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The family of Gowdy universes with the spatial topology of a three-torus is studied both classically and
guantum mechanically. Starting with the Ashtekar formulation of Lorentzian general relativity, we introduce a
gauge-fixing procedure to remove almost all of the nonphysical degrees of freedom. In this way, we arrive at
a reduced model that is subject only to one homogeneous constraint. The phase space of this model is described
by means of a canonical set of elementary variables. These are two real, homogeneous variables and the
Fourier coefficients for four real fields that are periodic in the angular coordinate which does not correspond to
a Killing field of the Gowdy spacetimes. We also obtain the explicit expressions for the line element and
reduced Hamiltonian. We then proceed to quantize the system by representing the elementary variables as
linear operators acting on a vector space of analytic functionals. The inner product on that space is selected by
imposing Lorentzian reality conditions. We find the quantum states annihilated by the operator that represents
the homogeneous constraint of the model and construct with them the Hilbert space of physical states. Finally,
we derive the general form of the quantum observables of the m@E356-282(197)04514-1

PACS numbe(s): 04.60.Ds

I. INTRODUCTION cal physical degrees of freedom which depend only on one
of the spatial coordinates. In addition, since the pioneering

The alternative formalism for general relativity put for- work by Geroch9], it is known that the Einstein equations
ward by Ashtekarf1,2] has renewed the hopes of consis-of these spacetimes present an infinite number of symme-
tently quantizing the gravitational interaction in a nonpertur-tries. It is, therefore, believed that such systems may in fact
bative way. In contrast with the situation found in the be classically integrable, because there should exist a con-
geometrodynamic formulation, the gravitational constraintsserved charge associated with each of the symmetries of the
acquire a simple, polynomic form in terms of the AshtekarGeroch groud10]. Thus, these systems seem to be simple
canonical variables. In addition, by shifting the emphasisenough as to expect that their quantization may be feasible.
from geometrodynamics to connection dynamics, the intro- On the other hand, the existence of the Geroch symme-
duction of the Ashtekar variables has allowed the use irfries is on the basis of a series of solution-generating tech-
gravity of mathematical techniques that had been developediques[11] that have been developed from different points of
in the quantization of gauge field theories. view to obtain new solutions to the Einstein equations.

In order to gain insight into the kind of problems that one Thanks to these techniques, it has been possible to find a
will probably have to face when quantizing full general rela-variety of physically interesting classical spacetimes with
tivity, a lot of attention has been devoted in the last years tdwo commuting Killing fields.
the quantization of gravitational models with different types Actually, a particular family of spacetimes of this kind is
of spacetime symmetrid$,4]. Most of the systems studied given by the Einstein-Rosen solutions considered in Rif.
are, however, minisuperspace moded$ These are clearly In these solutions, the sections of constant time are noncom-
inadequate to discuss the difficulties that will presumablypact, and the Killing fields are hypersurface orthogonal. In
arise in the quantization of full gravity owing to the presencethis paper, we will focus our attention on spacetimes which,
of an infinite number of degrees of freedom. A possible wayby contrast, have closed spacelike hypersurfaces and whose
to analyze such difficulties would be to consider the quanticommuting spacelike Killing fields are, in general, not or-
zation of midisuperspace models. The symmetry of this typghogonal. The global structure of the spacetimes with these
of models is not large enough as to eliminate all the locabroperties has been studied by Gowdy], who has shown
degrees of freedom, so that their quantization will lead to &hat, in this case, the sections of constant time must be ho-
true quantum field theory. meomorphic to eitherS!xS? (a three-handle a three-

In a recent papei4], Ashtekar and Pierri carried out the sphere, or a three-torysr to a manifold covered by one of
guantization of the Einstein-Rosen cylindrically symmetricthe aboveé Among these possible spatial topologies, we will
spacetime$5], completing previous works on the subject by limit our discussion exclusively to the case of a three-torus.
Kuchar[6] and Allen[7]. To our knowledge, this is the only A partial symmetry reduction of this Gowdy model can be
gravitational midisuperspace model that has been rigorouslipund in Ref.[13]. Preliminary studies of its quantization,
guantized in the literature. assuming the orthogonality of the two Killing fields, have

It would be of interest to have at our disposal other ex-been carried out by Bergét4]. In addition, Husaif 15,16
amples of midisuperspace models whose quantization can l&s recently proposed gauge-fixing conditions in the Ash-
achieved. Natural candidates for such models are providettkar formulation for removing all the nondynamical degrees
by spacetimes with two commuting spacelike Killing fields of freedom of the model. However, he has not performed the
[8]. These spacetimes can generally be described by two Igauge fixing to completion. On the other hand, Husain has
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not addressed the quantization of the system in R&f516]. Ea=efh(e), AL=T'(e)—ikye" 2.2

Our purpose here is to complete the gauge-fixing procedure b Looe e ab=

and construct a quantum framework for the description of thg,pare h=(deth,,) 2 ha*=e2e" s the inverse three-

Iﬁmilytof Gowdy cosmologies with the spatial topology of a metric, andl“ia is the S@3) corlmection compatible with the
ree-torus. :

The paper is organized as follows. Section Il deals Withtrlad (19,
the two commuting spacelike Killing field reduction of the _ 1 _ _
Ashtekar formalism for the case of the Gowdy cosmologies. Iy=- Ee”klgjb((?aE P+TP ED). (2.3
In that section, we also present our model and display the

expressions of the first-class constraints. In Sec. Il we intrOHere ik is the antisymmetric symboE,, the inverse of the
duce a set of gauge-fixing conditions and show that they ar € y y a

) . a .
well posed and consistent. The final result of our gauge ﬁx_gensmzed triad, andi”,. th_e Chnstof_fel symbol$18]. .
In the Ashtekar formalism, the first-class constraints of

ing is that we can remove all the first-class constraints, ex- | relativi 9
cept for a homogeneous one. This homogeneous constraint Y&CUUM general relativity are]
analogous to the periodicity condition discovered by Gowdy

—phFa_ o F N =

[12]. The classical reduced model determined by our gauge- Gi=D4E}= aaE?+€ij AEL=0, 24
fixing conditions is studied in Sec. IV. We prove that the o

phase space of the model can be described by using a ca- C.=F}, ib=0, (2.5
nonical set of elementary variables that are all real. These are

given by four functions orS! and two homogeneous vari- H=¢k iabE?E b=, (2.6)

ables. In addition, we explicitly obtain the metric and the
reduced Hamiltonian that generates the dynamical evolutionynereF!  is the curvature of the S@) connection

. K . . ab !
Section V is devoted to the quantization of the above re-
duced model following the canonical quantization program Flo=d,AL— dpAL+ eijkAgAE. (2.7
elaborated by Ashtekd®]. We first choose a representation
space for the quantum theory and select an inner product on For the Gowdy universes with the topology of a three-
it by imposing reality condition$2,17]. The homogeneous torus, we can always choose spatial coordinates’, and
constraint of the system is then imposed in the manner op such that ¢,)2 and (7,)? are the two commuting Killing
Dirac. The kernel of the quantum constraint provides us witffields. For later convenience, we will normalize the periods
the Hilbert space of physical states. In Sec. VI, we determingf these coordinates so thatra, 27y, 6eSt. All vari-
the form of the quantum observables of the reduced modelples of the model must then depend onlyéand the time
and discuss the quantum evolution. Flna”y, Sec. VI Contaln%oordinatet' Furthermore' they have to be periodic i

the conclusions and some further comments. est
On the other hand, following Husain and Smdlir8], we
Il. THE GOWDY MODEL can set equal to zero the densitized triad components
The Gowdy universes are four-dimensional vacuum Ef:ﬁg:’égzﬁgzo_ (2.9

spacetimes with compact spacelike hypersurfaces and two
commuting spacelike Killing fieldgl2]. In this paper, we are  The constraints/;, G,, C,,, andC, are then solved by
going to analyze only the case in which the spatial topology
is that of a three-torus. In addition, we will restrict our con- AL=A3=A3=A%=0. (2.9
siderations to nondegenerate Lorentzian metrics.

Let us first introduce the Ashtekar formalism for Lorent- After this symmetry reduction, and renaming=A3,

zian general relativity, particularizing then to the Gowdy E=E! the remaining first-class constraints of the system
model. The Ashtekar gravitational variables can be taken as @& pe writter{15]

densitized tria@ia and a S@B) connectionA’. , both defined

on a three-manifol® [2]. Lower case Latin letters from the G=d,E+J=0, (2.10
beginning and the middle of the alphabet denote spatial and
SQO) indices, respectively. The $8) indices run from 1 to C=E["9,A-+AJ=0, (2.12

3, and are raised and lowered with the metric
7;;=diag(1,1,1). For Lorentzian gravity, the Poisson bracket

—oEFe L M K Bk @i K2—
structure is given by H=2EEe wdsA, + 2AEK—K K"+ K*=0,

(2.12
{AL(x),E P(y)}=1855,6(x—y). (2.)  Wwherea,B=w orv,L,M=1 or 2, is the antisymmetric
symbol in two dimensions, and we have employed the nota-
In this formula,x andy are two generic points &, 52 is the tion
Kroneckers, and 5 is the § function on3.. KA-AEF K=K, 2.13

Provided that the metric is nondegenerate, the Ashtekar
variables can be expressed in terms of the teadind the 8 M AL A N
extrinsic curvaturg18] Ky, J, =€ "AEN, J=J3.7. (2.19
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Thus, our Gowdy model can be described by the ten fields K,"=K—-K_°, (2.24

(A,E,Ab ,Eﬁ‘), which are periodic functions off. The

Lorentzian symplectic structure is determined by the Poisson K,’=(K—2K_ *)v+K X+ JIyx—v?, (2.295

brackets

that enable us to find the missing componentKgf from

our new variables. OncK # and E{ are known, we can

finally obtainAL, through

{A(0),E(0")}=i8(6—0"), (2.19

{AL(0),Ef(0)}=i8P5y8(0—0"), (2.16
. . . . . A=K PE}, (2.26
8(6) being thed function onS*. These fields are subject to

the constraintg2.10—(2.12, which will be referred from L being the inverse dE, which can always be computed
now on as the Gauss, diffeomorphism, and scalar constrairﬁ“ ;

. i e . . ecausa|*? is positive definite.
respectively. Th_e|r physical interpretation and Poisson alge- As far as we restrict our attention to the sector of Lorent-
bra has been discussed by Husfib,16.

. . ; zian nondegenerate metrics, the variables introduced above,
It IS worth notmg that the Va”abldéaﬁ and.]aﬁ are not together withA and E, can then be regarded as a set of
funct|ol£1ally mﬁdependent, for ~one can check thatelementary variables for our model. Moreover, it is easy to
detK,”=detJ,”. Therefore, one cannot replace the el-chack from Eqs(2.15 and (2.16 that they form a closed
ementary variablesA}; ,Ef") with the eight Gauss-invariant Poisson algebra. The only nonvanishing brackets are
quantities K ,*,J,7).

It will prove most convenient to introduce instead a {A(0),E(0")}={3(0),¢(8")}={K(8),w(6")}
change of phase space variables froAt, (E{) to K, —is(o—0"), (2.27)
K, . K,J, and

{K,(6),K,(0)}=—IiK (6)s(6—0"), (2.28

X= a™ v= a (2.17 .

q q [K,“(8),x(6")}=2ix(8)8(6—6"), (2.29

1 ’(E{) {K,(0),v(6")}=iv(0)5(6—6"), (2.30
WZEInq””, p=arctan = |, (2.18

E> {K,(0),x(6")}=2iv(6)8(6—6"), (2.3D)

where (K,"(0),0(0")}=15(6—0"). (2.32
q*P=E’EF . (2.19

Ill. GAUGE FIXING

From Egs.(2.2) and(2.8), we get thaig®*=h*#h?, so that,
for positive definite three-metricg® must also be positive
definite. Thereforex, v and w are well defined by Egs.
(2.17 and (2.18, and we must have>0, v,weR, and
x>v?, this last inequality coming from the fact that

We will now eliminate nonphysical degrees of freedom
from our set of phase space variables by introducing suitable
gauge-fixing conditions. These conditions, together with the
constraints (2.10—(2.12, will provide us with a set of
second-class constraints that will allow one to reduce the

detq®¥=e(x—v2)>0 (2.20 model. The gauge-fixing conditions that we are going to im-
' ' pose are
As to the variableX ,“, K ", K, J, and¢, we will admit for et
the moment that they are complex. xn=E=-e=0, 3.0
Let us show that the above change of variables can always —4=0 3.2
be inverted in the sector of positive definite three-metrics. X6= ' '
Using Eq.(2.19, relations(2.18 can be equivalently written K
in the form 0
=K—- —==0, (3.3
= ~ xe e
E;j=€e"sing, E;=e"cosp. (2.21
where
The definitions ofx andv lead in turn to
K
EY=vE}+ Vx—v?ES, (2.22 Ko= jg—ﬂ (3.9
Ey=vE;— Jx—v’E]. (223 Here, the symbof denotes integration ovete S'.

) ) In Eqg. (3.1), the time coordinate is assumed to be real.
§0, givenv,we R, x>v*, and ¢, one can always recover Thjs condition will be seen to fix the gauge freedom associ-
E. In addition, Eqs(2.13 and(2.14) can be seen to imply ated with the scalar constraif®.12. Our gauge fixing is in
the identities fact equivalent to Gowdy's choice of timd2] (and, there-
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fore, to that made in Refl6]), which can be expressed as (a8) components of the extrinsic curvature and the inverse
E= 7, 7 being a strictly positive time coordinate. Nonethe- three metric(with «,8=w or v). Then,K must be purely
less, we notice that, while in Gowdy’s time all classical so-imaginary if the three-metric is positive definite. Suppose
lutions present a cosmological singularityzat0 [12], this  now thatK,=0. SinceK is imaginary and periodic, it fol-
singularity is driven to minus infinity with our choice of lows that it must vanish at least at one pofigic S* on each
gauge. In this way, we allow a domain of definition fathat  section of constant time. But one can then easily check that
is the whole real axis. all Poisson brackets ofy with the first-class constraints
We will also prove that the requireme(8.2) fixes com-  vanish atf,, modulo such constraints and our gauge-fixing
pletely the Gauss gauge of our model. From E418), this  condition. So, our gauge fixing is not admissibleki§=0.
requirement implie€}=0. Finally, we will show that con- The same conclusion is reached if one adopts Gowdy's
dition (3.3 (which was employed in Ref16]) removes al- choice of time,E=7. As a consequence, the classical solu-
most entirely the diffeomorphism gauge freedom. Somdions with K,=0, that are not compatible with our gauge
comments are in order concerning the appearandé€,ah fixing, turn out not to be included in the family of cosmolo-
this gauge-fixing condition. The quantik, is known to be ~ gies with the topology of a three-torus studied by Gowdy
a classical Dirac observable of the systgf)], in the sense [12]. Since we are only interested in analyzing this family of
that its Poisson brackets with all the first-class constraintsolutions, we can disregard the ca&g=0. Furthermore, we
(2.10—(2.12 vanish weakly. As a consequenég, is a con-  Will see in Sec. IV that the geometry of these solutions can
stant of motion whose value depends only on the particulape considered invariant under a change of sigi ¢n Mak-
solution that is being considered. This value is invariant uning use of this symmetry, we can sét,e R* without loss
der any gauge transformation. On the other hand, gihée  of generality. In this way, the poir,=0 will be driven to
a periodic function o, it must admit a Fourier series of the the boundary of our reduced phase space. Under quantiza-

form? tion, the possible inclusion of that point will be physically
irrelevant inasmuch as it will correspond to a set of measure
o eind einb zero in the phase space of the system.
K=n2w Kn(t) N Kn()= ¢ K on (3.9 From now on, we will thus tak&,# 0. Equationg3.6)—

(3.8) ensure then that our conditio3.1)—(3.3) are suitable
f.to fix the scalar, Gauss, and diffeomorphism gauge degrees
of freedom. On the other hand, employing our gauge-fixing
|conditions, we can solve the scalar and Gauss constraints to
obtain the expressions f@& andJ as functions of the vari-
ablesk “, K", X, v, andKg:

Condition (3.3) amounts thus to absorb all the Fourier coe
ficientsK,, with n#0 by means of a diffeomorphism.

Let us now see that our gauge-fixing conditions are wel
posed. A straightforward calculation shows that

[XHa nH{=-2inEK, (3.6 2w ) ® _ ) ®
% A= m(l‘(w r?,,X—ZKw (900)+e t(Kw U_Kw )
’ A'G}:_ih” (3'7) _t
[XG fﬁ + Vzlfe [(K,“—K,"0)2+(K,)2(x—0v?)], (3.10
0

where\ andn are functions onS* andn is a density of This and Eqgs(3.1) and (3.2 remove the two canonically
weight — 1. If n, A, anddyn are different from zero, condi- conjugate pairs 4,E) and J,¢) as dynamical degrees of
tions (3.1) and (3.3) guarantee that these Poisson bracketdreedom.
never vanish folKy#0. Therefore, provided thd(, does In addition, the diffeomorphism constraif2.11) can now
not vanish, our gauge-fixing conditions are second class withe rewritten
the constraints and, hence, acceptable.

The problems found &,=0 can be obviated in the fol- Ko
lowing sense. Using Eq§2.2), (2.3), (2.8), (2.9), and(2.13, - \/?(%WZO, (3.12
it is possible to show that the variabtecan be equivalently .

expressed in our model as where

K=—i h Kk,gh®. (3.9 .
/:— 14 _ _ w _ 2

Here, h is again the square root of the determinant of the 1 z(x_vz)[K‘” (LaX=2%9gv) =K (X =07)].

three-metric, andk,s and he? denote, respectively, the (3.13

Since our fields have a periodic dependence on the angular
we assume that all the classical elementary variables, and igoordinated, II andw can be expanded as Fourier series
particular K, are smooth functions of. In fact, it suffices that similar to that displayed foK in Eq. (3.5. Formula(3.12
K e CY(SY) for its Fourier series to converge % at all points  fixes then all the Fourier coefficienis, with n#0 in terms
e St of Ky and the Fourier coefficients @i’
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v2mll) . Ko
= = 0
Wy, inKg n+0. (3.19 Xc \/Z%N . (3.20

The coefficientw, is, however, left undetermined. In addi-

tion, integration overS! of Eq. (3.12 leads to the global The requirement thagy, vanishes implies

constraint
V2
N= T (3.21)
I’ IKO
)= ¢ —=0. (3.15
V2w This andyg=0 determine a uniqud through Eq.(3.19.

We recall at this point that our gauge-fixing condition Finally, by dgmandingﬂthaﬁ[;}c=0, we conclude thall’ can
(3.3 amounts to set all the Fourier coefficierits, of K, e any function ot, N"=N"(t). We thus see again that the
exceptK,, equal to zero. On the other hand, E¢@27—  diffeomorphism gauge freedom has not been entirely re-
(2.32 imply thatK,, andw,, commute under Poisson brack- moved, since the shift functioN? is not completely fixed.

ets with the rest of our phase space variables, whereas ~Any diffeomorphism with infinitesimal parametét‘(t) is
still allowed. Note that such diffeomorphisms are precisely

{Kn,Wt=id",. (3.16  those generated by the only remaining constrBi§t=0.
For Lorentzian metrics, the shik’(t) must be real. On
We conclude in this way that our gauge-fixing condition, the other hand, we have commented above Khatnd hence
together with the diffeomorphism constraint, allow us to Ko [from Eq. (3.4)], is purely imaginary in the Lorentzian
eliminate the canonically conjugate paif§(w_,) with n case. Therefore, the densitized lagg8e2]) is actually real.
#0 as physical degrees of freedom, while the homogeneougioreover, it does not vanish for any finite valueltg. This
components oK andw (i.e., the Fourier coefficientS, and  concludes the proof of consistency of our gauge-fixing con-
Wy) remain as dynamical variables. In this reduction processgitions with the Lorentzian evolution.
the diffeomorphism gauge freedom is not totally removed, The final result of our gauge-fixing procedure is the elimi-
because we are still left with the homogeneous part of theation of the nondynamical fieldsA(E,J,¢) and Fourier
diffeomorphism constrainily=0. coefficients K, ,w,) with n#0. The phase space of the re-
In order to prove that our gauge-fixing procedure is conduced model can be described by the féperiodig fields
sistent, we still have to show that the conditidBs)—(3.3) K _“, K_”, x, andv, and the two homogeneous variables
are compatible with the dynamical evolution of the modeI.Ko and w,,. Since all these variables commuted with the
This evolution is generated by the total Hamiltonian con-ponphysical degrees of freedom that have been suppressed,
straint[2] the reduction of the system does not alter their Poisson
brackets(i.e., their Poisson and Dirac brackets coingide

HT= % [_ EH—iN‘g(C—AG)—iAG . (3.1 These brackets are given by E@8.28—-(2.32 and

2
. . {Ko,wo} =i, (3.22

whereH, C, and G are the first-class constraintg.10—
(2.12, N is the densitized lapse functiol? is the only  which follows from Eq.(3.16). Finally, the reduced model is
nonvanishing component of the shift vecfoand A is a  still subject to one homogeneous constraint, namely,
Lagrange multiplier. In additionlN and NY are real if the I15=0.
metric is Lorentzian, andN must be different from zero.
What we have to check then is that there exists a choice of
densitized lapse, shift, antl such that the total time deriva-
tive of each of our gauge conditions vanishes. This total time In this section, we will analyze the dynamical evolution of
derivative(that will be denoted by a dpis given by the sum our reduced model, discuss the reality conditions on the
of the Poisson brackets witH™, { . ,HT}, and the partial phase space variables, and obtain the expression of the clas-
derivative with respect to the explicit dependence on the timesical metric.
coordinate 9,. After a careful calculation, we get that,

IV. THE REDUCED CLASSICAL MODEL

modulo constraints and gauge-fixing conditions, A. Classical evolution
_ K We have seen that the shift functidtf can be any func-
xu=¢ iN—o—l), (3.18 tion of time N(t). For practical purposes, nonetheless, this
V2w shift function can always be absorbed by replacing the angu-
: lar coordinated with
. Vame
XGI—A—iN(\/X—szwV— H’)-Het&gl}l, t
Ko 0'=6+ | dt'N%t"), (4.9

(3.19 0

wherety is any given time. From the periodicity o, it
2The w and» components of the shift vector can be made equal tofollows that ¢’ is defined as well oi$t. Notice also that, for
zero after the symmetry reductid@.8) and(2.9). fixedt, dg=49y.
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Since the vector fieldsd/)* and @;)* (w=t,a) are or- i
thogonal, the dynamical evolutiqmwith ¢’ kept constantis Py=5(K,"=K,v), P,=iK,’ (4.9
generated in our model by the reduced Hamiltonian density
Hgr, which is provided by the negative of the momentumare the momenta canonically conjugateytandv,
canonically conjugate to the variable chosen as time. Recall-
ing condition (3.1), which implies thatt=InE, and taking y(0),Py(6")}=1{v(0),P,(8")}=5(6—0"). (4.7
into account the Lorentzian Poisson brack@&27—(2.32), ) . .
we conclude that the momentum canonically conjugate td N€ inverse of relationg4.5) and(4.6) is

our time variable is given byAE. In this way, we arrive at x=eY+ 2 (4.9

Hr=—iA€', with A given by Eq.(3.10. Hence, for constant ’ '

¢', the time derivative of any of our reduced phase space K,=—i(2Py+vP,), K,'=—iP 4.9
w v/ w [ 20 :

variablesf is
On the other hand, it is obvious that

f=aJ+mf,§l44. 4.2 ko=1Kg (4.10

In the following, we will assume that the shift?(t) has 'S real and, given Eq3.22, canonically conjugate twio,

already been absorbed & and suppress the prime from this {Wo,ko} =1. 4.11)
angular coordinate.
In addition,wy andk, commute under Poisson brackets with

B. Real phase space variables y,v, Py, andP, . We have hence attained a canonical set of
bl © L v h elementary variables for our reduced model.
Our variables ,v,K," K, Ko,Wo) present the prob- o yever, the variableB, andP, are still complex. Ac-

lem of possessing domains of definition that are rather COMg,ally, it follows from Eqs.(4.3), (4.4), and(4.6) that the real
plicated in the sector of nondegenerate Lorentzian metric%artS of P. and P. run over the whole real axis. whereas
y v 1

2
On the one hand, we know th&tmugt be .gr.eater tham®, their imaginary parts7(P,) andZ(P,), are restricted to be
v being real. On the other hand, particularizing to our gauge-

fixed model the definition oK ? in Eq. (2.13 and expres- et 2 el 2
sions(2.2) and (2.3) for the Ashtekar connection, it is pos- Z(Py)= 28 9w, IP,)=~— 28 770 (4.12
sible to show that

. Nevertheless, it is now easy to arrive at a set of real elemen-

€ . tary variables. This can be achieved by means of the canoni-
©o___ _ _iall2 _ 2\14,0
Ko —4(X_02)3/2(2x&(,v vdgx) —iete"(x—v*) Ty, cal tranformation generated by the functional
4.3
F=wok{+ jg[(y—Zt)pquvpv]wLiF, (4.13
et
v _ 2y _intl2awgy, o 2\1/4,v

o= 4(x—v2)3’2ﬁ9(x v?) ~iete"(x—v:) . where

(4.9

et
b . F=——§eﬂ%w (4.14
In these formulas,k, is the extrinsic curvature, and 2
w=3 w,e'"’ /2, with w, determined by Eq3.14) for all , ) _
n+0. So,K,“ andK," are not only complex, but their real 2"dPu(6). p,(6), andk, are the new momenta. Itis straight-
parts are, in addition, functionally dependentsomndv in forward to check thak,=k; and that our configuration vari-
an explicitly time-dependent way. We finally recall that, for @0lesv(6) andw, are not affected by the transformation.
positive definite three-metrics, the functionsandK have to  1he fieldy(6) is, however, replaced with a new configura-
be real and purely imaginary, respectively. Moreover, welion vanableu(_e), whose domain of definition is given again
have assumed thit,#0. Therefore, we must have,e R~ PY the real axis
andiKoe RTUR™. o

To overcome the above problems, we will now perform a u=y-2t (4.19

change to a different set of elementary variables whose elgyne can see that this change of variable partly simplifies the

ments are all real. As a plus, these new variables will form gyicit time dependence of the metric. More importantly,
remarkably simple algebra under Poisson brackets. sinceF satisfies

Ouir first step will consist in replacingwith a new metric

variabley, whose domain of definition is the entire real axis, SF SoF
E:I(Py)' 5=I(Pv), (4.16

the new momentg, and p, turn out to coincide with the
The conditionx>v? ensures thay is real and well defined. real parts ofP, andP, , respectively,
Using then Eqs(2.28—(2.32), it is not difficult to show that
the variables Py=p,+iZ(Py), P,=p,+IZ(P,). (4.17

y=In(x—v?). (4.5
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Therefore, (,p,,v,p,) (Which are fields onS!) and and remembering that the shift functio’ has been ab-
(wg,ko) provide a canonical set of real elementary variablesorbed in the angular coordinate we arrive at a line ele-
for our reduced model. All of these variables run over thement of the form
whole real axis, excep),, which has to be nonvanishing. In w2 ) , w2 )
addition, the model possesses one homogeneous constraint, ds’=e?"e"(—dT?+d¢?) +e "4(g,,do
that is g_iven by Eq.(3.15. After some calculus, we can +2g,,dodv+g,,dv?), (4.26
express it as

where, in terms of the positive time coordindteg,, reads

II
M= —illy= § ——=0, (418 K
NPT 0= Toe 40 4.27)
[T=—=ill"=dyu py*+dgv P, . (4.19 On the other hand, Eq3.14) determinesw to be
This constraint reproduces the periodicity condition found by Wo * m,
Gowdy [12]. In fact, it was obtained from Eq(3.12 by w= - We'”", (4.28
assuming that the functiow is periodic. As remarked by V2 n====0 INKo

ﬁgg%'ellé ?Qn?elsn?utr): t;gt(;rer;:)eﬁg] as the condition that th(\a/vith I1, the Fourier coefficients fofl, andIl;=0 because

Let us finally notice that, since the generating functionalOf constraint(4.18. We have thus succeeded in writing the

F of the above canonical transformation is explicitly time metric of our model in terms of the dynamical variables

dependent, the dynamical evolution of the variable u,ltviéggswgc,)iﬂgg&.that the classical geometries described
(u,py,v,p, Wo,Kg) is not generated by the Hamiltonian Y 9

H. anymore. The new reduced Hamiltonikl can be ob- _by EQs.(4.26—(4.28 are in factslnvarlant under a flip of sign

i in the momenty,,, p,, andky.” We can take advantage of
tained from the standard formula . ; . . AT

this symmetry to fix, e.g., the sign &f, without eliminating
from our considerations any of the geometries that are al-
3@ H,= 3§ Hr+ 0, F. (4.20 lowed for our model. We will hence restrikg to be positive
from now on,kge R™.

Given this restriction, it is convenient to replace
(wg,ko) with a new pair of canonical variabled{,cy),
whose respective domains of definition are the whole real

Using thatg, F= —2¢p,+iF andHg=—iAe€', with A given
by Eq.(3.10, we get

axIs
2w | e e ! ’
— _ 2t AU 2 2 2
Hi= = T [ APuteepit g (9o ™ 7 (9)7). bo=koWo, Co=Inky. (4.29

(4.23) Note that
It is straightforward to see that this Hamiltonian is bounded

from above(below) for positive (negative values ofk,. Do, Coj =1, (4.30
and that the poink,= 0, excluded from our phase space, has
C. The metric now been driven to the boundary of the domain @f

We will now obtain the expression of the classical metric(N@mely, toco= —c<). Notice also that, after performing the
that results from our gauge-fixing conditions for the Gowdychange(4.29, the Hamiltoniar(4.21) turns out to be analytic
model. Using Eqs(2.2), (2.8), (2.17)—(2.19, and the defini- in all the elementary fields and variables of our reduced

tion of u, we get that the only nonvanishing components ofmodel. . . . _ .
the three-metrich,, are To close this section, we will derive a formula equivalent

to Eq.(4.28 that may be more useful in practice to compute

hge=e?"e"?, h,s=e" U/ZQQﬁ, (4.22 the metric functiorw. A straightforward calculation leads to
Joo=1, Gu,=—0, 0,,=€Xe"+v2 (423 ﬁ={n, fﬁ Hr] =d,H,, (4.30)
The lapse functionN=N(deth,,)? can then be found 1
from Eq.(3.22), WOZ[WO, 35 Hr] :_k_o ﬁ; H,. (4.32
N2 . . . . .
N= — eleWgl/4, (4.24  Itis worth remarking that the first of these equations implies
Ko that the constraint4.18 is preserved by the dynamical evo-

) ) ) lution of our model. From Eqg4.31) and(4.32), we also get
Introducing now the change of time coordinate

27

_ ™ e, TeR', (4.29 This change of sign in the momenta, while keeping unaltered the
0

T . . . . .
configuration variables, can be interpreted as a time reversal.
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the following relations amongv, and the Fourier coeffi-
cients of [ andH, (IT,, andH}, respectively.

t
i—nnzfdt’HP(t’)den, n+0, (4.33
0
L2 rt
WO:_k_”f dt'HO(t') +do, (4.34
0 0

thed,’s being constants for all integers Using these rela-
tions, it is not difficult to check that E¢4.28 can be rewrit-
ten as

W(t’ﬁ):_ki\/_:[

t
fdt'Hr(t’ﬁ:O)
0

+D,

7}
+f de'TI(t,0") (4.35
0

whereD is an undetermined real constant.

V. QUANTIZATION

We have seen that the four fields,p,,v,p,) and the
two homogeneous degrees of freeddng,€,) form a set of
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tum observables, that will be postponed to Sec. VI. At some
stages of our analysis, we will proceed only in a formal way;
thus, our main concern is to show how the quantization pro-
cess can be carried out, rather than obtain explicitly a rigor-
ous and complete quantum theory for our model.

We begin by choosing as our auxiliary representation
space the vector space of analytic functiontll®f the set of
variablesQQ=(cgy,u,,v,) [n=0,£1,...]. On this space, we
can represent our elementary variables by the operators

. R

CO\I’ = CO\I,, bo\P:| — (53)
dCq

9nV=0g,", p;”\lf=—ia—gn, (5.9

whereg stands again fou or v (and we have set=1).
Notice that the commutators of these operators reproduce the
classical Poisson algebf&.1) with the due factor of:

(5.5

The operators of our quantum theory are then giveiipmg-
sibly infinite) sums of products of the elementary operators
(5.3 and(5.4) andc-number operatorg2].

[bo.Col=i, [gn.Pg"I=i.

real elementary variables for our reduced model. They are USing the reality condition$5.2), we can select an inner
only restricted in that they are subject to the constraintPrOdUCt on our auxiliary representation space in the follow-
(4.18. Since all our elementary fields are definedSnwe NG way. We first adopt the ansatz

can expand them as Fourier series. The corresponding Fou-
rier coefficients will be called\,,p;},v,,py). These coeffi-
cients, together withl{y,cg), provide then an infinite set of
homogeneous, elementary variables for our system. From ﬂWi
fact that @, ,p,) are the momenta canonically conjugate to
(u,v), we arrive at the following Poisson bracket structure:

{un,pum}={vn,pT}= aTn’ {bOvCO}:l’

the rest of brackets being equal to zero. On the other hand,
the reality conditions on our fieldsu(p,,v,p,) and vari-
ables pg,cq) imply that

<q>,\1f>=f dOAdQP(Q,Q)D(Q)P(Q), (5.6

— i
dOAdO= ~dcy/NdSy [ [ (—dun/\du_n>
(5.1) 2 o\ 2
i
EolumAdm)

<11

(5.7)

and p a certain positive integration measure. The require-
ment that the reality condition®.2) be realized as adjoint-
ness relations determines then the meapurp to an overall
whereg=u or v and the bar denotes complex conjugation. positive constant,

In order to quantize the system, we will follow the ca-
nonical quantization program put forward by Ashteka.
We will first represent our elementary variables by linear
operators acting on an auxiliary vector space. An inner prod-
uct will be selected on this space by imposing the realityln this formula, we have employed the notation
conditions(5.2) as adjointness relations between our opera-
tors[2,17]. We will then represent the constraidt 18 as an

-n

b_O:bO! C_OZCO! m:g—n’ pgng ’ (52)

p=5<co—c—o>fn[ [8(U_p—Up)S(v_n—vp]. (5.8

8(2)8(2)=08(x)8(y), 8(z—x)=8(y) (5.9

operatorHAo, and impose it on our quantum theory. From the¢,, z=x-+iy any complex variable, and,y  R.
kernel of T, and the inner product introduced on the auxil- We still have to impose the homogeneous constraint
iary representation space, we will construct the Hilbert spacé4.18 quantum mechanically. In order to do it, let us repre-
of physical stategt,,. Finally, we will identify the quantum sent the phase space variablg by the operator

observables of our reduced model. By quantum observable,
we mean any operator that has a well-defined actiort{gn
and, therefore, commutes with the only constraint of the

o=, s(X¢+XY), (5.10
s=1

model,I1,. In the rest of this section, we will implement this

guantization program, except for the discussion of the quarwhere (for g=u or v)
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~ LA AL A A VI. QUANTUM OBSERVABLES AND HAMILTONIAN
X9=1(gsPg °—9-sP5). (5.1 Q

_ . . We turn now to the task of finding the quantum observ-
We note that, with the factor ordering chosen in B§111,  apjes of our model. These are the operators with a well-
I, is, at least formally, self-adjoint on the auxiliary Hilbert gefined action on the Hilbert space of physical statgs As

space determined by the inner prod(si6)—(5.8). they leavet,, invariant, they mustweakly) commute with

The physical states of our quantum theory are those anni- ) ~
Py au y the quantum constraint of the mode,.

hilated by the constraint operatbk,. In our auxiliary repre- In our quantum theory, on the other hand, all operators are
sentation space, on the other hand, all quantum s#tean  sypposed to be constructed from the elementary operators
be expressed dpossibly infinitg sums of functionals of the (5.3) and(5.4) by taking (suitable limits of sums and prod-

form ucts. In particular, it should be possible to obtain all quantum
observables frontinfinite) linear combinations of operators
P(k,g)zcgl_n[ (u'nn v:]n), (5.12 of the form
whereo=(i,,j,) [n=0,=1,...], andk, i,,, andj, are non- ﬁ(kyr)=6'él BEZH [l]in" {;’;]”(E)J”)'*n (p,M™n], (8.
n

negative integers. From Eq&.10 and (5.11), it is easy to
check that the functionaB , are(generalizegleigenfunc-
k=(ky,k;) and I'=(i,,jn.ln.m,) [N=0,=1,...] being

tions off[o, nein
two sets of non-negative integers.

~ A straightforward calculation shows that

I Pik,oy=N(0)P k.0 - (5.13
Here,N(o) is given by [ﬁo,ls(kyr)]=N(1")I5(k'r), (6.2

o . here
N(U):sgl S(istjs—i-s—]-s) (5.19 W
and is equal to the sum of indices of all factons, (v,) N(T)=, S(igtjstlgtme—i_g—j_s—_g—m_g)
s=1

(including multiplicities appearing inP .. For any quan-
tum state¥ = Za Pk, o), With a( ) SOme complex con-
stants, we, therefore, get

6.3

is [similarly to N(o) in Eq. (5.14) ] the sum of indices of all

the elementary operatofsounting multiplicities that form

oW =, ay,N(o)Py.- 515 . .
0 (%) tN(@)Pika) (619 Pr)- ThereforeP ry commutes witH1, if and only if its

_ ) . total indexN(I') vanishes. Furthermore, from E@.2) and
The uniqueness of the power series of the zero functiongl,r comments above, it is possible to show that the quantum
implies then that is annihilated byll, if and only if itisa  observables of our theory can always be exprésasdinear
(generally infinit¢ linear combination of functional® combinationgincluding the limit of infinite sumpsof opera-
whose total indicedN(o) vanish. The analytic functionals tors |5(k,r) verifying N(I')=0.
that satisfy this condition form a complex vector space, A possible way to attain observables is the following. We
whose Hilbert completion with respect to the inner productfirst define
(5.6—(5.8) finally provides us with the Hilbert space of
physical stateg{,, .

*© ino *
It is easy to see that this Hilbert space is actually infinite g()= > g,

e ein&

E’g(a):nz E)g \/E

dimensional. For the sake of an example, let us display an = 27 =-o
infinite set of states irH,,, namely, (6.4
1 1 1 CS Here,g=u orv, andg e S must be regarded as a parameter.
V= P(k,a')g sl;lo 2mAB, eXm — 2 c? Suppose next that(cq,bg) is an analytic function o€, and
by, and f{u(6),v(0)] a functional of onlyu(6) anduv(6)
“ (Ul vew. (and perhaps of their derivatives with respec#jowhich is
+2 | =+ (. (5.16  analytic in these fields. One can then check that, for all non-
s=0 | Ag Bs negative integers andm, the operators

whereC, A, andB; (s=0,1,...) arereal constants, but

otherwise unrestricted, ari%l(k,(,,)' is any ponnpmiaI of the g(Co.bo) § flu,01(py) (P,)™ (6.5
form (5.12 (i.e., the setr’ contains only a finite number of

nonvanishing elements in this caseich thatN(o')=0. All

these states are analytic functionalstbfbelong to the ker- R

nel of [Ty, and can be checked to be normalizable with re- “Up to additive terms of the fornXTI, (X being a generic opera-
spect to the inner produ¢b.6)—(5.8). tor), which vanish modulo the constraihi.
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can be written aginfinite) sums of operatoré(k,r) with whereUfl(t,O) is the inverse of the evolution operator.
N(I')=0, so that they provide, in general, quantum observ- We have thus seen that, in order to arrive at a unitary
ables for our model. guantum evolution and essentially complete our quantiza-
So far, we have not discussed the dynamics of our quartion, we are only left with the problem of finding a self-
tum system. In order to do it, we must first allow the physicaladjoint observable to represent thietegrated classical re-
states and quantum observables to depend on a dynamiaiiced Hamiltonian of the model. A quantum Hamiltonian
parametett e R. The quantum evolution is then dictated by that, at least formally, satisfies these conditions is
the Schrdinger equation

Al=—-X-e?Y, (6.12
A% -

i—- (=R (), (6.6) ) A

K= \Zre o § [ 4(py7+ h e a)7]

where I:|,T is, by assumption, a self-adjoint observable that

represents the classical reduced Hamiltonian integrated over _: = “nnln Z.nm I

S, that is, the generator of the classical evolutj, . =e °n=§;w 4v2mpy py —m;w 2 &-n-mUnVm|,
The self-adjointness d@lrT implies that the quantum evo-

lution is unitary, i.e., it preserves the norm of the physical (6.13

states of the theory. This is equivalent to say that the inte-
gration of the Schidinger equation(6.6) leads then to a \?=\/ﬂe*‘30 % [i(agﬂ)2+ea(ﬁ )]
unitary evolution operator U(t,0), such that ¥(t) w ’

=0(t,0)\I’, ¥ being the initial physical state. In terms of the .o \/ﬂ o o A o
guantum Hamiltonian, the evolution operator adopts the ex- =e~% >, anun U+t > e mptp™.
pression21] n=—o mEZ e
t (6.19
" _ s 1 Trer
U= exp{ Ifodt Hrt )” ®7 |1 the above formulas,
whereP stands for the time ordering A _eind
e = ¢ e 6.1
n 2n (6.19

PLAf(ty)-- -FirT(tn)]:(E) AT (ty) - Al (L) Oty
) A A ~
andu, p,, andp, are the operators defined in E§.4). It is

clear that this quantum Hamiltonian commutes wikp, be-
(6.8)  cause it is a linear combination of operators of the form
. - . ) (6.5). That this Hamiltonian is formally self-adjoint follows
Here,® is the Heaviside function angl any permutation of from the fact that it is given by a sum of products of com-

the indices 1... n. . . "
S . . muting operators, as well as from the reality conditions
From the Schrdinger equation and the self-adjointness of~+ gor y

the quantum Hamiltonian, we also arrive at the following ¢~ o ggzgfn’ and (g)"=pg" (g=u orv). Finally, no-
evolution for the matrix elements of any quantum observabldice thatH[ inherits an explicit dependence on the parameter
A(t): E4frzo])m the time dependence of the classical Hamiltonian
d . . o To prove that the Hamiltoniaf6.12—(6.14) is in fact a
5 (@M, 0P (1) =(P (1) {[O(1),H (V)] self-adjoint observable, it would actually suffice to show that
it is densely defined on the Hilbert space of physical states
+ia, 0 W (1)), (6.9  Mp. From our discussion above, this would guarantee that
H, is a symmetric observable. That this Hamiltonian is self-
with 9,0(t) the derivative ofD(t) with respect to its explicit adjoint (or, strictly speaking, that it admits a self-adjoint ex-
dependence on the parameterWe will then say that an tensior) would then be a consequence of the fact that there
observabled(t) represents a constant of motion if it satisfies €Xists a conjugatio on H, which leaves the domain of
A A A HrT invariant and commutes with [22]. We remind that a
[O(t),HrT(t)]JriatO(t):O, (6.10 conjugation C:'Hy,—H,, is an antilinear, norm-preserving
map whose square is the identity. It is not difficult to check
so that all its matrix elements are constant in the quantunghat a map orH,, that satisfies the properties of a conjugation
evolution. In this sense, it is worth pointing out that, givenand commutes with our quantum Hamiltonian is
any quantum observabl®, that is explicitlyt independent, .
one can generally obtain another observable that represents a CY(Q)=¥(C(Q)), (6.16
constant of motion, namely,

—ty2) Ot ym—1) = tym)

A . L whereW¥ is any physical state and the action®bn the set
O'(t)=U(t,000 U~ L(t,0), (6.11 of elementary variable€ is given by
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CCo=Co, CuUy=U_,, Cuvp=v_p, (6.1 of sign in the momenta,(6), p,(6), andky, we have none-
theless been able to restrict all considerations to the case
with n=0,=1, ... . koe R™ without loss of generality. In order to attain a ca-

It could also happen that, instead #fy, the Hamiltonian ~ nonical set of elementary variables whose respective do-
(6.12—(6.14 admitted a self-adjoint extension only on a suf- mains of definition are the entire real axis, we have then
ficiently large Hilbert subspac’e(Fl)CHp. In that case, one replacedw, andk, with a new canonical pair of variables
could still try to restrict all considerations to that subspace in(Po;Co)-

a consistent way, and rega?ql) as the true Hilbert space of In addition, we have obtained the explicit expression for
physical states. Otherwise, one would have to replace thie classical metric of the Gowdy spacetimes and determined
operator(6.12—(6.14) with a different quantum Hamiltonian the reduced Hamiltoniahi,, that generates the dynamical
that turned out to be physically acceptable in our model€volution in our gauge-fixed model. This Hamiltonian pre-
Finally, if no such Hamiltonian could be foun@nd one Sents an explicit dependence on the time coordinate, so that
insisted in arriving at a unitary quantum evolutiprone the reduced system is not conservative.

would have to start the quantization over again, changing Since the fieldsi(6), p,(6), v(6), andp,(6) are periodic

any of the choices that are available in the construction of théunctions of 6, we can expand them as Fourier series. The

quantum theory, such as, e.g., the set of elementary operatdrourier coefficients ,,p,") and @n,.p,") turn out to be
or their representation. canonically conjugate pairs of homogeneous variables. Em-

ploying these Fourier coefficients anly,cy) as elementary
variables, we have proceeded to quantize our model follow-
ing the canonical program elaborated by Ashteldr We
Starting with the Ashtekar formalism for Lorentzian gen- have first represented the variablgsg co, u,, pg, v,, and
eral relativity in vacuum and restricting our attention to thep{}1 (n=0,%£1,...) aselementary linear operators acting on
sector of nondegenerate metrics, we have discussed thge vector space of analytic functionalsaf u,,, andv,,. A
structure of the reduced phase space and the quantization ghique inner product has been selected on this space by de-
the family of Gowdy universes whose spatial topology is thatmanding that the complex conjugation relatiof#s2) (our
of a three-torus. reality condition$ are realized quantum mechanically as ad-
We have first removed nonphysical degrees of freedom bybintness relations. We have then represented the homoge-
means of a gauge-fixing procedure. The gauge-fixing condineous constraint of our reduced model by a linear operator
tions imposed, together with the first-class constraints of th‘flo, and determined the quantum states that are annihilated
model, have been shown to form a set of second-class copy it These states, together with the inner product selected
stra|r?ts thzt allowblthet redIL_Jct_lont of tITE'}chSyStem.t In tth's ‘;V?%/’by the reality conditions, have provided us with the Hilbert
we have been able to eliminate all the constraints of thgpace of physical statés, .

model except for one homogeneous constrélgt=0. This ~ * The quantum observables of the reduced model are the
constraint is the analogue of the periodicity condition St“d'edOperators that have a well-defined action Bfy. In our

by Gowdy [12], and generates the diffeomorphisms, with o antum theory, on the other hand, a generic observable
spatially constant infinitesimal parameters, of the angular cogp o1 always be given by a suitatifeossibly infinit¢ sum
ordinate# that does not correspond to a Killing field of the ¢ products of elementary operators. Using this fact, we have

VIl. CONCLUSIONS AND FURTHER COMMENTS

spacetime. _ _ _ been able to obtain the general form of the quantum observ-
The choice of time that we have adopted is equivalent tg,pjeg.
that employed by Gowdy12,16. We have got rid of the \yg have finally introduced a dynamical evolution in our

Gauss constraints and_ of the .diffeqmorphism constraint.s Oéystem by imposing a Schiinger equation with quantum
the coordinates associated with Killing fields by requinng - onian BT tina the classical reduced Hamil-
that some components of the densitized triad vanste amittonian™, , epreslen Ing the classical reduced Hami
Egs. (2.8), (2.18, and (3.2)]. Finally, the 6-coordinate dif- toman_ mtegratec_i oveg . If one.rqueref that the quantum
feomorphism gauge freedom has been used to set the vagvolution be unitary, the Hamiltoniakl, must be a self-
ableK [given by Eq.(3.9)] equal to its mean value on each adjoint observable. We have found an operatdr that, at
surface of constant timgl6], i.e., toK,/y2. This quantity  least formally, satisfies these conditions. Also discussed are
is known to be a constant of motion of the model. We haveother still available, alternative possibilities to obtain a
then shown that the classical geometries With=0 are not Hamiltonian which would really be well defined and self-
included in the family of cosmological solutions consideredadjoint.

by Gowdy. In addition, provided thdf, is different from In analyzing the structure of the phase space of our re-
zero, our gauge-fixing conditions are consistent and wellduced model, we have restricted the varigkieto be posi-
posed. tive by taking advantage of the symmetry of the classical

We have found a canonical set of real elementary varigeometries under a change of sign in the momeni@),
ables for the phase space of our reduced model. This set j§,(6), andkg, a transformation that can be regarded as a
formed by the four fieldsi(6), p,(6), v(6), andp,(6), and  time reversal. Had we not imposed this restriction, we should
by the two homogeneous variableg andk,. The reduced have split the phase space into two disconnected parts: one
model is still subject to the homogeneous constrainfor ko>0, and the other foiky<<0. Replacing definiton
I1,=0. On the other hand, the exclusion of the solutions(4.29 with
with Ko=0 implies thatkoe R"UR™. Making use of the
fact that the classical geometries are invariant under a change bo=koWo, Co=In(—ko) (7.9
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in the sector of negative values kaf and repeating our quan- of view that we have adopted is that the coordinabeand
tization procedure, we would have then arrived at a quanturny are physically distinguishable and the orientation of all
theory whose physical Hilbert space would be given by thespatial coordinates fixed once and for all.

direct sum of two copies of the Hilbert space of physical During the completion of this paper, we have become
states constructed fdkye R™. Nevertheless, any of these aware of an independent work by Ashtekar and Pig,

two copies would actually provide us with an irreducible \who also study the quantization of the family of Gowdy
representation of the model as far as we do not allow timgnjverses with the spatial topology of a three-torus. In that
reversal operations. work, the discussion has nonetheless been restricted to the

On the other hand, although we have considered the incase in which the two commuting Killing fields of the model
variance of the Gowdy geometries under the transformationgre hypersurface orthogonal.

generated by the diffeomorphism constraints, we have in fact

not discussed the possible symmetries under global diffeo-

morphisms that cannot be connected with the identity trans- ACKNOWLEDGMENTS

formation. Diffeomorphisms of this kind which are compat-
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