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ABSTRACT

The Advanced Scatterometer (ASCAT) onboard the 
Metop satellite series is designed to measure the global 
ocean surface wind vector. Generally, ASCAT provides 
wind products at excellent quality. Occasionally, though, 
ASCAT-derived winds are degraded by rain. Therefore, 
identification of rain can help to better understand the rain 
impact on scatterometer wind quality, and to develop a 
proper quality control (QC) approach for scatterometer 
data processing. In this letter, an image processing method, 
known as singularity analysis (SA), is used to detect the 
presence of rain such that rain-contaminated wind vector 
cells (WVCs) are flagged. The performance of SA for rain 
detection is validated using ASCAT Level-2 data 
collocated with satellite radiometer rain data. The rain 
probability as a function of SA singularity exponent is 
calculated and compared with other rain sensitive 
parameters, such as the wind inversion residual or 
maximum-likelihood estimator (MLE). The results 
indicate that the SA is effective in detecting ASCAT rain-
contaminated data. Moreover, SA is a complementary rain 
indicator to the MLE parameter, thus showing great 
potential for an improved scatterometer QC. 

1. INTRODUCTION 

The presence of rain is known to degrade scatterometer-
derived sea-surface wind quality. Rain drops both 
attenuate and scatter the microwave signal. Those effects 
are relevant for Ku-band scatterometers, but relatively 
small for C-band systems (except for heavy rain 
conditions). In addition, the splashing of rain alters the 
wind-induced scatterometer backscatter signature on the 
ocean surface. At the same time, the wind variability 
within a wind vector cell (WVC) is enhanced in rain 
scenarios, which, in turn, increases the measurement 
variance. If the wind retrieval does not take rain effects 
into account, the rain contributions are interpreted as wind 
features, and in turn, the retrieved wind quality is degraded. 
Over the last decades, several approaches have been 
proposed to address the mentioned rain effects on 
scatterometers, especially for Ku-band systems. The first 
approach consists of identifying the parameters that are 
sensitive to rain (e.g., retrieved wind speed, MLE, 
incidence angle and etc.), estimating the rain probability or 
the retrieved wind quality as a function of those 
parameters by using a training dataset, and then applying 
the probability estimation of rain or wind quality indicator 
to flag data as ‘rain-contaminated’ [1][2]. The second 
methodology is based on assessing the rain effects on 
scatterometer backscatter measurements by using 
collocated scatterometer wind data, satellite microwave-
derived rain data, and Numerical Weather Prediction 
(NWP) wind data, and then correcting the rain-induced 
backscatter contribution before wind retrieval [3][4]. The 

third strategy also uses collocated scatterometer/ rain/ 
NWP wind data to model both wind- and rain-induced 
backscatter, with the objective of retrieving wind and rain 
parameters simultaneously [5][6]. Moreover, there are 
techniques which are based on the use of a single 
parameter, i.e., the Normalized Radar Cross Section 
(NRCS, σ0), for rain detection purposes. For instance, the 
difference between horizontally polarized and vertically 
polarized σ0 can be used to define the rain flag [7]. In [8], 
multi-fractal exponents are computed from the QuikSCAT 
σ0 images, and then a threshold is set to separate the rainy 
cases from the rain-free cases. 
For the identical C-band Advanced Scatterometers 
onboard Metop-A and Metop-B, i.e., ASCAT-A and 
ASCAT-B, a quality control (QC) based on the wind 
inversion residual or maximum-likelihood estimator (MLE) 
is developed to screen the poor-quality winds. A high 
MLE value corresponds to a poor consistency of the WVC 
backscatter values, i.e., a low probability that they can be 
explained by the WVC-mean wind vector. In particular, 
note that the current operational QC threshold is set for 
MLE>+18.6. The MLE is proved to be sensitive to rain, 
i.e., it generally increases with rain rate (RR) [9]. However, 
many WVCs with low MLE values (and therefore not QC-
ed) are also affected by rain (i.e., the retrieved wind 
quality is degraded). Moreover, the MLE histogram peak 
of rain-contaminated WVCs is close to that of rain-free 
cases, which indicates that the MLE itself is ineffective in 
flagging rain-contaminated ASCAT WVCs in general [9].
Particularly, at low winds backscatter triplets affected by 
rain may still result in low or negative MLE values. 
An image-processing technique, known as singularity 
analysis (SA), has been recently proposed as a 
complementary ASCAT QC tool [9]. SA provides 
quantitative information about the local regularity or 
irregularity of the signal. It is therefore able to detect not 
only existing geophysical structures, characterized as 
singularity fronts, but also any transition due to the 
presence of retrieval errors. In [9], preliminary results 
show that SA can potentially be used for ASCAT rain 
identification.  
In this paper, the SA method is further developed for 
optimizing ASCAT rain identification. In section 2, the 
concept of singularity analysis is briefly introduced. In 
section 3, the SA method is applied and optimized for 
ASCAT data. In section 4, the experimental results of 
singularity analysis on rain flagging are presented and a 
comparison with the MLE-based rain identification is 
carried out. Finally, the conclusions can be found in 
section 5. 

2. SINGULARITY ANALYSIS 

Given a scalar signal s, the singularity exponent (SE) h(x) 
depicts a dimensionless and scale invariant measure of the 
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degree of local regularity around a given point x. It can be 
evaluated according to the following function [10],                   (1) 
where   is a dimensional and signal-dependent 
amplitude factor, and the factor   becomes 
negligible when r goes to zero. The left part of Eq. (1) is 
the gradient estimated at half the radius r. Therefore, the 
singularity exponent roughly behaves as,                                                            (2)
Since the presence of long-range correlations in real data 
can mask the value of , a wavelet projection is used to 
filter the signal and to provide a stable interpolation 
scheme in a continuous range of scales. Given a wavelet 
�(x), the wavelet projection of Eq. (1) becomes                           (3) 
So the singularity exponent corresponds to,                                                       (4) 
Since we are mainly interested in the most singular 
structures, the singularity exponents can be estimated in 
the following way to avoid projecting across multiple 
scales,                    (5) 
where    is the mean value of the wavelet 
projection over the whole signal. The scale r0 is defined as 
the smallest accessible scale, i.e., one pixel scale for a 
discrete 2D image. The numerical implementation of Eq.(5) 
is described in [11]. Negative singularity exponents 
derived from Eq. (5) depict that the function is less regular, 
while the positive values indicate a more regular behavior. 
SA can be applied to any satellite-derived image. In this 
paper, SA is applied to ASCAT data. 

3. SA APPLICATION TO ASCAT DATA 

The SA algorithm needs be adapted before its application 
on ASCAT data. All the ASCAT-derived parameters, such 
as the σ0 measurements, the inversion residual (MLE), the 
measurement variability parameter (i.e., Kp as estimated in 
[12]), and the retrieved wind components (i.e., U, V, speed 
and direction) can be used to generate singularity maps. 
Different singularity maps are used for different purposes. 
Thus, SA optimization is required for rain identification. 

3.1 Adaption of SA to ASCAT data 

In general, the SA algorithm described in [11] works well 
on ASCAT data. However, it shows in [13] that SA 
overestimates the irregularity (very negative singularity 
exponents) of ASCAT measurements at the edge of the 
swath. A similar effect is found at the edges of non-ocean 
areas, such as, coastlines, islands, sea ice margin. To 
overcome such drawbacks, the following processing is 
performed prior to SA: 
a) Within the ASCAT image, the meaningless non-ocean 
WVC values are replaced by the mean of the input 
ASCAT parameters over all ocean WVCs within a 
centered 3x3 box. If the non-ocean WVC is at the corner 
(or edge) of the image, a closest 2x2 (or 3x2) box is used; 
b) The image is extended to the left and right sides of the 
swath by one node at each row, and the extrapolation point 
is filled using the mean of ASCAT parameter over all 
ocean WVCs within the closest 3x2 box (or 2x2 box in 

case the extrapolation is performed at a swath corner 
point); 
c) The image is also extended before the first row of 
WVCs and after the last row of WVCs by one point at 
each column, and the extrapolation point is filled using the 
mean of ASCAT parameter over all ocean WVCs within 
the closest 2x3 (2x2 for corner WVCs) box. 
Considering the study on ASCAT 12.5-km product, each 
image consists of ~100x41 WVCs, corresponding to a 3-
min long set of WVC rows from one individual swath. 
Such pre-processing steps remove potential edge artefacts 
in SA while preserving the information content of the 
image elsewhere (e.g., singularity fronts associated with 
rain). As such, SA is applied on the preprocessed image 
using Eq.(3). And, SE is computed over all ocean WVCs 
of the original input image.  
Due to the noisy nature of the ASCAT parameters (for 
example over rainy areas), there may be isolated extremely 
positive or negative SE values after singularity analysis. 
Therefore, the mean SE value within a centered 3x3 
window, i.e., 3x3 WVCs, is taken to generate the final 
singularity exponent for each WVC. If the ocean WVC is 
at the corner (or edge) of the image, a closest 2x2 (or 3x2) 
box is used. 

3.2 SA optimization for rain identification 

As already mentioned, all the ASCAT-derived parameters 
can be used to generate singularity maps. In [13], the 
lowest (most negative) singularity exponents from the 
singularity maps of the ASCAT zonal (u) and meridional 
(v) wind components are used to generate the singularity 
map. Singularities indeed appear in areas of wind 
discontinuities, i.e., convergence or divergence 
corresponding to fronts or downbursts (as observed by 
ASCAT), that may be associated with rain. In this section, 
other rain-sensitive ASCAT parameters are assessed 
before choosing the most optimal singularity maps for rain 
identification over the ocean surface. As an example, 
Figure 1(a) shows a particular ASCAT-retrieved wind 
field (ASCAT 12.5-km product, observed at 20:30 
September 24, 2008) with the Tropical Rainfall Measuring 
Mission’s (TRMM) Microwave Imager (TMI) collocated 
rain rate values superimposed. The collocation criteria for 
TMI rain data are less than 30 min distance in time and 25 
km distance in space from the ASCAT measurements. 
Typical wind responses, including increased wind 
variability and wind fronts, are found in the rainy areas. 
Figures 1 (b) and (c) illustrate the corresponding MLE and 
Kp (i.e., the mean Kp of the fore and the aft beams) values. 
At low wind speed conditions, the raindrop “splashing” 
causes additional roughening of the sea surface, and in 
turn, an increase of the ocean backscatter from 
scatterometers. This results in a remarkable increase of the 
retrieved wind speed. In contrast, at high wind speed 
conditions, the rain splashing effect is relatively small. 
Therefore, singularity exponents of the wind speed field 
can be used to assess the irregularities associated with low 
wind speed conditions (Fig. 1, areas around [164.5°W 
18.5°S] and [161.5°W 21.5°S]). In order to detect the wind 
discontinuities associated to the rain-induced flow, SA is 
then applied on the wind direction field. Singularities can 
be detected over the sharp  transition  areas  (Fig. 1(a),  the  
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(a)                                                                                                                               (b) 

(c)                                                                                                                              (d) 
Fig. 1(a) Map of collocated ASCAT-TMI data. The grayscale square areas superimposed correspond to different TMI RRs (see the legend, mm/hr). Note 
that the white background corresponds to no TMI RR data. The acquisition date was September 24, 2008, at 20:30 UTC; (b) the corresponding MLE 
distribution and (c) Kp  (mean value of fore and aft beams, %) distribution; (d) Singularity map of the ASCAT-retrieved wind field shown in Fig. 1(a). At 
every grid point, the minimum SE value from the wind speed, wind direction, and MLE SEs is used to generate the map. The RR contour lines depict the 
rainy areas. 

convergence goes from [164°W 18°S] to [160.5°W 21°S]). 
Meanwhile, the rain-impacted ASCAT measurements are 
generally more inconsistent with the empirical 
Geophysical Model Function (GMF) than rain-free 
measurements. This inconsistency results in an increase of 
the inversion residual and a decrease of the retrieved wind 
quality. An MLE sign has been defined in [14] to improve 
the ASCAT MLE-based QC. For low wind speed 
conditions and in case of heavy rain, the measured σ0 

triplets are generally located outside the cone surface [15] 
(i.e., negative MLE values) as defined by the GMF. 
Therefore, the singularity exponent of the MLE field is 
also examined to better identify rain. 
Regarding the measurement variability factor, as the wind 
variability within a certain WVC increases with rain rate, 
Kp value increases with RR in general (see the white areas 
in Fig. 1(c)). However, at low wind speed conditions, high 
Kp value are also found due to the high wind variability 
(see the area around [161°W 18°S] in Fig. 1(c)). Moreover, 

the estimation of Kp is rather noisy as indicated by the 
granularity of the Kp map, thus making the rain signature 
in Kp less evident. As such, the singularity map of Kp is not 
used in this study. 
In this paper, singularity maps of the inversion residual 
and the retrieved wind components (speed and direction) 
are examined independently for the particular wind field. 
Then at every grid point, the minimum SE value from the 
wind speed, wind direction, and MLE SEs is used to 
generate the final singularity map. Through this approach, 
the wind discontinuities (convergence or divergence) 
associated with the rain-induced flow and the patchy 
structure of rainy areas (artefacts due to rain contamination) 
can be detected by singularity analysis simultaneously. 
Figure 1(d) shows the singularity map corresponding to 
the ASCAT wind and MLE fields shown in Figs. 1(a) and 
1(b). It is also clear that the TMI rain contours in Fig. 1(d) 
well corresponds with the negative SE values. Note that 
the comparison between SE and TMI RR is intended only 
to validate the presence of rain, but not the rain rate. 
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(a) 

(b) 
Fig. 2 Illustrations of the PDF of   (left panels) and the rain 
probability  (right panels) for (a): low wind speeds (4V<6 m/s) 
and (b): high wind speeds (V10 m/s) conditions respectively

4. EXPERIMENTAL RESULTS 

To estimate the probability of rain (R) p(R) as a function 
of SE, 8 months (from September 2008- May 2009) of 
collocated ASCAT 12.5-km product, TMI RR and 
European Centre for Medium-range Weather Forecasts 
(ECMWF) winds are explored in this study. ECMWF 
winds are acquired by interpolating three surrounding 
ECMWF forecast winds (selected from +3 h to +18 h 
forecast range in 3-hour steps) on a 62.5-km grid both 
spatially and temporally to the ASCAT data acquisition 
location and time, respectively. p(R) is estimated by 
accumulating two histograms. The first histogram contains 
the total number of WVCs in the studied category. The 
second one contains the number of rain-affected WVCs. 
By dividing the second histogram by the first one, we 
obtain an estimate of the rain probability. 
Figure 2(a) illustrates the PDF of  (left panel) and 
the rain probability  (right panel) for low wind 
speeds (4V<6 m/s). Figure 2(b) shows the same plots for 
high wind speeds (V 10 m/s). Two kinds of rain 
conditions, i.e., TMI-RR>0 mm/hr and TMI-RR 3 
mm/hr, are studied. There is an increasing shift of the SE 
distributions towards negative SE values with increasing 
RR. The PDF peak of rain-contaminated WVCs is distinct 
from that of rain-free cases. As noted by the difference 
between the dashed and the dotted curves in the right panel 
of Fig. 2(a), the anomalies associated with negative SE 
values are generally associated with light rain 
contamination at low wind speeds condition. However, at 
high winds, such anomalies are associated with heavy rain 
contamination (see right panel of Fig. 2(b)). 
For comparison, Fig. 3 shows the same PDFs as Fig. 2 but 
for the MLE parameter. At low and high wind speed 
conditions, the extreme (positive or negative) MLE values 
are generally associated with heavy rain contamination 
(TMI-RR  3 mm/hr). At low winds, heavy rain 
contamination is mainly present at large negative MLE 
values (measurement triplets located outside the cone 
surface [14]), whereas at high winds, it is  present  at  large  

(a) 

(b) 
Fig.3 Illustrations of the PDF of  (left panels) and the rain 
probability  (right panels) for (a): low wind speeds (4V<6 
m/s) and (b): high wind speeds (V10 m/s) conditions respectively 

Table 1. Statistics of the ASCAT rain flagging using the singularity 
analysis (SE threshold: -0.45) and the operational MLE-based 
(MLE>+18.6) methods. The second and third rows show the vector root-
mean-square (VRMS) differences between the ASCAT winds and the 
ECMWF winds. The last two rows present the percentage of flagged 
WVCs contaminated by rain, according to different TMI RR intervals. 

SE MLE 
Flagging ratio (%) 0.42 0.31 
VRMS, Non-flagged (m/s) 2.28 2.28 
VRMS, flagged (m/s) 5.91 6.07 
% of flagged WVCs with TMI-RR>0 mm/hr 82.3 72.7 
% of flagged WVCs with TMI-RR3 mm/hr 44.5 46.0 

positive MLE values (triplets located inside the cone). 
From the right panels, it seems appropriate to set a MLE 
threshold to separate rainy cases from rain-free ones. 
However, since the PDF peaks of rain-free WVCs and 
rain-contaminated WVCs are quite close to each other (as 
shown in the left panels, the peaks are around MLE=0), a 
low MLE threshold will cause substantial false alarm rate. 
In contrast, since SE distributions shift considerably with 
RR (see left panels of Fig. 2), setting a SE threshold can be 
very effective in filtering rain while keeping a low false 
alarm rate for low winds. 
Table 1 shows the statistics of SE-based and MLE-based 
flags respectively. An SE threshold of -0.45 is used, i.e., 
WVCs with SE<-0.45 are flagged. The threshold of the 
MLE-based flag is that used in the operational QC, i.e., 
WVCs with MLE>+18.6 are flagged. For the given 
thresholds, singularity analysis flags a bit more rain-
contaminated WVCs than MLE. However, the latter flags 
slightly more heavy rain contaminated cases than SA. 
Another interesting result is that WVCs flagged by MLE-
based filter and WVCs flagged by SE-based filter do 
generally not coincide (coincidence ratio less that 20% for 
the given thresholds in table 1), indicating that SE is not 
only a good rain indicator but also very complementary to 
the operational MLE-based QC. The VRMS differences 
between the ASCAT winds and the ECMWF winds are 
also presented in the table to validate the different flags in 
terms of wind quality. It shows that SA also detects poor-
quality WVCs.  
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Note that both flags filter a small portion of poor-quality 
WVCs in the absence of rain. These poor-quality winds 
are caused by increased local wind variability, confused 
sea state, and/or radar footprint contaminated by land or 
ice, which increase the measurement variance, and lead to 
large discrepancies between the measured triplets and the 
GMF (i.e., high MLE values), and low negative SE values. 
In the presence of rain, the associated rain splash and wind 
downbursts change the characteristics of the SE and MLEs 
and which is the focus of this paper. 

5. CONCLUSIONS 

In this study, a new image processing technique, the so-
called singularity analysis, is adapted for ASCAT rain 
detection. It is shown that SA successfully exploits the rain 
information content (rain signatures) present in the 
different ASCAT parameters, and thus an effective rain-
contamination detection tool emerges. Moreover, SA 
mostly detects rain-contaminated WVCs when the MLE-
based QC does not, and vice versa, indicating that both 
techniques are very complementary in terms of both rain 
detection and quality control.  
SA uses the information present in the ASCAT data itself 
and, as such, is useful for both ASCAT near-real-time 
products and offline products. The SA code has been 
optimized for near-real-time processing. 
Further developments are needed in order to better 
separate actual wind discontinuities (e.g., fronts and 
downbursts) from rain-induced discontinuities (i.e., 
artefacts due to rain contamination). Moreover, in order to 
improve the ASCAT rain flag and quality control, a 
combined analysis of SE, MLE and other ASCAT rain-
/quality-sensitive parameters will be investigated. 
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