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Abstract 

The electrochemical performance of two different anode supported tubular cells (50:50 wt% 

NiO:YSZ (yttria stabilized zirconia) as the fuel electrode and YSZ as the electrolyte) under 

SOFC (solid oxide fuel cell) and SOEC (solid oxide electrolysis cell) modes were studied in this 

research. LSM (La0.80Sr0.20MnO3-δ) was infiltrated into a thin porous YSZ layer to form the 

oxygen electrode of both cells and, in addition, Ni-SDC (Sm0.2Ce0.8O1.9) was infiltrated into the 

fuel electrode of one of the cells. Microstructure of the infiltrated fuel cells showed a suitable 

distribution of fine LSM and SDC particles (50-100 nm) near the interface of electrodes and 

electrolyte and throughout the bulk of the electrodes. The results show that SDC infiltration not 

only enhances the electrochemical reaction in SOFC mode but improves the performance even 

more in SOEC mode. In addition, LSM infiltrated electrodes also boost the SOEC performance 

in comparison with standard LSM-YSZ composite electrodes, due to the well-dispersed LSM 

nanoparticles (favouring the electrochemical reactions) within the YSZ porous matrix. 
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Introduction 

The Ni-YSZ/YSZ/LSM-YSZ system, where Ni-YSZ forms the porous composite fuel 

electrode and LSM (La1-xSrxMnO3-δ)-YSZ the porous composite oxygen electrode, has been the 

most studied and fabricated SOFC system to date [1, 2]. Fabrication of a conventional Ni-YSZ 

fuel electrode requires high temperature sintering (~1400C) and reduction (900-1000C) [3]. 

The LSM oxygen electrode is usually exposed to a lower sintering temperature (max. 1250C) to 

prevent reaction between YSZ and LSM which results in the formation of poorly conducting 

phases such as La2Zr2O7 and SrZrO3 [4]. The high temperature sintering of SOFC electrodes will 

eventually lead to significant grain growth and a corresponding loss of surface area and 

electrochemical activity in the electrode phases.    

Infiltration/impregnation (of generally nitrates) has been established as an important 

method in the development of high performing electrodes giving them a suitable microstructure 

for oxygen reduction or fuel oxidation. Infiltration can enhance the catalytic activity (via fine 

dispersed particles), and ionic and/or electronic conductivity (via connected particles) of fuel cell 

electrodes leading to a cell power boost. In addition, the high active surface area of the infiltrated 

particles enables a reduced operating temperature, improving cell stability and reliability [5-7]. 

The lower particle size and higher surface activity of the infiltrates is a result of a comparatively 

low heat treatment temperature needed to decompose the nitrates and form the final phases 

versus the conventional high sintering temperatures for composite electrodes. 

Infiltrating LSM into a porous YSZ structure has been previously carried out by various 

SOFC groups [8-13]. Improvement in the cell performance due to enhanced triple phase 

boundary (TPB) length and catalytic activity compared to the traditional composite LSM-YSZ 
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cathode has been reported. Infiltration of a ceria-based catalyst into the Ni-YSZ anode also 

increases the TPBs for hydrogen oxidation and the ionic conductivity leading to improved 

electrode performance [14-17] as well as coverage of Ni particles by the infiltrate thereby 

lowering its sintering and agglomeration [3, 17]. Ceria infiltration has also been shown to 

improve sulphur tolerance of the Ni-YSZ anode to a significant extent [18].  

An efficient and economic way for hydrogen production is to use a solid oxide 

electrolysis cell (SOEC). In fact an SOEC is a reversible fuel cell in which steam is fed to the 

cathode where it is converted to hydrogen fuel [19, 20]. This method consumes much less 

electrical energy compared to conventional water electrolysis for the production of hydrogen. 

High temperature steam electrolysis has been recently demonstrated using microtubular cells 

[21-23]. Moreover, application of infiltrated electrodes for SOEC is a relatively new topic with 

few reported studies to date. More recently, Yang et al. [24] showed that LSM infiltrated porous 

YSZ has lower area specific resistance compared with a conventional LSM-YSZ composite 

electrode under SOEC mode testing. In addition, cells with LSM infiltrated electrodes have 

demonstrated stable performance under SOEC operation. Chen et al. [25] have shown that GDC 

impregnated LSM is an effective anode for high temperature SOECs. This same research group 

also showed that LSM infiltrated electrodes exhibited high electrocatalytic activity and good 

stability under SOEC operation conditions, and concluded that the high stability is related to the 

microstructural stability of infiltrated LSM nanoparticles due to the effect of LSM lattice 

shrinkage under SOEC polarization [26].  

In addition, Li et al. [27] also reported on SOEC cells with Ni infiltrated composite 

cathodes based on LSCM (La0.75Sr0.25Cr0.5Mn0.5O3-δ). They found that the loading of Ni 

improves the current density by approximately 20% and, in addition, the combination of 
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infiltrated nickel and redox-stable LSCM also improved the stability of the cathode. Finally, 

researchers from the Watanabe group prepared SOEC fuel electrodes using a highly dispersed 

nickel-SDC catalyst [27, 28]. They found that the Ni-dispersed SDC fuel electrode gave the 

highest performance at 17 vol.% of nickel loading due to effective enhancement of the reaction 

rate by increasing the active reaction sites and lowering the electronic resistance. The authors 

measured a cell consisting of Ni-dispersed SDC fuel electrode, ScSZ electrolyte, SDC interlayer 

and LSC as the oxygen electrode and obtained 1.13 V at -0.5 A cm-2 and 900 ºC under 60% RH 

(relative humidity) of steam. From our knowledge, there is no report in the literature about the 

effect of ceria infiltrated nanoparticles into the fuel electrode for electrolysis applications. 

In this manuscript, the effects on the electrochemical performance of tubular fuel cells of 

LSM (La0.80Sr0.20MnO3-δ) infiltration into porous YSZ at the oxygen electrode and, in addition, 

SDC (Sm0.2Ce0.8O1.9) infiltration into the Ni-YSZ fuel electrode, are studied in both SOFC and 

SOEC modes.  

Experimental procedure 

The anode supported cells studied in this paper were fabricated by slip casting of a NiO-

YSZ anode support followed by dip coating of a thin YSZ electrolyte and a thin porous YSZ 

layer for cathode infiltration. LSM was infiltrated into the thin porous YSZ layer of both cells to 

form the cathode and SDC was infiltrated into the NiO-YSZ anode support of the second cell. 

In order to produce a suitable slip for casting the anode supported cells, YSZ powder 

(TZ-8Y, 8 mol% Y2O3, Tosoh) was calcined at 1500°C for 3 h, cooled and mixed with 50 wt% 

NiO powder (Baker Chemicals) and water at a powder:water ratio of 1:1. The mixture was then 

milled at 120 rpm for 72 h in a plastic bottle with 5 mm zirconia balls. Additional water was 

added after milling to adjust the solid loading of the final suspension to 40%. The pH of the slip 
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was set to 4.0 using 2% hydrochloric acid. In order to generate high porosity, 30 vol.% graphite 

(Sigma Aldrich <325 mesh) was incorporated into the slip following pH adjustment, and then the 

suspension was mixed for 15 minutes prior to slip casting.  

To create the tubular support, the slip was cast into a plaster mold (previously prepared 

from a tubular mandrel) and left for about 1 minute, after which the excess slip was quickly 

poured out. The wet tube was then dried at room temperature for 1 h. The resulting drying 

shrinkage facilitates removal of the green tube. The green tube was dried at 100°C in an oven, 

heated at 700°C for 1 h to oxidize all the graphite, and then pre-sintered under air at 1150°C for 

3 h. Further details regarding the fabrication of thin porous supports via slip casting and the 

parameters affecting tube thickness during casting are discussed elsewhere [29, 30].  

The electrolyte and the thin porous YSZ layer formulas and dip coating procedure are 

explained in [31] and [31, 32], respectively. The LSM (La0.80Sr0.20MnO3-δ cathode and also SDC 

(Sm0.2Ce0.8O1.9) infiltration methods are addressed in [32]. In this manuscript the anode 

supported cells without and with SDC infiltrated are referred to as “Tube 1” and “Tube 2”, 

respectively. 

 For the electrochemical experiments, platinum mesh was tightly placed inside the tube to 

provide electrical contact between the fuel electrode and the Pt lead wire. Pt wires were used for 

current collection at the oxygen electrode side, and LSM paste (terpineol-based) was used to 

improve current collection. Subsequently, the cell and electrical leads were placed inside a small 

tubular furnace. The active area of the cell was limited to ~2 cm2 in order to be sure of a 

homogeneous temperature over the cell active area. This temperature was displayed by a 

thermocouple placed next to the oxygen electrode of the cell.  
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 Fuel gas (steam and hydrogen mixtures) was introduced into the anode tube through an 

alumina tube sealed to the open side of the tubular cell using a ceramic paste. Steam was 

supplied by the use of a direct vapour humidifier controlling the relative humidity (% RH) with a 

resolution of ±1.3%. All gas lines located downstream of the humidifier were externally heated 

in order to prevent steam condensation. 

 Electrochemical measurements were performed using a Zahner Zennium (ZAHNER-

Elektrik GmbH & Co. KG, Germany) electrochemical workstation. j-V (current density-voltage) 

curves were collected in potentiodynamic mode from OCV (open circuit voltage) down to 0.5 V 

in SOFC mode, and from OCV up to 1.5 V in SOEC mode, using a scan rate of 5 mV s-1. 

Electrochemical impedance spectroscopy (EIS) measurements were performed using a sinusoidal 

amplitude signal of 20 mV in the frequency range of 100 kHz to 0.1 Hz. 

Finally, post-mortem microstructural cell analysis was performed using a JEOL 6301F 

scanning electron microscope (SEM).  

Results and discussion 

1. Microstructural change upon infiltration 

1.1. SDC infiltration  

Following SDC infiltration into the fuel electrode of Tube 2 having about 50 vol.% open 

porosity, 10% weight gain was recorded after decomposing the nitrates. This suggests that the 

YSZ:SDC:Ni ratio in the cell following the complete infiltration procedure was 59:11:30 vol.%. 

SDC infiltration leads to a small 5% decrease in the overall porosity of the support to 45 vol.% 

indicating that sufficient porosity remains for gas diffusion and removal of reaction products or 

increasing the infiltrate content. 
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1.2. LSM infiltration  

Weight gain of the thin porous YSZ layer upon LSM infiltration is estimated to be 30 

wt% which leads to an YSZ:LSM ratio of 72:28 vol.% and results in a 14% decrease in total 

open porosity from 50% to 36%. 

2. Electrochemical characterization  

2.1. j-V experiments in fuel cell and electrolysis mode 

 Electrochemical studies for both Tube 1 and Tube 2 were performed in SOFC and SOEC 

operation modes. In figure 1 we can observe the j-V curves for Tube 1 (Ni/YSZ-YSZ-LSM/YSZ 

cell) collected at 800 ºC under different fuel conditions. Details about fuel conditions, OCV 

(open circuit voltage) values and ASR (area specific resistance) values are summarized in table 

1. Under favourable SOFC conditions (pure hydrogen), we have obtained ASR values in fuel cell 

mode of about 0.7 Ωcm2 at 800 ºC, in concordance with cells fabricated using the same 

procedure [33]. In SOEC mode, concentration polarization is clearly observed even at low 

current densities at the low steam content (5% H2O). However, when increasing the steam 

content in the fuel (30% H2O – 70% H2), concentration polarization disappears and similar ASR 

values are obtained in both modes of operation (see table 1), demonstrating the reversibility of 

Tube 1.  

Under more favourable electrolysis fuel conditions (50% H2O – 50% H2), the 

performance in SOEC mode is enhanced. In figure 2 we can observe the effect of temperature ( 

750, 800 and 850 ºC) using 50% steam on SOEC performance. For this set of experiments, minor 

data fluctuations are noticeable associated with an experimental problem of steam condensation 

along the gas pipe lines thus affecting adequate inner current collection. OCV values are in 
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agreement with those predicted using the Nernst equation, and also ASR values decreased upon 

increasing the temperature, as observed in table 1.  

In order to study the influence of LSM infiltrated electrodes, these results are compared 

with the performance of cells with identical composition (Ni/YSZ-YSZ-LSM/YSZ cell) 

fabricated by traditional methods [23]. For the same fuel composition (using 50% steam) they 

reported ASR values of 1.1 Ωcm2 at 750 ºC, whereas with the infiltrated cell the ASR value only 

slightly decreased to 1.08 Ωcm2. However, this enhancement is much more noticeable when 

increasing the temperature (0.7 Ωcm2 at 820 ºC for the standard cell vs. 0.49 Ωcm2 at 800 ºC for 

the infiltrated cell). It is believed that the reason for this enhancement is due to an increase of 

TPB length for the infiltrated cell compared with the standard LSM-YSZ composite owing to the 

fine size of the dispersed LSM particles having a high active surface area. It is well known that 

LSM activates above 800 ºC, especially under cathodic polarization [*]. In addition, Zhen et al. 

performed experiments at 900 ºC and reported that the addition/impregnation of ionic conducting 

phases such as YSZ and GDC not only enhances the three phase boundary but also significantly 

promotes the surface exchange processes for the O2 reduction reaction on the LSM-based 

composite cathodes [**]. The combination of the LSM activation above 800 ºC and the 

appropriate microstructure (fine dispersed particles) is probably the reason for the enhancement 

observed above 800 ºC.  

In figure 3, j-V experiments for Tube 2 (Ni/YSZ/SDC-YSZ-LSM/YSZ cell) using a fuel 

composition of 50% H2O – 50% H2 are shown in both fuel cell and electrolysis modes as a 

function of temperature. As expected, ASR values also decreased when increasing the operating 

temperature, and experimental OCV values are in concordance with theoretical Nernst values, as 

observed in table 1. If we analyse the ASR values obtained from the j-V experiments shown in 
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table 1, it is quite remarkable that lower resistances are obtained in SOEC mode in comparison 

with SOFC mode for each studied temperature. It is well known that SDC infiltrated 

nanoparticles at the fuel electrode enhance hydrogen oxidation and thus also enhance the 

electrochemical performance of the cell in SOFC mode [7, 34], but this enhancement seems to be 

more noticeable under SOEC mode. Recent studies have shown that for this type of electrode 

with well-defined geometries and interfaces, the near-equilibrium H2 oxidation reaction pathway 

is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the 

oxide/metal/gas triple-phase boundaries [35]. In addition, it has also been recently shown that 

nonstoichiometric ceria leads to high efficiency energy conversion for dissociating H2O and CO2 

to produce H2 and CO [36]. According to our results for Tube 2, SDC infiltrated nanoparticles 

are clearly catalysing the hydrogen formation reaction in SOEC mode.  

2.2. AC impedance measurements under current load 

 EIS measurements under SOEC polarization were performed for both Tube 1 and Tube 2 

at 750, 800 and 850 ºC with a bias potential of OCV + 0.5V, as shown in figure 4. Experimental 

data were fitted using the following equivalent circuit: LRe(R1, CPE1)(R2, CPE2)(R3, CPE3). For 

the fitting of EIS data at 800 and 850 ºC, R3 was fitted to values close to zero, and as a 

consequence the third (R3, CPE3) contribution was removed from the model. Resistance fitting 

parameters are summarized in table 2. Although impedance analysis of these cells is rather 

complex, several findings are obtained from the fitting of the EIS data shown in figure 4.  

Based on previous EIS analysis of similar microtubular cells [37], and also according to their 

characteristic frequencies and capacitance values, R1 is typically associated with the 

electrochemical reactions at both fuel and oxygen electrodes (activation) (appearing at 2500-
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4000 Hz with capacitances of about 10-4 F), and R2 is normally associated with gas diffusion, 

especially at the fuel electrode (appearing at 10-40 Hz with capacitances of about 10-3 F). The 

additional R3 component, appearing at very low frequencies (0.2 Hz) and only present at the 

lower temperature (750 ºC), will possibly be related to the presence of SDC nanoparticles at the 

fuel electrode, as this is the only difference between Tube 1 and Tube 2. It seems that the 

catalytic effect of the SDC particles is much more noticeable at 750 ºC, and becomes less 

significant at 800-850 ºC, where similar ASR values are obtained for both cells. According to 

these experiments, it seems that SDC nanoparticles at the fuel electrode did not play any 

significant role at 800-850 ºC. In addition, there is another significant difference between Tube 1 

and Tube 2 according to EIS data. As shown in table 2, if we compare R1 and R2 values for Tube 

1 and Tube 2, there is a significant decrease in the R1 value for Tube 2, whereas for the same cell 

the R2 value increases when compared with Tube 1. These observations are consistent with the 

assignment of R1 to electrode activation and R2 to diffusion principally at the fuel electrode, as 

the SDC nanoparticles in Tube 2 favour the activation for H2 formation at the fuel electrode but, 

at the same time, could slightly complicate gas channel flow for steam diffusion through the 

electrode. 

3. Microstructural analysis after the electrochemical studies 

Using the SEM after electrochemical studies, the thickness of the fuel electrode, 

electrolyte and oxygen electrode for both cells were estimated to be about 550, 11 and 19 µm, 

respectively. Figure 5a represents the interface between the whole oxygen electrode thickness, 

electrolyte, and part of Tube 2. SDC particles (50-100 nm) show excellent coverage on YSZ in 

the vicinity of the electrolyte (Figure 5b, c). YSZ particles are also well covered by SDC within 

the bulk of the fuel electrode. It should be noted that infiltrated SDC improves the overall cell 
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ionic conductivity and improves the TPB length. SDC can also form electronic bridging between 

unconnected Ni particles since doped ceria shows significant electronic conductivity under a 

reducing atmosphere [38]. This now involves isolated Ni particles in the overall fuel electrode 

electronic conduction. Fine LSM particle (50-100 nm) distribution on YSZ surfaces near the 

interface of electrolyte and oxygen electrode shown in Figure 5d is similar to the microstructures 

previously shown by Sholklapper et al. [10, 11].  

The distribution of LSM and SDC particles within both electrodes provides a high 

catalytic activity favouring the electrochemical reactions and a suitable current path. Based on 

the authors’ previous experience on electrode infiltration, no microstructural changes are 

observed following testing and the nanoparticles (SDC at the fuel electrode and LSM at the 

oxygen electrode) remain unaltered. 

 

Conclusions 

Both LSM and SDC infiltrates are present as fine particles (50-100 nm) which are 

homogeneously distributed within the bulk as well as the interface of the electrodes and 

electrolyte. Following infiltration, sufficient porosity remains in the anode and cathode of the 

cells for gas diffusion. The results show that LSM infiltration at the oxygen electrode enhances 

the performance of the cells in comparison with standard cells using LSM-YSZ composite 

electrodes. At 750 ºC using 50% steam, an ASR of 1.08 Ωcm2 was measured. Additional SDC 

infiltration into the porous Ni-YSZ electrode also improves the SOEC performance, especially at 

the lower temperature measured (750 ºC), where an ASR of 0.54 Ωcm2 was obtained using 50% 

steam.  
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Figures captions: 

 

Figure 1. j-V experiments performed at SOFC and SOEC modes under different fuel conditions 
at 800 ºC for Tube 1. 

Figure 2. Electrolysis experiments performed using 50%H2O – 50%H2 as the fuel for Tube 1. 

Figure 3. SOFC and SOEC experiments performed using 50%H2O – 50%H2 as the fuel for Tube 
2. 

Figure 4. EIS measurements under SOEC polarization using a bias potential of +0.5 V at 750, 
800 and 850 ºC for (a) Tube 1 and (b) Tube 2.  

Figure 5. SEM images showing the microstructure of Tube 2. (a): Interface between cathode, 
electrolyte and the anode, (b and c): YSZ coverage by SDC near the interface of the anode and 
electrolyte, (d): YSZ coverage by LSM near the interface of the oxygen electrode and electrolyte. 

 

 

 



15 
 

 

Tables captions: 

Table 1. Summary of the SOFC and SOEC experiments for Tube 1 and Tube 2. ASR values are 

calculated from the linear range of the j-V experiments.  

Table 2. Resistance values obtained by fitting EIS experimental data for Tube 1 and Tube 2 
measured using 50%H2O – 50%H2 as the fuel.  
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Figure 2.   
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Figure 3.   
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Figure 4a.   
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Figure 4b. 
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Figure 5 (a-d). 
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Table 1.  

Tube H2O/H2 
ratio 

Temp 
(°C) 

OCV 
(V) 

Current 
density at 

1.3V 
(Acm-2) 

ASR 
SOEC 

(Ω cm2) 

ASR 
SOFC 
(Ωcm2) 

1 50/50 750 0.915 -334 1.083 (9) - 
1 50/50 800 0.903 -780 0.494 (7) - 
1 30/70 800 0.946 -605 0.654 

(40) 
0.602 (9) 

1 3/97 800 1.008 -283 0.647 (8) 0.696 (7) 
1 50/50 850 0.889 -1098 0.392 (9) - 
2 50/50 700 0.954 -450 0.743 (5) 1.384 (6) 
2 50/50 750 0.923 -668 0.539 (5) 1.005 (4) 
2 50/50 800 0.907 -842 0.485 (3) 0.749 (5) 
2 50/50 850 0.889 -1093 0.389 (3) 0.580 (5) 
2 50/50 900 0.859 -1453 0.288 (4) 0.426 (6) 

 

 

 

Table 2.  

Tube Temp 
(°C) 

Re 
(Ωcm2) 

R1 
(Ωcm2) 

R2 
(Ωcm2) 

R3 
(Ωcm2) 

ASR 
(Ωcm2) 

1 750 0.173(1) 0.180(3) 0.206(19) 0.423(12) 0.982(35) 
1 800 0.145(4) 0.186(7) 0.080(9) - 0.411(20) 
1 850 0.136(3) 0.143(8) 0.050(9) - 0.329(20) 
2 750 0.170(8) 0.156(6) 0.193(7) 0.028(8) 0.547(29) 
2 800 0.147(2) 0.167(5) 0.140(6) - 0.454(13) 
2 850 0.137(6) 0.120(8) 0.114(4) - 0.371(18) 

 

 

 

 

 


