoelastic-gravitational half-space at X = 10 km. Fault is 2L = 30 km long, D = 0 km, #'= 30 km, and
H =30 km. The coordinates at the left show the ratio of induced displacement to displacement on the fault and the
right axis shows the thickness of the elastic layer. Horizontal thick lines represent the surface and the vertical/inclined
thick line is the fault, the thick dashed line is the boundary of elastic layer and half-space. The solid curves are the
coseismic displacements, the short-dashed curves are the 0.57, postseismic displacements, and the longest dash
curves are the 107, postseismic displacements.



13,584

Gravity Effect

03 | — | B e —

02 -

( AUx/U * 100)
o

-0.1

501. _

03 1 I i 1 1 1 | | 1

(AUy/U * 100)
(=]

yH
Figure 3. Viscoelastic-gravitational minus purely viscoelastic dis-
placements for X = 10 km and the same fault as in Figure 2; 10
and 507, are consided in this figure to show clearly the differences
that appear after long periods of time.

depending on the Fourier wave number % and radial distance 7.
Here x,.!, Y, Zn are kemels computed by the method given by
Rundle [1981a]. The kemels depend on the source depth A,
properties of the medium (elastic module and densities), surface
gravitational acceleration g, and wave number k. H(Y), the
Heaveside step, is the time-dependent part of the applied
displacement, UE,0).

Using (3) and well-known relations between Bessel functions,
we obtain the expressions for the horizontal displacement in x and
y coordinates. To do so, we define the quantities

Ji(kr) + Jy(kr)

g, =—[y.§(0)J.(kr>+[zi(0) 5

- yé(o)w) cos260 ] @
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and using them we have
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The necessary source functions are given by Rundle [1980] in
his equations (97)-(103) and equation (109) and by equations (11)
and (12) of Rundle [1982b].

Introduction of Time Dependence

The introduction of time dependence into equations (8) and (9)
is done by following Rundle [1982a). As a first step, the
correspandence principle of linear viscoelasticity is applied [Fung,
1965]. This requires that the elastic quantities A and p in each

of the elastic solution (from now on represented by
u(®) be replaced by their Laplace-transformed quantities s4 and
sp to obtain 7(s), where the bar signifies the Laplace transformed
quantity and s is the parameter conjugate to time, and #(s) is
then inverted to give u, (#), the solution to the viscoelastic problem.
The specific method used to perform the inversion is the Prony
series method, in which the function u,(f) is approximated by a
function u, (¢) consisting of a series of decaying exponentials. This
simiple method is cost-effective and can be performed
fast and efficiently. Hence we set [Schapery, 1961; Cost, 1964]

u,(t)= iA,—rj(l —e"/") =u,(f)

where = means “approximately equal, in the least squares sense”,
{ 7; } is a set of N relaxation times and the 4, are a set of unknown
constants that can be determined by least squares methods. The set
of relaxation times we use is {0.57,, 74, 57, 107, 507, 1007,}.
The asthenosphere relaxation time 1, is the characteristic time
defined by 7, = 21)/uy, where 77 is the viscosity of the Maxwell
fluid. This approximation method presents the advantage of
smooth time domain results in the time interval required and
involves as few function evaluations as possible. The emor
obtained by using this numerical technique is thus minimized and
u,’(f) can then be integrated over the source region to obtain the
required solution.

Results

We show the horizontal displacement field due to a vertical
thrust fault rupturing the entire elastic layer in Figure 2. It is found

(10)
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Figure 4. Surface horizontal displacements due to a 30° dipping thrust fault in an elastic-gravitational layer over a
viscoelastic-gravitational half-space at X = 10 km. Fault is 2. =30 km long, D = 0 km, = 60 km, and H =30 km.

that the inclusion of gravity only affects the near-field (/H<10)
postseismic displacements after longer periods of time. This can
be seen clearly in Figure 3, which shows the differences between
viscoelastic-gravitational and purely viscoelastic displacements for
the same fault as in Figure 2. For the 50 1, curve in Figure 3 both
postseismic U; and U, displacements at the fault are about 10%
larger for purely viscoelastic calculations. This difference depends
on the thickness and density of the elastic layer and also on the
considered X coordinate. The displacement parallel to the fault

(U)) has the least change in magnitude. It can be seen in Figure 2
that the postseismic displacements have a much longer
wavelength than the coseismic elastic response. Melosh and
Raefsky [1983] also obtain a similar pattem for U, displacements
(U, in their paper) in the far field using finite element calculations.
other purely elastic models. The elastic model uses a downdip
extension of slip to interpret the postseismic displacement [Fitch
and Scholz, 1971, Savage, 1995], by treating Earth as a
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Figure 5. Viscoelastic-gravitational minus purely viscoelastic dis-
placements for X = 10 km and the same fault as in Figure 4; 10
and 507, are considered in this figure to show clearly the
differences that appear after long periods of time.

homogeneous elastic medium. They then compute the displace-
ments due to the time-dependent postseismic downdip-extension-
slip. This technique models the near-field amplitude by adjusting
the amount of slip and matches the pattern of displacements by
changing the dip angle. However, it only produces short-
wavelength features in the near field for elastic media.

We next change the dip angle from vertical to 30° and show the
results in Figure 4. It will be observed that U, has a very long-
wavelength postseismic displacement after a longer period of time.
Figure 5 shows again the differences between viscoelastic-
gravitational and purely viscoelastic displacements for a fault with
the same characteristics as in Figure 4. Again, the inclusion of
gravity induces changes in magnitude of the displacements. U,
decreases about 12% and U, changes only about 6% after tens of
relaxation times in the near field.

Figures 6 to 9 show the displacement field caused by the fault
rupturing, only half the thickness of the elastic layer. First, we
show a fault breaking only the upper half of the layer (Figure 6).
Figure 6 shows a similar pattern to that in which the entire layer is
ruptured (Figure 2) in both components. The magnitude of
postseismic displacement U, is also quite similar, but U,
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displacements are smaller in the case of rupturing the top half of
the layer (note the change in scale). Figure 7 shows a fault that
only breaks the bottom half of the layer; here the magnitude of U,
displacement has decreased and the discontinuity of the coseismic
displacement at the surface trace of the fault has vanished. The
magnitude of postseismic U, is about 1000 times larger than U, in
this particular case for a point located close to the fanlt. The most
distinct difference between the surface and the buried fault is the
U, coseismic displacement field for y/H<2, the buried fault
produces a “W”-shaped displacement, while the surface fault
results in a “U” shape. This could be the key tool for identifing the
ruptured depth of the fault when measuring the surface
displacement field. U, has a distinct "spike"-type postseismic
displacement field in the vicinity of the fault zone and has a very
long wavelength.

We altered the dip angle from vertical to 30° and let the fault
rupture only the top and bottom half of the elastic layer in Figures
8 and 9, respectively. When the fault ruptures only the top half of
the elastic layer, both the U, and Uj displacements have similar
pattem and magnitude (differences within 15 to 20%) to a fault
that ruptures the entire elastic layer (Figure 4). It can be seen in
both Figures 4 and 8 that U, is different both in patten and size
from U,. For a 30° dipping fault that ruptures only the bottom half
of the elastic layer, the magnitude of U, is similar to the magnitude
of U,, and the wavelength of postseismic U, displacement is less
than that resulting from the surface fault. However, the U, paftern
is different from, and its wavelength is greater than, that resulting
from the surface fault The distinct displacement features
associated with each fault geometry provide a means to
distinguish the parameters of the fault and will be reflected in
inversions of the surface displacement field using leveling or
Global Positioning System (GPS) data. The pattern and magnitude
of the displacement field are most sensitive to the depth of the fault
and location of the profile. For this reason, changing fault strike
will create a larger diversity than changing dip angle in the process
of matching the displacement field to a fault dislocation model.

All the profiles shown in Figures 2 to 9 have been computed for
X=10km (173 length of the fault) instead of X' = 0 kmm in order to
study the variations with the characteristics of the fault (for
symmetry arguments there can not be any fault-parallel
displacements along a line perpendicular to the center of the fault).

We also carried out earthquake cycle computations using the
method described by Cohen and Kramer [1984] to calculate the
components of deformation (U, and U) measured at time ¢ , since
an earthquake at #= 0. These components can be written as

u(t) =vt+u2(t)+i[u2(t +mT)—u,(m )], an

m=1

where vt is the response to a steady block motion and u,(?) is the
contribution to the crustal deformation from the coseismic slip and
the aseismic “backslip” during the current earthquake cycle (see
Figure 10). The last term is the viscoelastic dislocation
contribution from all previous events (). This model represents
offset of an elastic plate with constant velocity (v), together with
"backslip" to lock the fault, and a sequence of prior earthquakes
having a uniform recurrence time interval 7. The fault offset is
unifomn for each earthquake, and no movement is allowed
between events. The remainder of the plate boundary is slipping
steadily at the rate v. The latter condition is enforced by assigning
a so called "backslip" of amount -v in the fault zone to lock it. The
plate boundary below the lithosphere is assumed to be
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Figure 6. Surface horizontal displacements due to a 90° dipping thrust fault in an elastic-gravitational layer over a
viscoelastic-gravitational half-space at X = 10 km. Fault is 2Z =30 km long, D =0 km, W= 15 km, and =30 km.

subducting aseismically and to contribute no deformation at
the surface additional to that produced by the rigid body plate
kinematic contribution. The validity of this assumption has
been verified by comparisons to two dimensional, plane strain
finite element models of the subduction process [Rundle and
Smith, 1982; S. C. Cohen, personal communication, 1988].
The prescription we follow in this model is, in general, valid

for subduction zones, and this is in fact the major application
for the results presented here.

In order to plot the viscoelastic displacement caused by the
cyclic earthquakes during various time intervals, we set the
recurrence time equal to 7,, 107, and 1007, n Figures 11, 12, and
13, respectively. The plate velocity is v=U/T, where U is the
displacement at the fault for each earthquake. As expected, plate
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Figure 7. Surface horizontal displacements due to a 90° dipping thrust fault in an elastic-gravitational layer over a
viscoelastic-gravitational half-space at.X = 10 km. Fault is 2 = 30 km long, D = 15 km, =15 km, and F=30 km.

motion is the dominant defonmation mode for all models with
short recurrence time intervals (see Figure 11). With 7 equal to 10
times the relaxation time, 7, (see Figure 12), outward displa-
cements (i.e., along the fault strike) were found near the fault in the
ecarly stage of the cycle (z < 0.67), causedbythechangeof
viscoelastic displacements U,. A long recurrence time case is
examined by setting 7 = 1007,. Here the magnitude of outward
displacement decreased as time elapsed, but the distinct “looping™

pattern toward the end of the fault can be easily found (see Figure
13). These displacement pattemns can serve as an indicator for the
various stages of a long recumrence interval thrust earthquake
cycle.

Summary and Conclusions

We present an extension of a previous method to calculate the
horizontal postseismic surface displacements in a layered medium,
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Figure 8. Surface horizontal displacements due to a 30° dipping thrust fault in an elastic-gravitational layer over a
viscoelastic-gravitational half-space at X = 10 km. Fault is 2Z = 30 km long, D = 0 km, W= 30 km, and /= 30 km.

including gravitational effects in a layered medium composed of
one elastic layer over a viscoelastic half-space. We find that
gravity arrests changes in the displacement fields afier long
periods of time. This is important in using the model to analyze
high-precision data from space geodetic techniques.

It can be observed in the examples of computations shown in
Figures 2 to 9 that U, is 4 times larger than U, for all the surface
faults. Most of the displacement occurs in the -2H < y < 2H

region. We also find that surface and buried faults have distinct
features for both vertical and dipping faults.

Changing the downdip width of the fault and its minimum
depthaﬁ'ectsboththemagmtl.ldeandpattemofall displacement
fields, as found in previous work. It is possible to distinguish
whether a fault extends through all of the elastic layer or only part
of it from the pattern observed in the displacement field. It is found

that postseismic U, (horizontal displacement perpendicular to the
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Figure 9. Surface horizontal displacements due to a 30° dipping thrust fault in an elastic-gravitational layer over a
viscoelastic-gravitational half-space at X = 10 km. Fault is 2Z =30 km long, D= 15 km, W=30km, and /=30 km.
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Figure 10. Diagram showing how an earthquake cycle (sequence) can be generated from superposition of an
elementary cycle and steady block motion [after Savage and Prescott, 1978; Thaicher and Rundle, 1984].
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displacement (top left) has its own scale. The rest of the charts use the same scale to represent the size of
displacements. Except for the case of coseismic displacement, the size of the arrows is reduced by a factor of
25.
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Figure 12. The same as for Figure 11, except that 7=10 relaxation times and the size of the arrows for viscoelastic

displacements are reduced by a factor of 15.



Y km

Y km

FERNANDEZ ET AL.: VISCOELASTIC-GRAVITATIONAL DEFORMATION 13,593

S A I R R A
I ININEE B AN AR RN

| + t t o 5 b oo e — ]
\ 1 i ! ' - -~ \ t / - N
-100}- . ' ' t 1 ' ] -100f ’ ) t ! \ J
t 1 t 1 - / ’ 1 \ \ -
7] AP A Lo s s s u oy | I PP ] 200 Lo gy [ PPN e a2y
-200 ~100 & 100 200 -200 =100 N 100 200
0.2T-) 0.4T 0.4T7-) 0.8T
oo T T Tt T T T T T . L T [T T T ]
L ]
[ ] [ .
wrs Y I l VoV N ‘”@ 2 Y S A U O ]
- f :
A AN RN
oF «— » o E o:— -~ - - —
— -~ \ t 7 - — : ~ N \ 1 ’ ” - E
—100f t t t t ! 3 °l°°E- \ \ \ t ! ! ’ %
A T S R T T SN T A R
Y NN L ey [ [ -m:* ........ | S [P I
~200 -100 < 100 200 -200 -100 o 100 200
0.6T-) 0.8T 0.8T-) 0T-
200 [~rTTTTTTT T T T T T YT 200 [~TTTTTT T T TTTr—r—r=r T r—r—r—r=r—rrrr T

5 ] s I \ ]

o S A A R N T T A A T D S
: b \
N\ /

SRR S A A T S A 5

ol -~ - -~ ”~ - B [} -._ ~ 4 .

- ]

~ A \ t ’ v Vd E \ \ \ 1 ’ / / ;

T 2 S N S S T T

A \ { t t t ! z | 1 t t t ! ]

i ]

20000 L i a ey TN | I | I ] -2000 0 4 4 s 200 | IR 1 PN BN .

-200 ~100 0 100 200 ~200 ~-100 0 100 200

Figure 13. The same as for Figure 11 except that 7=100 relaxation times.
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strike of the fault) is the dominant component, being about 100 to
1000 times U, when the fault breaks only the lower half of the
elastic layer. The dip angle of the fault decides the ratio between
these displacement components, which is another index for
examining the fault geometry from displacement data. The
numerical accuracy of this model is about 1% [Ferndndez and
Rundle, 1994; Yu, 1995] and is controlled by the precision of
integrating the Green’s finction along the fault strike and dip.

The most important feature in the model is the long-wavelength
postseismic displacement field, and this cannot be found in purely
elastic models. The results of Cohen [1980] and Wahr and Wyss
[1980] using finite element methods have the same character
found with our analytic method. Moreover, the inclusion of gravity
is necessary to properly describe the time dependence of the
displacement field We observe also that the magnpitude and
wavelength of postseismic displacements grow as time elapses.

One of the most important applications of the model presented
here is the detailed examination of the time-dependent deformation
of many earthquake cycles on the same fault plane. For models
with a short recurrence time interval, the plate motion dominates
the displacement field during the entire cycle, and major effects of
the viscoelastic displacement only occur near the edge of the fault
plane. However, for very long recurrence times, the accumulated
viscoelastic displacement dominates the deformation field
following the earthquake at large distances from the fault.
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