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Running Title: Using miTags as alternative approach to explore diversity and 40 

structure of microbial communities. 

Summary: 

 Sequencing of 16S rDNA PCR-amplicons is the most common approach to 

investigate environmental prokaryotic diversity, despite the known biases introduced 

during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced 45 

environmental metagenomes (miTags) are a powerful alternative to 16S rDNA 

amplicons for investigating the taxonomic diversity and structure of prokaryotic 

communities. As part of the TARA-Oceans global expedition, marine plankton was 

sampled in three locations, resulting in 29 subsamples for which metagenomes were 

produced by shotgun Illumina sequencing (ca. 700 gigabases). For comparative 50 

analyses, a subset of samples was also selected for Roche-454 sequencing using both 

shotgun (m454Tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454Tags; ca. 

0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to 

amplification and primer mismatch, ,miTags may provide more realistic estimates of 

community richness and evenness than amplicon 454Tags. In addition, miTags can 55 

capture expected beta diversity patterns. Using miTags is now economically feasible due 

to the dramatic reduction in High-Throughput Sequencing costs, having the advantage 

of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and 

functional information from the same microbial community. 

 60 

 

Keywords: miTags, Illumina metagenomes, 16S rDNA, 454Tags, PCR biases, 

microbial diversity, microbial community structure; environmental prokaryotic 

communities  
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Introduction 

Microbes have fundamental roles in the functioning of most ecosystems 

(Falkowski et al., 2008), particularly in the vast ocean biome (DeLong, 2009). They 

also encompass a large taxonomic and metabolic diversity (Pace, 1997) that reflects 70 

their long history of evolutionary diversification. Still, many important questions in 

microbial ecology remain unsolved and have been waiting for technological progress to 

be investigated. The advent of High-Throughput Sequencing (HTS) technologies (e.g. 

454 & Illumina) (Logares et al., 2012) is enabling the exploration of microbial diversity 

at an unprecedented scale. One of the first applications of 454-pyrosequencing in 75 

microbial ecology was the sequencing of ribosomal DNA gene (rDNA) amplicons 

(hereafter 454Tags) from environmental samples (Sogin et al., 

2006)_ENREF_5_ENREF_12_ENREF_7. So far, only a handful of studies have used 

Illumina-sequenced PCR amplicons (iTags) to explore natural microbial assemblages 

(Caporaso et al., 2011; Caporaso et al., 2012; Werner et al., 2012; Bokulich et al., 80 

2013)_ENREF_6. However, Illumina sequencers have a cost per base which can be 100 

times lower than the 454 platform as well as a higher throughput (Glenn, 2011). Since 

both technologies became popular in microbial ecology relatively recently, a careful 

evaluation of their performances and biases is still ongoing (Huse et al., 2007; Quince et 

al., 2009; Claesson et al., 2010; Huse et al., 2010; Minoche et al., 2011; Nakamura et al., 85 

2011; Quince et al., 2011). A limited number of HTS cross-platform studies have 

indicated different biases associated to 454 and Illumina platforms (Harismendy et al., 

2009). For example, comparisons between 454Tags and iTags derived from the same 

DNA samples showed different classification efficiencies (Claesson et al., 2010). In 

general terms, amplicon-based approaches using both 454Tags and iTags recovered 90 

previously observed global diversity patterns (Caporaso et al., 2011; Zinger et al., A
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2011)_ENREF_18, thus validating these approaches. Still, regardless of the sequencing 

technology, the biases associated to the PCR step in amplicon-based studies distort the 

estimations of richness and evenness in microbial communities (Acinas et al., 2005; 

Hong et al., 2009; Engelbrektson et al., 2010)_ENREF_20_ENREF_21. 95 

An alternative approach to circumvent PCR is to identify rDNA fragments from 

metagenomic data (hereafter mTags). Until recently this approach was unrealistic, since 

the fraction of rDNA present in metagenomes was very low. For example, the Global 

Ocean Sampling (GOS) (Rusch et al., 2007) produced 7.7 million metagenomic reads, 

of which only 4,100 turned out to be usable 16S rDNA reads (0.05%; see CAMERA, 100 

http://camera.calit2.net/). In the second release of GOS, a 1.4% was detected with a 

total of 142,783 16S rDNA fragments from 80 GOS metagenomes (Yilmaz et al., 2011). 

Other metagenomic studies based on 454 FLX Titanium sequencing identified hundred 

to thousand of rDNA fragments (hereafter m454Tags) after sequencing several millions 

reads (Bryant et al., 2012; Ghai et al., 2012). Thus, substantial sequencing is needed to 105 

recover enough rDNA reads from metagenomes for community taxonomic profiling. 

Yet, the High-Throughput of Illumina HiSeq platforms circumvent this limitation. For 

example, using the HiSeq2000 platform, we could expect about 10,000 16S rDNA 

fragments (>100 bp) out of 10 million metagenomic reads (assuming a 0.1% recovery) 

at a total cost of about 100 €; this amount of reads would be enough to capture the 110 

structure of microbial communities (Caporaso et al., 2011). Although 16S rDNA 

fragments derived from Illumina-sequenced metagenomes have not been subjected to 

PCR, they have undergone amplification steps associated to the Illumina platform that 

may generate base-composition biases that, in many cases, are not randomly distributed 

(Aird et al., 2011; Nakamura et al., 2011). A number of protocols and base call 115 A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

4 

algorithms have been developed to minimize such biases and improve the error rate of 

Illumina (Harismendy et al., 2009; Aird et al., 2011).  

The short length of Illumina reads may represent a limitation, although 16S 

rDNA reads as short as 100 bp can be enough for an accurate taxonomic 

characterization of microbial communities (Liu et al., 2007). In addition, simulations 120 

have shown that 16S rDNA fragments > 150 bp from multiple rDNA regions could be 

as accurate as the entire 16S rDNA sequence for taxonomic profiling of communities 

(Hao and Chen, 2012). Longer composite reads can be produced by merging paired-end 

reads from small insert-size libraries, a strategy that has been shown to produce results 

comparable to 454 FLX sequencing (Rodrigue et al., 2010). Read-length limitations are 125 

relaxing with the introduction of newer Illumina sequencers that produce longer reads 

(e.g. the HiSeq2500 and MiSeq produce 2x150bp and 2x250bp reads respectively, 

which after merging can generate reads up to e.g. 290 and 490 bp).  

Other limitations may be related to the intrinsic characteristics of the 16S rDNA. 

This gene has regions with different evolutionary rates (Hillis and Dixon, 1991). 130 

Diversity metrics and classification accuracy depends on what region is being used 

(Claesson et al., 2009; Engelbrektson et al., 2010; Mizrahi-Man et al., 

2013)_ENREF_21_ENREF_30, and 16S rDNA gene fragments extracted from 

metagenomes will more or less randomly cover different areas of the gene, thus 

providing a mixed taxonomic and evolutionary signal. Nevertheless, using different 135 

regions may allow reconstructing the whole 16S rDNA sequence which could improve 

diversity analyses (Miller et al., 2011), although this method may be affected by the 

generation of chimeric sequences between closely related taxa.  

Altogether, considering the mentioned biases, it is not surprising that taxonomic 

profiling of microbial communities based on 16S rDNA derived from amplicons or 140 A
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metagenomes may disagree (Shah et al., 2011). In general, controlled quantitative 

studies comparing rDNA-based diversity using different sequencing platforms (e.g. 

Illumina vs. 454) and PCR-based vs. non-PCR-based (Tags vs. mTags) are very limited.  

Still, a recent study using synthetic microbial communities tested the capacity of PCR 

vs. non PCR-based sequencing at recovering known diversity, and indicated that the 145 

non PCR-based approach performed better (Shakya et al., 2013).  Despite the obvious 

value of the latter approach to quantitatively uncover biases and potential errors, 

synthetic communities are still a great simplification of natural microbial communities. 

The environmental DNA pool is highly complex, encompassing thousands of different 

genomes which are in many cases unknown and normally present in very low 150 

abundances (Pedrós-Alió, 2006), therefore kinetics and amplification PCR biases may 

behave differently than in controlled studies. Thus, studies based on natural samples are 

also needed to complement with controlled laboratory experiments and in combination 

generate more realistic descriptions of microbial diversity. 

 155 

Here we investigate whether 16S rDNA fragments derived from environmental 

metagenomes sequenced with Illumina (hereafter miTags) can capture diversity patterns 

of microbial communities. Our results are based on data from three marine stations that 

were part of the TARA-Oceans global expedition (Karsenti et al., 2011) and which were 

sequenced extensively using Illumina HiSeq2000 & GAIIx platforms. For comparative 160 

purposes, we generated metagenomes and 16S rDNA amplicon sequence data using the 

454 GS FLX Titanium platform for a subset of these stations. We show that miTags can 

be used for taxonomic profiling of natural microbial communities as well as for richness, 

evenness and beta diversity estimations. Using miTags has at least two main advantages, 

1) avoids PCR biases and 2) a large amount of functional data is simultaneously 165 A
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produced when miTags are generated. Thus, miTags are a powerful alternative to the 

commonly used amplicon-based Tags for community analyses. Using miTags is now 

feasible thanks to the dramatic decrease in sequencing costs. 

 

170 
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Results 
 

Thousands of 16S miTags covering all 16S rDNA gene regions can be extracted 

from metagenomes and taxonomically classified to RDP. The 29 Illumina 

metagenomes from the three analyzed marine stations consisted of about 700 Gb of 175 

sequence data covering five planktonic size fractions (0.2-1.6, 0.8-5, 5-20, 20-180 and 

180-2000 µm). The approach used to extract and process miTags is displayed in Fig. S1 

On average, 2.08 x104 16S miTags > 100 bases were extracted per sample (metagenome), 

although 7.9x104 16S miTags were retrieved from typically free-living bacterial size 

fraction (0.2-1.6 µm) (Table S2). Altogether, these miTags covered all 16S rDNA 180 

hypervariable regions (V1 to V9) with a decrease in coverage at the 16S extremes (Fig. 

S2). A cross platform analysis using miTags, m454Tags and 454Tags indicated that the 

three methods showed similar degrees of taxonomic classification efficiency to the RDP 

database (Cole et al., 2009) when using the naïve Bayesian classifier (Wang et al., 

2007), albeit miTags had shorter sequence length (Fig. S3). 185 

 

Assignment of miTags, m454Tags and 454Tags to reference OTUs. Most of the 16S 

miTags corresponded to the prokaryote size fraction (0.2-1.6 µm) and 94% of them were 

assigned to SILVA reference OTUs (Table S2). This indicates that the main fraction of 

bacterial taxa was represented in the SILVA reference database (Quast et al., 2013). 190 

About 28% of the total number of miTags mapped to the region V1-V3 (Table S2), 

which was later used in comparative cross-platform analyzes. This number was 

expected when considering a more or less uniform read coverage of the 16S rDNA 

(about 1,300 bp) and the length of the V1-V3 region (about 500 bp). The V1-V3 was 

selected because it includes the V3 region, which is highly used for marine 454Tags 195 

rDNA amplicon studies, and has a better resolution than the V6 region (Huse et al., A
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2008). Similar results were obtained with m454Tags (about 92% of reads were assigned 

to SILVA reference OTUs, and of these about 20% were assigned to the V1-V3 

segment; Table S3). The number of 454Tags that could be assigned to OTUs was slightly 

smaller (about 86%; Table S4). The range of OTUs obtained per sample using de novo 200 

clustering (i.e. not based on a reference database) with the 454Tags from region V1 (287-

1204) and V3 (310-1443) was not different to what was obtained by assignation to 

reference OTUs (524-1070) (ANOVA; P-value >0.58) (Table S4).  

 

Richness and Evenness: a comparative analysis. When using all miTags from all 16S 205 

rDNA V regions, miTags recovered on average 61% more OTUs than 454Tags (Table S5, 

Fig. 1A). When using a subsampling of 2,000 reads/sample, the increase is between 

31.1 to 43.2% of OTUs per sample (Table S5). This increase translated to Chao-1 

richness diversity estimator was 40.3% on average and equivalent results were also 

observed using the abundance-based coverage estimator index (ACE) (Table S6). Under 210 

the most comparable scenario, taking into account only miTags from the V1-V3 region 

and 454Tags trimmed to the same length-range as miTags (454Tags-trimmed), both miTags 

and 454Tags-trimmed recovered similar numbers of OTUs, ranging between 994-1178 

for miTags and 586-1824 for 454Tags-trimmed (Fig. 1B). Values were even closer when 

subsampling at 2,000 reads per sample (miTags: 428-508 OTUs and 454Tags-trimmed: 215 

443-515 OTUs). Rarefaction analyses using all miTags (covering the entire 16S rDNA 

gene) from the size fractions 0.2-1.6 and 0.8-5μm indicated a larger richness in the 0.8-

5μm size fraction (Fig. S4). Interestingly, it was in the size fractions > 5μm wherein 

the number of mapped miTags to reference OTUs dropped to 58% (Table S2) suggesting 

prokaryote novelty probably associated to larger particles.  220 A
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 We compared the capability of miTags and 454Tags to detect prokaryote 

taxonomic diversity using both single reads as well as OTUs. At higher-rank taxonomic 

levels, miTags uniquely recovered several phyla (e.g. Fibrobacteres and Tenericutes) 

and classes (Halobacteria, Chloroflexi) (Table S7) in RDP classifications (Cole et al., 

2009). At lower-rank levels, we found 748 genera that were exclusively detected by 225 

miTags (Fig. S5A; Table S7), whereas only nine genera were exclusively detected by 

454Tags (Table S8). Similar results were obtained in OTU-based analyses; when using 

both the TARA-V1-V3 dataset with and without subsampling (see Fig.1S). Again, a 

higher number of unique OTUs were recovered by miTags than by 454Tags. When using 

the complete dataset, we observed that 40.8% of the OTUs were recovered by both 230 

miTags and 454Tags, while 43.7% and 15.5% were recovered exclusively by miTags and 

454Tags respectively (Fig. S5B; left panel). For the subsampled dataset, normalization 

corrected artifacts that produced some of the differences between techniques, but still 

446 OTUs were exclusively obtained by miTags and 274 OTUs by 454Tags (Figure S5B, 

right panel).  235 

 We investigated the phylogenetic differences between the OTUs retrieved by 

miTags and 454Tags from the same V1-V3 region (Fig 2). Both miTags and 454Tags 

presented a good agreement by recovering taxa from the same evolutionary groups (Fig. 

2). Still, there were cases where miTags recovered small clusters that were not recovered 

by 454Tags as well as a few cases displaying the opposite pattern (Fig. 2). In general, 240 

unique OTUs from miTags were spread over all bacterial classes (see unique miTags 

clusters labeled with numbers in Fig. 2 and Table S7). Furthermore, miTags retrieved 

Archaea, which were expectedly absent in 454Tags due to the use of bacterial primers. 

The primer bias effect, as a potential explanation for the differences in OTU 

detection between both techniques, was furthered investigated in two fronts by (i) 245 A
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analyzing the in silico coverage of the primer-pair set used for generating 16S rDNA 

amplicons Tags and by (ii) statistical analyses comparing the number of OTUs detected 

by each approach to the presence of mismatches with the primer pair used. First, we test 

the theoretical accuracy of the primer pair (27Fmod/533R). This pair covered 78.9% of 

the references and was well distributed across main phyla, where ranged between 60-250 

100% coverage (Fig. S6) A few phyla were poorly represented in terms of coverage 

probably due to low number of sequences available in datasets (Fig. S6). Secondly, two 

χ2 tests of independence were performed between these two datasets (OTUs detected by 

454Tags/miTags and primer detection with match/mismatch). We found a strong and 

significant dependence between OTUs detected only by miTags with 454Tags and the 255 

presence of mismatches (χ2=53.04, df=1, p<0.0001) (Table S9). Conversely, when we 

selecting only the OTUs detected with 454Tags, the OTU detection with miTags and the 

presence of mismatches appeared as independent factors (χ2=1.45, df=1, p=0.2284) 

(Table S9). This primer bias effect resulted in an underrepresentation of those OTUs 

having mismatches with the primer pair, and an overrepresentation of those OTUs with 260 

a perfect match with the primer pair. However, this primer bias effect cannot be 

associated to any phyla in particular although differences exist in the coverage within 

main phylum. 

Further comparative analyses focused on the evenness patterns retrieved by 

miTags and 454Tags (Fig. S7).  First, similar rank-abundance curves were observed when 265 

samples were subsampled (Fig.S7, right panel); however, some differences emerged 

when using data non-subsampled. Interestingly, miTags tended to recover a higher 

number of very low abundant taxa (<0.1%) from the rare biosphere (Pedrós-Alió, 2012) 

(Fig. S7, left panel). Despite the overall similarity in rank-abundance, different 

platforms (454 vs. Illumina) and approaches (Tags [amplicon-derived] vs. miTags) 270 A
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indicated, in several cases, different abundances for the same OTUs (Fig. S7, left panel; 

Fig 3, panels A and B). When OTU abundances derived from miTag, 454Tag and m454Tag 

were compared, a better agreement was found between approaches not involving PCR 

(m454Tag vs. miTag) resulting in a higher correlation and a fit closer to the 1:1 line (Fig.3; 

Table S10). Interestingly, both comparisons involving PCR (i.e. involving 454Tag) 275 

resulted in smaller slopes and positive intercepts, indicating that the abundance of rare 

OTUs was underestimated and that the abundance of abundant OTUs overestimated 

with 454Tag compared to mTag (Table S10). Finally, to examine the performance of 

miTags for quantitative assessment of OTUs, we compared the relative abundance of 

several prokaryotic taxa obtained with miTags with those obtained by two well 280 

established quantitative approaches: CARD-FISH counts (Fig. 4) and flow cytometry 

(Fig.S8). First, we measured four bacterial groups, SAR11, Gammaproteobacteria, 

Bacteroidetes and Roseobacter, which exhibited distinct abundance in environmental 

samples. Our findings revealed a good agreement between CARD-FISH and 454Tags / 

miTags (Fig. 5; CARD-FISH vs. miTags: Pearson r=0.866; p <0.001 and CARD-FISH vs. 285 

454Tags: Pearson r=0.948; p<0.001). Similarly, a positive correlation was 

observed between cyanobacteria abundance (Prochlorococcus and Synechococcus) 

measured by flow cytometry and miTags-derived abundance (Prochlorococcus: 

Pearson’s r=0.782, p <0.001; Synechococcus: Pearson’s r=0.603, p <0.001; Fig. S8). 

 290 

Comparative community structure using miTags and 454Tags. UPGMA clustering 

analysis based on Bray Curtis distances was performed for the four analyzed datasets 

(TARA-ALL, TARA-TRIMMED, TARA-V1-V3, TARA-V1-V3-TRIMMED; see 

methods and Fig. S1) after subsampling them to 2,000 reads per sample (Fig. S9, panels 

A-D). In three out of the four datasets, the 454Tag samples clustered together instead of 295 A
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with their corresponding miTag samples  (Fig. S9, panels A-C). Only in the dataset 

considering trimmed 454Tags and the V1-V3 region (TARA-V1-V3-TRIMMED), one 

sample analyzed with 454Tags clustered with the same sample analyzed with miTags (Fig. 

S9, panel D). Furthermore, in this latter dataset, samples from the prokaryote size 

fraction (0.2-1.6μm) analyzed with 454Tags and miTags clustered together forming a 300 

tight group (Fig. S9, panel D). The absence of clustering of the same samples analyzed 

with miTags and 454Tags reflects the unequal estimation of richness and evenness by the 

different techniques and platforms. Nevertheless, we observed a relatively strong 

correlation using binary (i.e. presence-absence) Bray Curtis dissimilarity values (mantel 

test: r (pearson) =0.75, p=0.002) between the same set of samples analyzed with miTags 305 

and 454Tags (prokaryote fraction from dataset TARA-ALL subsampled). This means 

that samples that were more dissimilar in composition according to miTags, were also 

more dissimilar according to 454Tags and vice versa. However, a weaker correlation was 

observed for the same set of samples when using the regular Bray-Curtis index, which 

considers relative abundances (mantel test: r (pearson) =0.44, p=0.023). This 310 

discrepancy could be associated to PCR biases affecting the relative abundance of taxa 

measured by 454Tags.  
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 315 
Discussion 
 

 In our metagenomic samples, miTags accounted for about 0.01-0.1% of the total 

reads, which is within the expected range. This 0.1% 16S rDNA recovery rate reported 

here and in previous studies (Rusch et al., 2007) seems to be independent from the 320 

sequencing technology (Sanger shotgun, Roche-454 and Illumina) providing a good 

plausibility check for metagenome sequencing projects. Due to the high throughput of 

Illumina platforms, the number of miTags recovered per sample (79,000 miTags on 

average for bacterial size fraction) can be considered more than sufficient for capturing 

community composition patterns (Caporaso et al., 2011). As expected, the yield of 325 

miTags for the typical bacteria size-fraction was higher (about 0.09%) than for size 

fractions > 5μm (0.01%). Most miTags (94%) could be mapped to reference OTUs 

present in the SILVA reference database. Although the latter results come from three 

Mediterranean stations, these findings can be extrapolated to other marine photic 

samples. In fact, in another work, we have extracted all miTags for 72 globally 330 

distributed samples of 35 TARA-Oceans stations that represented surface, deep 

chlorophyll maximum (DCM), oxygen minimum zone (OMZ) and mesopelagic water 

samples, which showed similar miTags mapping percentages as for the three previous 

marine stations (Salazar et al., unpublished). Similarly, using RDP, most miTags (99%) 

could be confidently classified and in all cases, as it was expected, classification 335 

confidence decreased with lowering taxonomic levels (Claesson et al., 2010).  

 In this work, we assigned miTags to the reference OTUs derived from clustering 

the SILVA 108 reference database at 97 % of similarity. This approach may have at 

least two drawbacks: (i) if a sample contains OTUs that are not present in the reference 

database, then they will not be accounted. Nevertheless, we found that most (>94 %) 340 A
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16S miTags from marine samples were assigned to reference OTUs, indicating that 

SILVA 108 is appropriate for typical marine surface studies. The second possible 

drawback (ii) is that miTags are shorter than 454Tags, and they contain less information 

for taxonomic assignment; this may be further complicated if a specific miTag cover a 

conserved 16S rDNA region. Thus, miTags may produce some diversity inflation, as 345 

different segments of the same 16S rDNA sequence (e.g. one conserved and another one 

variable) may be assigned to different OTUs. Nevertheless, the rarefaction analyses 

suggested that the potential inflation of diversity, if exists, is not too large (Fig. 1). In 

addition, statistical analyses based on OTUs from hypervariable regions (V1-V3) 

detected by miTags and 454Tags, indicated that the extra diversity recovered by miTags is 350 

at least partially associated to lineages not recovered with 454Tags (Fig. 2) due to primer 

mismatches (Table S9). A future potential advantage of miTags is that specific 16S 

rDNA V regions could be selectively extracted to conduct de-novo clustering with 

longer Illumina reads. This option is of particular importance when significant 

prokaryote novelty is expected, which may not be represented in reference databases.  355 

  

 Using all miTags, the OTU numbers per sample (alpha richness) detected in 

different marine samples and size-fractions were in the range of other marine studies 

(Pommier et al., 2010; Crespo et al., 2013; Sul et al., 2013), supporting their use in 

microbial diversity analysis. Beta diversity analyses reflected the somewhat different 360 

community compositions indicated by miTags and 454Tags for the same samples of the 

prokaryote fraction, which formed different clusters (Fig. S9). Thus, it appears that the 

most reasonable approach is to avoid mixing data from different platforms (Illumina 

and 454 in this case) and approaches (PCR vs. non PCR data). Our results indicated that 

both approaches (i.e. miTags and 454Tags) tend to provide a similar view of community 365 A
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differentiation if abundance data is omitted, which could be associated to potential PCR 

biases on amplicon-derived approaches. 

 

miTags as an alternative for probing microbial diversity. The generation of miTags 

does not require long PCR steps, a process well known to introduce biases. Generation 370 

of chimeric sequences and unequal amplification of targets during PCR may 

substantially distort microbial diversity estimations (Acinas et al., 2005; Haas et al., 

2011)_ENREF_37. Furthermore, the primers used during PCR may not detect certain 

taxa (Hong et al., 2009) and may have variable specificity to other taxa. Our analyses 

indicated that miTags recovered more taxa at different taxonomic levels and OTUs than 375 

454Tags. The recovery of more OTUs using miTags could be related, to certain extent, to 

errors during the OTU mapping step; limitations in the mapping algorithm could assign 

different fragments of the same 16S to different OTUs. However, the recovery of 

unique phyla, classes as well as other lower rank taxonomic levels indicates that miTags 

recover OTUs that are probably missed during the PCR step before 454Tag generation. 380 

These results were also supported by phylogenetic analyses, which showed that several 

clades (composed of more than a few reference OTUs) from different phylogenetic 

groups were only recovered by miTags (Fig. 2). Furthermore, the lack of detection of 

several OTUs with 454Tags was statistically proved to be related to primer mismatches, 

while there was no primer bias when testing the miTags approach (Table S9). 385 

Not only did miTags and 454Tags differ in the number of recovered taxa, but also, 

and probably more markedly, in the registered relative abundances for the same OTUs. 

We have compared the effects of PCR using m454Tags and 454Tags. Some OTUs were 

abundant among 454Tags and rare with e.g. m454Tags or miTags and vice versa. These 

differences are most likely related to PCR biases, and agree with results indicating that 390 A
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PCR underestimates rare taxa and favors the detection of abundant ones (Gonzalez et al., 

2012). Probably for this reason, we observed that miTags captured more members of the 

rare biosphere than 454Tags Using a different dataset from deep ocean marine microbial 

communities, we performed a comparison between miTags and iTags retrieving a similar 

picture as for miTags vs. 454Tags (Salazar et al., unpublished). 395 

Finally, we have analyzed the sequencing platform effect by comparing miTags 

and m454Tags and the approach effect (amplicon PCR 454Tags vs mTags). Despite the 

observed deviations from a linear relationship, the non-PCR scenarios provided the 

most compatible results, thus supporting the use of metagenomic Tags (mTags) for 

community profiling (Fig. 3, panel C). Lastly, quantitative techniques different from 400 

rDNA sequencing (i.e. FISH & Flow Cytometry) showed comparable results, 

suggesting that miTags exhibited an equally-good quantitative performance at least for 

the taxa compared (Fig. 4). Using data from controlled synthetic microbial communities 

where differences between them could be adequately quantified, pointed out that 

metagenomics (both 454 and Illumina) outperformed amplicon 16S Tags sequencing to 405 

quantitatively reconstruct community composition (Shakya et al., 2013). 

In summary, miTags are a feasible alternative for diversity analysis and 

prokaryote community profiling that avoids PCR biases. We summarized the 

characteristics of the analyzed approaches and platforms in Table 1. Depending on 

research goals different possibilities emerge. The longer sequences provided by 454-410 

Roche platforms (up to 800-1000 bp) still are highly valuable to facilitate accurate 

assemblies for metagenomes or for designing new primers or probes for unknown 

microorganisms. Similarly, iTags would be of interest for those studies focusing on 

diversity saturation or having a very large amount of samples. Illumina metagenomes 

can be done with as a little as 100 ng of DNA, and it is important to remark that 415 A
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Illumina sequencers are rapidly increasing their throughput and sequence length. For 

example, miTags are already longer in newer platforms (e.g. Illumina MiSeq generates 2 

x 250 bp paired-end reads) improving OTU assignation and taxonomic classifications. 

Thus, the miTags approach will become more powerful and accessible in cost terms with 

the advance of High Throughput Sequencing technologies. 420 
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Experimental procedures 

 

Detailed section of the experimental procedures can be found in the online version of 425 

this article under Supplementary Information  

Building the miTags, m454Tags, and 454Tags datasets. From the 29 analyzed 

metagenomes, a total of 5.03 x 109 and 1.79 x 109 raw and merged paired-end 

metagenomic reads respectively were produced for Illumina (> 100 bp, GAIIx & 

HiSeq2000; Table S2). This represents about 700 giga bases (Gb) of metagenomic 430 

sequence data. From these libraries, 6.05 x105 16S miTags  > 100 bp were extracted 

(Table S2). Using 454 GS FLX Titanium platform, a total of 8.1 x 106 reads from 13 

metagenomes were produced (about 2.4 Gb) and 3.30 x103 m454Tags > 100 bp were 

extracted (Table S3). miTags (> 100 bp) represented a small fraction of all merged 

paired-end reads (0.09 % on average for the prokaryote size-fraction, Supplementary 435 

Table S2). Similar values were obtained using m454Tags (mean 0.11 %; Table S3). Due 

to the higher sequencing depth allowed by the Illumina platform (about 15 Gb per 

metagenome in our samples), we were able to extract between 5-9 x 104 16S reads (> 

100 bp) (miTags) per metagenome from the prokaryote size-fraction (Supplementary 

Table S2). A much smaller number of m454Tags was recovered due to the more limited 440 

throughput of the 454 GS FLX Titanium platform (Supplementary Table S3). 

 

Additionally, 16S 454Tags (derived from amplicon-sequencing of the V1-V3 region) 

were obtained from six samples from the prokaryote size-fraction (0.2-1.6 µm), totaling 

2.63 x 105 reads. After a stringent quality filtering, this dataset was reduced to 1.53 x 445 

105 454Tags (Supplementary Table S4). Using 454Tags, we obtained between 2.88 – 7.00 

x 104 reads  (> 100 bp) per sample (Supplementary Table S4). The sequence data of 16S A
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miTags, m454Tags and 454Tags used for this study were deposited in the European 

Nucleotide Archive (ENA) as follows: (i) Shotgun Sequencing of Tara Oceans DNA 

samples corresponding to size fractions for prokaryotes (0.22-1.6 µm) done by Illumina 450 

technology (miTags): ERA242033, ERA242034 and by 454-Ti pyrosequencing 

technology (m454Tags): ERA155563, ERA155562; (ii) Shotgun Sequencing of Tara 

Oceans DNA samples corresponding to size fractions for plankton larger size fractions 

(0.8-5, 5-20, 20-180 and 180-2000 µm) performed by Illumina technology (miTags): 

ERA242028 and  454-Ti pyrosequencing technology (m454Tags): ERA241291 and (iii) 455 

16S rDNA Gene Sequencing (454Tags) of Tara Oceans DNA samples corresponding to 

size fractions for prokaryotes (0.22-1.6 µm) done by 454-Ti pyrosequencing 

technology: ERA242032. 

 

Analyzed datasets (OTU tables). A total of four main OTU tables were constructed: 460 

the 1) TARA-ALL OTU table (OT), contained all miTags, m454Tags and 454Tags, while 

the 2) TARA-TRIMMED OT contained the same data as in 1) but here the 454Tags were 

trimmed to 100–150 bp. The OT 3) TARA-V1-V3 included only Tags that fell within 

the V1-V3 region, and the OT 4) TARA-V1-V3-TRIMMED, comprised miTags within 

the V1-V3 region and trimmed 454Tags (100–150 bp). Finally, all four OT were 465 

subsampled (in QIIME) to 2,000 reads per sample, to correct for potential biases 

introduced by unequal sequencing effort. Fig. S1 displays a simplified pipeline diagram 

of the datasets. From all OTU tables, we removed Archaea, Chloroplasts and Eukarya. 

Singletons as well as OTUs present in only one sample were included, as the reference-

based OTU assignment approach reduces the chances of generating false OTUs (i.e. 470 

miTags/m454Tags/454Tags are mapped to Sanger reference sequences thus validating 

automatically the quality of the read). A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

20

 
Acknowledgements 475 

We are keen to thank the commitment of the people and the following 

institutions and sponsor who made this singular expedition possible: CNRD, EMBL, 

Genoscope/CEA, UPMC, VIB, Stazione Zoologica Anton Dohrn, UNIMIB, ANR, 

FWO, BIO5, Biosphere 2, agnès b., the Veolia Environmental Foundation, Region 

Bretagne, World Courier, Cap L'Orient, the Foundation EDF Diversiterre, FRB, the 480 

Prince Albert II de Monaco Foundation, Etienne Bourgois, the TARA Foundations 

teams and crew. TARA Oceans would not exist without the continuous support of the 

participating institutes (see Karsenti et al., 2011). This is contribution no. XXX of the 

Tara Oceans Expedition 2009-2012. We thank Dr. Josep M. Gasol for critical reading 

and Dr. Pedrós-Alió for his helpful comments. SGA was supported by a Ramon y Cajal 485 

contract from Spanish Ministry of Science and Innovation and FP7-OCEAN-2011 

"Micro B3". This research was supported by grants BACTERIOMICS (CTM2010-

12317-E), TANIT (CONES 2010-0036) from the Agència de Gestió d´Ajusts 

Universitaris i Reserca (AGAUR) and MicroOcean PANGENOMICS (CGL2011-

26848/BOS) to SGA by the Spanish Ministry of Science and Innovation (MICINN). RL 490 

has been supported by a Marie Curie Intra European Fellowship (MASTDIEV; PIEF-

GA-2009-235365, EU) and by the Spanish Ministry of Science and Innovation (Juan de 

la Cierva Fellowship, JCI-2010-06594) and GS and FMC were supported by Ph.D. 

JAE-Predoc (CSIC) and FPI (MICINN) fellowships respectively. High Throughput 

computing resources were provided by the Barcelona Supercomputing Center 495 

(http://www.bsc.es/) through the grants BCV-2010-3-0003 and 2011-2-0003/3-0005 to 

RL. Additionally funding was provided by the "Agence Nationale de la Recherche", 

ANR grants Prometheus ANR-09-GENM-031, Poseidon ANR-09-BLAN-0348 and 

Tara-Girus ANR-09-PCS-GENM-218. S.S. and P.B. were supported by EMBL core A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

21

funding and GL and JR are supported by the Fund for Scientific Research Flanders 500 

(FWO). Supplementary information is available at EMIs website. 
A

cc
ep

te
d 

A
rti

cl
e



 
This article is protected by copyright. All rights reserved. 

22

 
References 

Acinas, S.G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., and Polz, M.F. (2005) PCR-505 
induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone 
libraries constructed from the same sample. Applied and environmental microbiology 
71: 8966-8969. 
Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C. et al. (2011) 
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. 510 
Genome biology 12: R18. 
Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R. et al. 
(2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon 
sequencing. Nat Methods 10: 57-59. 
Brosius, J., Palmer, M.L., Kennedy, P.J., and Noller, H.F. (1978) Complete nucleotide 515 
sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S 
A 75: 4801-4805. 
Bryant, J.A., Stewart, F.J., Eppley, J.M., and DeLong, E.F. (2012) Microbial 
community phylogenetic and trait diversity declines with depth in a marine oxygen 
minimum zone. Ecology 93: 1659-1673. 520 
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., 
Turnbaugh, P.J. et al. (2011) Global patterns of 16S rRNA diversity at a depth of 
millions of sequences per sample. Proceedings of the National Academy of Sciences of 
the United States of America 108 Suppl 1: 4516-4522. 
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N. et 525 
al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq 
and MiSeq platforms. ISME J 6: 1621-1624. 
Claesson, M.J., Wang, Q., O'Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and 
O'Toole, P.W. (2010) Comparison of two next-generation sequencing technologies for 
resolving highly complex microbiota composition using tandem variable 16S rRNA 530 
gene regions. Nucleic acids research 38: e200. 
Claesson, M.J., O'Sullivan, O., Wang, Q., Nikkila, J., Marchesi, J.R., Smidt, H. et al. 
(2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for 
exploring microbial community structures in the human distal intestine. PLoS One 4: 
e6669. 535 
Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J. et al. (2009) The 
Ribosomal Database Project: improved alignments and new tools for rRNA analysis. 
Nucleic Acids Res 37: D141-145. 
Crespo, B.G., Pommier, T., Fernández-Gómez, B., and Pedrós-Alió, C. (2013) 
Taxonomic composition of the particle attached and free-living bacterial assemblages in 540 
the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. 
Microbiology Open In press. 
DeLong, E.F. (2009) The microbial ocean from genomes to biomes. Nature 459: 200-
206. 
Engelbrektson, A., Kunin, V., Wrighton, K.C., Zvenigorodsky, N., Chen, F., Ochman, 545 
H., and Hugenholtz, P. (2010) Experimental factors affecting PCR-based estimates of 
microbial species richness and evenness. ISME J 4: 642-647. 
Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive 
Earth's biogeochemical cycles. Science 320: 1034-1039. 
Ghai, R., Hernandez, C.M., Picazo, A., Mizuno, C.M., Ininbergs, K., Diez, B. et al. 550 
(2012) Metagenomes of Mediterranean coastal lagoons. Sci Rep 2: 490. A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

23

Glenn, T.C. (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 
11: 759-769. 
Gonzalez, J.M., Portillo, M.C., Belda-Ferre, P., and Mira, A. (2012) Amplification by 
PCR artificially reduces the proportion of the rare biosphere in microbial communities. 555 
PLoS One 7: e29973. 
Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D.V., Giannoukos, G. et al. 
(2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-
pyrosequenced PCR amplicons. Genome research 21: 494-504. 
Hao, X., and Chen, T. (2012) OTU Analysis Using Metagenomic Shotgun Sequencing 560 
Data. PLoS One 7: e49785. 
Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y. et 
al. (2009) Evaluation of next generation sequencing platforms for population targeted 
sequencing studies. Genome biology 10: R32. 
Hillis, D.M., and Dixon, M.T. (1991) Ribosomal DNA - Molecular evolution and 565 
phylogenetic inference. Quarterly Review of Biology 66: 410-453. 
Hong, S., Bunge, J., Leslin, C., Jeon, S., and Epstein, S.S. (2009) Polymerase chain 
reaction primers miss half of rRNA microbial diversity. The ISME journal 3: 1365-1373. 
Huse, S.M., Welch, D.M., Morrison, H.G., and Sogin, M.L. (2010) Ironing out the 
wrinkles in the rare biosphere through improved OTU clustering. Environmental 570 
Microbiology 12: 1889-1898. 
Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L., and Welch, D.M. (2007) 
Accuracy and quality of massively parallel DNA pyrosequencing. Genome biology 8: 
R143. 
Huse, S.M., Dethlefsen, L., Huber, J.A., Mark Welch, D., Relman, D.A., and Sogin, 575 
M.L. (2008) Exploring microbial diversity and taxonomy using SSU rRNA 
hypervariable tag sequencing. PLoS Genet 4: e1000255. 
Karsenti, E., Acinas, S.G., Bork, P., Bowler, C., De Vargas, C., Raes, J. et al. (2011) A 
holistic approach to marine eco-systems biology. PLoS biology 9: e1001177. 
Liu, Z., Lozupone, C., Hamady, M., Bushman, F.D., and Knight, R. (2007) Short 580 
pyrosequencing reads suffice for accurate microbial community analysis. Nucleic acids 
research 35: e120. 
Logares, R., Haverkamp, T.H., Kumar, S., Lanzen, A., Nederbragt, A.J., Quince, C., 
and Kauserud, H. (2012) Environmental microbiology through the lens of high-
throughput DNA sequencing: Synopsis of current platforms and bioinformatics 585 
approaches. Journal of microbiological methods 91: 106-113. 
Miller, C.S., Baker, B.J., Thomas, B.C., Singer, S.W., and Banfield, J.F. (2011) 
EMIRGE: reconstruction of full-length ribosomal genes from microbial community 
short read sequencing data. Genome Biol 12: R44. 
Minoche, A.E., Dohm, J.C., and Himmelbauer, H. (2011) Evaluation of genomic high-590 
throughput sequencing data generated on Illumina HiSeq and Genome Analyzer 
systems. Genome biology 12: R112. 
Mizrahi-Man, O., Davenport, E.R., and Gilad, Y. (2013) Taxonomic classification of 
bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study 
designs. PLoS One 8: e53608. 595 
Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y. et al. 
(2011) Sequence-specific error profile of Illumina sequencers. Nucleic acids research 
39: e90. 
Pace, N.R. (1997) A molecular view of microbial diversity and the biosphere. Science 
276: 734-740. 600 A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

24

Pedrós-Alió, C. (2006) Marine microbial diversity: can it be determined? Trends in 
Microbiology 14: 257-263. 
Pedrós-Alió, C. (2012) The rare bacterial biosphere. Annual Review of Marine Science 
4: 449-466. 
Pommier, T., Neal, P.R., Gasol, J., Coll, M., Acinas, S.G., and Pedros-Alio, C. (2010) 605 
Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea 
explored by pyrosequencing of the 16S rRNA. Aquatic Microbial Ecology 61: 221-233. 
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The 
SILVA ribosomal RNA gene database project: improved data processing and web-
based tools. Nucleic Acids Res 41: D590-596. 610 
Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. (2011) Removing noise 
from pyrosequenced amplicons. Bmc Bioinformatics 12: 38. 
Quince, C., Lanzen, A., Curtis, T.P., Davenport, R.J., Hall, N., Head, I.M. et al. (2009) 
Accurate determination of microbial diversity from 454 pyrosequencing data. Nat 
Methods 6: 639-641. 615 
Rodrigue, S., Materna, A.C., Timberlake, S.C., Blackburn, M.C., Malmstrom, R.R., 
Alm, E.J., and Chisholm, S.W. (2010) Unlocking short read sequencing for 
metagenomics. PLoS One 5: e11840. 
Rusch, D.B., Halpern, A.L., Sutton, G., Heidelberg, K.B., Williamson, S., Yooseph, S. 
et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic 620 
through eastern tropical Pacific. PLoS Biol 5: e77. 
Shah, N., Tang, H., Doak, T.G., and Ye, Y. (2011) Comparing bacterial communities 
inferred from 16S rRNA gene sequencing and shotgun metagenomics. In Pacific 
Symposium on Biocomputing, pp. 165-176. 
Shakya, M., Quince, C., Campbell, J.H., Yang, Z.K., Schadt, C.W., and Podar, M. 625 
(2013) Comparative metagenomic and rRNA microbial diversity characterization using 
archaeal and bacterial synthetic communities. Environ Microbiol 15: 1882-1899. 
Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R. et al. 
(2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc 
Natl Acad Sci U S A 103: 12115-12120. 630 
Sul, W.J., Oliver, T.A., Ducklow, H.W., Amaral-Zettler, L.A., and Sogin, M.L. (2013) 
Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci U S A 110: 2342-2347. 
Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007) Naive Bayesian classifier 
for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ 
Microbiol 73: 5261-5267. 635 
Werner, J.J., Zhou, D., Caporaso, J.G., Knight, R., and Angenent, L.T. (2012) 
Comparison of Illumina paired-end and single-direction sequencing for microbial 16S 
rRNA gene amplicon surveys. ISME J 6: 1273-1276. 
Yilmaz, P., Kottmann, R., Pruesse, E., Quast, C., and Glockner, F.O. (2011) Analysis of 
23S rRNA genes in metagenomes - a case study from the Global Ocean Sampling 640 
Expedition. Syst Appl Microbiol 34: 462-469. 
Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., 
Welch, D.B. et al. (2011) Global patterns of bacterial beta-diversity in seafloor and 
seawater ecosystems. PLoS One 6: e24570. 
 645 
 A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

25

Table 1. General comparison of the different platforms and approaches 
 

 

 

1 The four basic approaches are indicated: miTags (metagenomic Illumina 16S Tags), m454Tags (metagenomic 454 16S Tags), 454Tags (amplicon-
based 454 16S Tags) and iTags (amplicon-based Illumina 16S Tags) 

2 Number of recovered 16S rDNA reads from the used template. Estimations depend on the throughput of the platform 
3 PCR bias refers mostly to known primer biases and chimera formation 
4 Overlapping of the recovered 16S rDNA fragments. 16S recovered from metagenomes show a limited overlapping that preclude typical 

clustering techniques 
5 Taxonomic information associated to the recovered fragments. Fragments extracted from metagenomes normally present different amounts of 

taxonomic information (e.g. reads could be assigned to one specific genus or several families depending on their variability) 
6 OTU clustering methods that can be used with the different approaches 
7 Approximate costs per million of base pairs. Based on Glenn ((2011)). *Costs to generate miTags/m454Tags disregarding all the remaining data 

that is not 16S; for example, about 1 Gb of metagenomic data needs to be sequenced to obtain 1 Mb of metagenomic Tags, and the cost to 
generate 1 Gb is reported.

Platform / 
Approach1 

Template Coverage 16S rDNA 
specificity 

16S rDNA 
recovery2 

PCR bias3 16S rDNA 
overlap4 

Taxonomic 
definition5 

OTU Clustering6 €/Mb7 

miTags Metagenomic 
fragments 

16S rDNA + functional 
metagenomic  

Spanning all  
16S rDNA  

High / Medium Absent Low Variable Map to reference 
OTUs/ V region 
selection for de-

novo 

0.1 / 100* (HiSeq) 

m454Tags Metagenomic 
fragments 

16S rDNA + functional 
metagenomic 

Spanning all  
16S rDNA 

Very Low Absent Low Variable Map to reference 
OTUs/ V region 
selection for de-

novo 

12 / 12000* (Titanium) 

454Tags Amplicons 16S rDNA only Specific 16S 
 rDNA area 

High / Very High Present High High De-novo & Map to 
Reference OTUs 

12 (Titanium) 

iTags Amplicons 16S rDNA only Specific 16S  
rDNA area 

Very High Present High High / Medium De-novo & Map to 
Reference OTUs 

0.7 (MiSeq) 
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Titles and legends to figures 

 

Fig. 1. Rarefactions. Rarefaction analyses using two datasets. In panel A) only the 

dataset including all miTags and the 454Tags was considered. In panel B) the dataset 

considered included miTags falling into the V1-V3 region and trimmed 454Tags. Thus, 

panel A) represents the actual gathered data and panel B) the data most comparable 

between platforms and approaches. The dashed vertical line indicates a comparative 

sampling size for the datasets presented in A) and B). Note that in A) and B) the sample 

size was different due to the different characteristics of the datasets. Also note that the 

vertical axes have different lengths. The horizontal arrow indicates the maximum 

vertical value of B) in A). 

 

Fig. 2. Phylogenetic Tree. Phylogeny of the OTUs recovered with miTags (V1-V3) and 

454Tags where all samples were subsampled to 2,000 reads per sample (TARA-V1-V3 

OT with subsampling). miTags are indicated in green and 454Tags in salmon color. The 

inner rings indicate OTU relative abundances (variable-length columns) and the outer 

rings (fixed-length columns) presence / absence of given OTUs in the 454Tags and/or 

miTags. A zoom of two selected areas of the tree is presented in boxes A & B. Box A 

exemplifies that relative abundance estimated by miTags and 454Tags can be either very 

similar or different for evolutionary related OTUs. Box B exemplifies that several 

evolutionary related OTUs (probably groups) might be recovered by miTags and not by 

454Tags (and vice versa). Examples similar to the ones presented in Boxes A & B were 

observed throughout the entire phylogeny.  Unique clusters of OTU from different 

phylogenetic taxa retrieved only by miTags and absent by 454Tags are represented by A
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numbers from 1 to 5. Main taxonomic groups are indicated by the tree leave’s color and 

corresponded to the legend at the bottom of the figure. 

 

Fig. 3. Platform and PCR biases comparison. OTU abundances estimated with the 

three different techniques are compared for the pooled set of samples: A) 454Tags vs. 

miTags, reflecting a potential joint cross-platform and PCR biases effect, B) 454Tags vs. 

m454Tags only reflecting a potential PCR bias effect within the same sequencing 

platform and C) m454Tags vs. miTags only reflecting the cross-platform effect (no PCR 

involved). All comparisons were done with subsampling and the greatest possible 

number of reads/sample. Samples with less than 500 reads were excluded from the 

comparison. The red line is the best fit to a linear model. 

 

Fig. 4. Comparison between miTags, 454Tags and CARD-FISH. Quantitative 

comparison of relative abundances of miTags (empty circles) with CARD-FISH counts 

or 454Tags (full triangles) vs. CARD-FISH. Relative abundances (%) of four different 

prokaryote groups (Bacteroidetes, Gammaproteobacteria, Roseobacter and SAR11) 

estimated with CARD-FISH are compared to miTags and 454Tags estimates. A linear 

model was adjusted and 95% confidence intervals were computed for the slope. 
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