Accepted Manuscript

Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C

Marta Francisco, Pablo Velasco, Diego A. Moreno, Cristina Garcia-Viguera, María Elena Cartea

PII:	\$0963-9969(10)00128-6
DOI:	10.1016/j.foodres.2010.04.024
Reference:	FRIN 3192
To appear in:	Food Research International
Received Date:	18 February 2010
Accepted Date:	28 April 2010

Please cite this article as: Francisco, M., Velasco, P., Moreno, D.A., Garcia-Viguera, C., Cartea, a.E., Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C, *Food Research International* (2010), doi: 10.1016/j.foodres.2010.04.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Cooking methods of Brassica rapa affect the preservation of

2 glucosinolates, phenolics and vitamin C

- 3
- 4 Marta Francisco^{*a}, Pablo Velasco^a, Diego A. Moreno^b, Cristina Garcia-Viguera^b,

5 María Elena Cartea^a

- 6
- 7 a. Misión Biológica de Galicia (CSIC), PO Box 28, E-36080. Pontevedra, Spain
- 8 b. Department of Food Science and Technology, CEBAS-CSIC, Campus
- 9 Universitario de Espinardo, PO Box 164, Espinardo, E-30100 Murcia, Spain

10

- 11 * Corresponding author:
- 12 Marta Francisco
- 13 Address: Misión Biológica de Galicia (CSIC), PO Box 28, E-36080. Pontevedra,

14 Spain

C

- 15 Tel: 0034-986854800
- 16 Fax: 0034-986841362
- 17 E-mail: mfrancisco@mbg.cesga.es

18 ABSTRACT

19 Cooking Brassica vegetables as a domestic processing method has a great impact on health- promoting bioactive compounds: glucosinolates (GLS), flavonoids, 20 21 hydroxycinnamic acids, and vitamin C. In Galicia (NorthWestern Spain), one of the 22 most consumed horticultural crops is *Brassica rapa*, by using the leaves (turnip greens) 23 and the young sprouting shoots (turnip tops) in different culinary preparations. In order 24 to determine the effect of cooking, on turnip greens and turnip tops, bioactive GLS, 25 flavonoids, hydroxycinnamic acids and vitamin C were analysed and simultaneously 26 determined. The level of retention of each individual compound after cooking 27 procedures was evaluated in the edible organs, and we also in the cooking water, in 28 order to compare their composition to a fresh uncooked control. Steaming, conventional 29 boiling, and high-pressure cooking, traditional processing methods of this kind of 30 vegetables, were the three domestic processing methods used in this work. Results 31 showed that total GLS and phenolics were significantly affected by the cooking 32 procedure and the loss rate varied among individual compounds. Steaming was the 33 method that better preserved GLS and phenolic compounds. Conventional boiling and 34 high-pressure cooking methods presented similar rate of losses of total GLS content 35 (64%) and total phenolic content (more than 70%). Degradation among glucosinolate 36 classes, aliphatic or indolic, was similar. The total flavonoids lost in turnip greens were 37 64% and 67% for conventional boiling and high-pressure, respectively. The main losses 38 were caused by leaching into the cooking water. The concentration of vitamin C 39 suffered a drastic loss in the process of sample handling and after cooking. Despite the 40 fact that any cooking procedure affected negatively the nutritional composition of the 41 turnip greens and tops, our results showed high retentions of individual compounds in 42 steaming, and the lowest retentions were obtained in the traditional high-pressure

- 43 cooking. High retention of health-promoting compounds in the cooking water should be
- 44 considered for increasing the intake of properties of Brassica rapa.
- Acctebilities 45 Keywords: Brassica rapa; domestic processing, steaming, boiling, high-pressure

47 1. INTRODUCTION

48	The Brassicaceae family includes a wide range of horticultural crops, many of
49	them with economic significance and extensively consumed as commodities and used in
50	the industry worldwide. Brassica rapa is one of the oldest cultivated vegetables that has
51	been used for human consumption since prehistoric times (Liang, Kim, Lefeber,
52	Erkelens, Choi & Verpoorte, 2006) which comprises several morphologically diverse
53	crops, including Chinese cabbage, pak choi, turnip and broccoletto, as well as oilseeds
54	that include yellow and brown sarsons (Gómez-Campo, 1999). In the coldest regions of
55	Portugal and Spain the edible parts of B. rapa includes turnip greens and turnip tops for
56	culinary profit as well as turnips for fodder (Padilla et al., 2005) and they constitute a
57	unique supply of vegetables during the winter (Rosa, 1997). Turnip greens are the
58	leaves harvested in the vegetative period while turnip tops are the fructiferous stems
59	with the flower buds and the surrounding leaves which are consumed before opening
60	and while still greens. Turnip edible parts are commonly consumed as a boiled
61	vegetable generally as meat companions.
62	The consumption of Brassica vegetables has been related to human health and
63	to reduction of the risk of certain cancers and cardiovascular diseases. This association
64	is often attributed to the presence of glucosinolates (GLS), phenolic compounds and
65	vitamins (Podsedek, 2007; Sies & Stahl, 1995; Traka & Mithen, 2009; Verhoeven,
66	Verhagen, Goldbohm, vandenBrandt & vanPoppel, 1997).
67	
68	Thermal treatment causes denoturation of enzymes that can catalyze breakdown

Thermal treatment causes denaturation of enzymes that can catalyse breakdown of nutrients and phytochemicals. When *Brassica* vegetables are chewed or cut, tissues will disrupt and the GLS will come into contact with myrosinase (thioglucoside glucohydrolase EC 3.2.1.147), leading the conversion to isothiocyanates, nitriles,

72	thiocyanates, epithionitriles, oxazolidine-2-thiones, and epithioalkanes (Grubb & Abel,
73	2006). The number of hydrolysis products, mostly formed simultaneously during
74	storage and processing, as well as the myrosinase activity of the intestinal microbial
75	floral may affect to the total content and bioavailability of these compounds (Verkerk et
76	al., 2009).
77	It has been generally shown that conventional cooking methods such as boiling,
78	steaming, pressure cooking and microwaving reduce the intake of glucosinolates by
79	approximately 30 to 60%, depending on the method, intensity and type of compound
80	(Rangkadilok et al., 2002; Rodrigues & Rosa, 1999; Verkerk & Dekker, 2004; Verkerk,
81	Dekker & Jongen, 2001). Some reports have focused mainly on the preservation of
82	phenolic compounds in broccoli and vitamin C in broccoli and Brussels sprouts
83	(Czarniecka-Skubina, 2002; Howard, Wong, Perry & Klein, 1999; Vallejo, Tomás-
84	Barberán & García-Viguera, 2003; Zhang & Hamauzu, 2004). These studies reported
85	that steaming led to the retention of the highest levels of flavonoids and
86	hydroxycinnamic acids in broccoli. On the contrary, cooking from 3 to 15 min by
87	microwave and conventional boiling caused losses on phenolic content approximately
88	30 to 90%. Related to vitamin C were reported losses from 3 to 10% after cooking
89	Brussels sprouts in a microwave oven and pressure cooker (Czarniecka-Skubina, 2002).
90	Conventional cooking in broccoli florets at 0.5, 1.5 and 5 min caused loss by 19.2%,
91	47.5%, and 65.9% of vitamin C, respectively (Zhang & Hamauzu, 2004).
92	At the Misión Biológica de Galicia (CSIC), a collection of local varieties of <i>B. rapa</i>
93	[rapa group] is kept as part of the Brassica genus germplasm bank. In previous reports,
94	this collection was evaluated based on nutritional traits (Francisco, Moreno, Cartea,
95	Ferreres, García-Viguera & Velasco, 2009; Padilla, Cartea, Velasco, de Haro & Ordas,
96	2007). Since these crops are thermally processed prior to consumption, the objective of

- 97 this study was to determine the changes on the content of total and individual GLS,
- 98 flavonoids, hydroxycinnamic acids and vitamin C in a representative set of turnip
- te contraction of the second s 99 greens and turnip tops with three different cooking methods: high-pressure cooking,

101 2. MATERIAL AND METHODS

102 **2.1. Plant material.** Five local varieties of *B. rapa* were evaluated in this study. From

103 these, four varieties were chosen based on their agronomic performance for turnip tops

- 104 and/or turnip greens and one variety derived from three cycles of masal selection by
- 105 fresh yield. The varieties were evaluated in 2007 at two environments in northwestern
- 106 Spain: Oroso (A Coruña) (43°1'N, 8°26'W, 280 m.a.s.l.) and Guitiriz (Lugo) (43°12'N,
- 107 7°53'W, 516 m.a.s.l.). Both environments represent standard *B. rapa* production areas
- 108 in NW Spain. The varieties were planted in multipot-trays and seedlings were
- 109 transplanted into the field at the five or six leaves stage. Transplanting dates were on the
- 110 01th and 04th September in Oroso and Guitiriz, respectively. Varieties were

111 transplanted in a randomized complete block design with three replications. The

112 experimental plots consisted of three rows with 10 plants per row. Rows were spaced

113 0.8 m apart and plants within rows 0.5 m apart. Cultural operations, fertilization, and

114 weed control were made according to local practices. Leaf harvest ranged from 44 to 64

115 days after planting while sprouting shoot harvest ranged from 127 to 229 days after

116 planting according to the maturity cycle of each variety at the optimum time for

117 consumption.

118 **2.2. Processing**. Three different cooking methods were tested: conventional boiling,

steaming and high-pressure cooking. A total of 1.5 Kg of leaves (turnip greens) and

120 sprouting shoots (turnip tops) of each variety and environment were randomly selected.

121 Samples were immediately transported on ice to the laboratory, where they were

- 122 vacuum packed, frozen, and stored for further cooking. For turnip greens, three cooking
- 123 procedures were carried out replicated two times in each variety sample and
- 124 environment. For turnip tops, only samples from Lugo were used due to low yields from
- 125 Santiago and two methods were performed (conventional boiling and steaming). Each

sample was divided in several portions of 150 g for subsequent cooking and the analysis
of health-promoting bioactives. For each variety, two portions of 150g were kept as
uncooked fresh control. The cooking settings (time, temperature and water) were chosen
according to recipes. For conventional boiling, fresh portion was added to 1500 mL of
boiling water and cooked for 15 min. For high-pressure cooking, the leaves were fully
dipped in 1500 mL of cold water and cooked during 5 min under high-pressure in a
pressure cooker (Fagor TM Rapid-Express, Fagor Electrodomésticos S.C., Mondragon,
Guipuzkoa, Spain). For steaming, the portion of vegetable was placed on a steaming
rack over boiling water in a closed water bath (1500 mL) during 15 min. Of each
method, 45 mL of the cooking water was kept for further analysis. After cooking and
drained, cooked portions, water samples and fresh control were flash frozen using liquid
N_2 and kept at -80 °C prior to their lyophilization (Christ Alpha 1-4D, Christ, Osterode
am Harz, Germany). The dried material was powdered using an IKA-A10 (IKA-Werke
GmbH and Co.KG) mill and the powder was used for analysis.
2.3. Extraction and determination of GLS and phenolic compounds. The HPLC
gradient for glucosinolate and phenolic analyses is a multi-purpose chromatographic
method that simultaneously separates glucosinolates and phenolics (Bennett et al.,
2003) and it was recently applied to Galician turnip tops and greens (Francisco,
Moreno, Cartea, Ferreres, García-Viguera & Velasco, 2009). Briefly, a portion of 150
mg of each sample were extracted in 4 mL of 70% MeOH at 70 °C for 30 min with
vortex mixing every 5 min to facilitate the extraction. The samples were centrifuged
(13000g, 15 min), and 1 mL of supernatant was collected to completely remove

- 149 methanol using a sample concentrator (DB-3D, Techne, UK) at 70 °C. The dry material
- 150 obtained was redissolved in 1mL of ultrapure water and filtered through a $0.20 \,\mu m$

151	syringe filters (Acrodisc® Syringe Filters, Pall Life Sciences). Chromatographic
152	analyses were carried out on a Luna C18 column (250 mm \times 4.6 mm, 5 μm particle
153	size; Phenomenex, Macclesfield, UK). The mobile phase was a mixture of (A) ultrapure
154	water/trifluoro acetic acid (TFA) (99.9:0.1) and (B) methanol/TFA (99.9:0.1). The flow
155	rate was 1 mL min ⁻¹ in a linear gradient starting with 0% B at 0–5 min, reaching 17% B
156	at 15–17 min, 25% B at 22 min, 35% B at 30 min, 50% B at 35 min, 99% B at 50 min
157	and at 55-65 min 0% B. The injection volume was 20 μ L and chromatograms were
158	recorded at 330 nm for phenolics derivatives and 227 nm for GLS in a Model 600
159	HPLC instrument (Waters) equipped with a Model 486 UV tunable absorbance detector
160	(Waters). Glucosinolates were quantified using sinigrin (sinigrin monohydrate from
161	Phytoplan, Diehm and Neuberger GmbH, Heidelberg, Germany) as standard. Caffeoyl-
162	quinic and p-coumaroyl-quinic acids derivatives were quantified as chlorogenic acid (5-
163	caffeoyl-quinic acid, Sigma-Aldrich Chemie GmbH, Steinheim, Germany), flavonoids
164	as kaempferol 3-rutinoside (Extrasynthese, Genay, France) and sinapic acid and
165	derivatives as sinapic acid (Sigma).
166	
167	2.4. Extraction and determination of vitamin C. Ascorbic (AA) and dehydroascorbic

168 (DHAA) acid contents were determined as described by Zapata and Dufour (1992) with 169 some modifications (Gil, Ferreres & Tomas-Barberan, 1999; González-Molina, Moreno 170 & García-Viguera, 2008). For the determination in fresh, 5 g of fresh weight sample 171 were homogenised in a an Ultra-Turrax T25 (Janke & Kunkel, Germany) for 30 s on an 172 ice bath with 20 mL extractant solution, consisting of MeOH and H₂O (5:95), and 2.1% 173 (v:v) dissolved citric acid, 0.05% (v:v) EDTA, and 0.01% (v:v) NaF. For freeze-dried 174 samples 50 mg were homogenized in a vortex stirrer for 20 s with 10 mL of extractant 175 solution. The homogenate was filtered through a four-layer cheesecloth. The extract (1

176	mL) was centrifuged (3600g for 15 min at 4 °C), and the supernatant was recovered and
177	filtered through a C18 Sep-Pack cartridge (Waters, Milford, MA) previously activated
178	with 10 mL of methanol followed by 10 mL of deionized water, and then 10 mL of air.
179	The collected extract was filtered through a 0.45 μ m polyethersulfone filter (Millex-HV,
180	Millipore, Bedford, MA). Then, 250 µL of 1,2-phenilenediamine dihydrochloride
181	(OPDA) solution (18.8 mM) were added to 750 μ L of extract for dehybroascorbic acid
182	derivatization into the fluorophore 3-(1,2-dihydroxietyl)furo[3,4-b]quinoxaline-1-one
183	(DFQ). After 37 min in darkness, the samples were analyzed by HPLC. Ascorbic acid
184	and dehydroascorbic acid was evaluated using an HPLC system (Merck-Hitachi, Tokyo,
185	Japan), equipped with a L-6000 pump, injection valve and sample loop 20 μ L
186	(Rheodyne, CA, USA) and coupled to a L-4000 UV detector . Samples were analysed
187	on a Lichrospher 100 RP-18 reversed-phase column (250 x 4mm, particle size 5 μ m)
188	(Teknokroma, Barcelona, España) with a C_{18} precolumn (Teknokroma, Barcelona,
189	España). The mobile phase was MeOH/H ₂ O (5:95, v/v), 5 mM cetrimide, and 50 mM
190	KH_2PO_4 (pH = 4.59). The flow rate was kept at 0.9 mL min ⁻¹ . The detector wavelength
191	was initially set at 348 nm, and after DFQ eluted, it was manually shifted to 261 nm, for
192	ascorbic acid detection. L-AA y el L-DHAA were identified and quantified by
193	comparison with pattern areas from L-AA and L-DHAA.
104	

194

195 2.5. Statistical analyses. All analyses were made separately for each plant organ (turnip 196 greens and turnip tops). The content of each metabolite (individual and total GLS and 197 phenolic compounds) was determined in two ways: i) in the fresh (raw) and cooked 198 vegetable tissue and ii) in the sum in the cooked vegetable tissue plus the cooking water 199 (CW). Individual analyses of variance were performed for each compound. Varieties 200 were considered as random factors. Comparison of means among cooking methods was

- 201 made by Fisher's protected least significant difference (LSD) at P=0.05 (Steel, Torrie &
- 202 Dickey, 1997). All statistical analyses were made using SAS (SAS Institute, 2007).

Accepter

203 3. RESULTS AND DISCUSSION

204

205 **3.1. Effect of cooking on total and individual glucosinolates (GLS)**

- 206 3.1.1. Effect on vegetable tissues
- 207 Total GLS content in *B. rapa* varieties was very similar in both organs (12.99 µmol/g⁻¹
- 208 dw in fresh turnip greens and 12.84 µmol/g⁻¹ dw in fresh turnip tops). Seven major GLS
- 209 were found in both organs: progoitrin (PRO), gluconapin (GNA), glucobrassicanapin
- 210 (GBN), 4-hydroxyglucobrassicin (4-OHGBS), glucobrassicin (GBS), neoglucobrassicin
- 211 (NGBS) and gluconasturtiin (GNT). Aliphatic GLS were the most abundant (66% of
- total GLS) followed by indolic (25%) and aromatic (9%). In agreement with data
- 213 published by other authors (Francisco, Moreno, Cartea, Ferreres, García-Viguera &
- 214 Velasco, 2009; Kim, Kawaguchi & Watanabe, 2003; Padilla, Cartea, Velasco, de Haro
- 215 & Ordas, 2007) the predominant GLS in *B. rapa* crops was GNA, which represents 51%

and 77% of total GLS and total aliphatic contents, respectively.

- 217 In turnip greens, significant differences among cooking methods were found for
- all GLS ($P \le 0.01$). Varieties did not show any significant differences among them. The

219 variety × cooking method interaction was not significant for any GLS, which is

220 indicative of the stability of different genotypes. In the same way, in turnip tops,

significant differences among cooking methods were found for total GLS content ($P \le$

222 0.01) as well as for most of the individual GLS. Varieties were significantly different

223 for GBS and total GLS content. Differences in harvest time according to the maturity

- state of each variety could influence the final content of GLS. No GLS showed any
- significant variety × cooking method interaction.

Total and individual GLS concentrations were significantly reduced by the cooking method used and these losses were similar in turnip greens and turnip tops

228	(Table 1, Figure 1). Conventional boiling and high-pressure methods presented similar
229	loss rate, by about 64% of total GLS content in comparison with fresh samples. Rosa
230	and Heaney (1993) and Pereira et al. (2002) found losses from 40 to 80% of total GLS
231	in Portuguese cabbage after boiling. Similar degratadion rates of total GLS contents
232	(58-77%) were described by Song and Thornalley (2007) after boiling differents
233	brassicas during 30 min. Ciska and Kozlowska (2001) also observed a time course
234	decrease of GLS content from 35% after 5 min of cooking to 87% after 30 min in white
235	cabbage. In coincidence with previous results in broccoli (Vallejo, Tomás-Barberán &
236	García-Viguera, 2002; Volden, Wicklund, Verkerk & Dekker, 2008), in the present
237	work the steaming method was found to be the preferred cooking method for better
238	preservation (or higher level of retention of) individual GLS content, because the losses
239	ranged only by 9% in turnip greens and 21% in turnip tops (Figure 1).
240	After cooking, the relative distribution of the three classes of GLS (aliphatic,
241	indolic, and aromatic) did not change (Table 1). In turnip greens, the total aliphatic GLS
242	content was reduced by 14% in steamed, a 60% in conventional boiling, and by 61% in
243	high-pressure cooking. Similarly, in turnip tops, the aliphatic GLS content reductions
244	were 25% in steamed, and 63% in conventional boiling. In turnip greens, total indole
245	GLS content was reduced by about 60%, both after high-pressure and conventional
246	boiling cooking, while in boiled turnip tops this loss was a 52%. Aliphatic GLS are
247	generally reported as being more thermostable than indole GLS and under different
248	cooking treatments (Ciska & Kozlowska, 2001; Goodrich, Anderson & Stoewsand,
249	1989; Vallejo, Tomás-Barberán & García-Viguera, 2002). However, in this work we
250	found similar degradation rates between total aliphatic and total indole GLS eventhough
251	the loss rates varied among individual GLS. GNA, the most abundant aliphatic GLS,
252	was reduced after steaming by 14% and 23% in turnip greens and turnip tops,

253	respectively, while it was reduced about 60% after high-pressure and conventional
254	boiling cookings in both turnip tissues (Figure 1). Loss rates of PRO were notably
255	higher in turnip greens than in turnip tops. The greatest reductions after high-pressure
256	and conventional boiling were found for two indolic GLS (4-OHGBS and GBS) and for
257	the aromatic GNT with losses close to 100%. Other authors found that GBS, PRO and
258	4-OHGBS are very susceptible to heat treatments showing a great reduction after
259	cooking (Rosa & Heaney, 1993; Volden, Wicklund, Verkerk & Dekker, 2008). In the
260	edible part of steamed turnip greens, we found an increase of 85% on the initial value of
261	the indolic 4-OHGBS. The increase of GLS levels after steaming was reported
262	previously (Gliszczynska-Swiglo, Ciska, Pawlak-Lemanska, Chmielewski, Borkowski
263	& Tyrakowska, 2006) and also Verkerk and Dekker (2004) found more than 70%
264	higher levels of indolic GLS after microwave treatment who explained it by an increase
265	in chemical extractability from the plant tissue after heating.
266	
267	3.1.2. Effect on the summatory of vegetable tissues and cooking water (CW)
268	Glucosinolates are water-soluble compounds and are usually lost during
269	conventional cooking because of leaching into surrounding water due to cell lysis.
270	Analysis of the water remains after boiling indicated that all GLS were leached out into
271	the cooking water (CW). The analysis of GLS in CW of turnip greens and CW of turnip
272	tops showed significant differences among cooking methods for total GLS content (P \leq
273	0.01) as well as for same GLS. Other GLS did not show any significant differences
274	among cooking methods indicating low or no degradation of these compounds.
275	After steaming, total GLS content of CW in both plant organs was not
276	significantly different from the total GLS content in fresh vegetables (Table 2, Figure
277	2), which means that the amounts of GLS recovered were not significantly different

278	from the initial GLS content of the fresh vegetable. On the contrary, after conventional
279	boiling and high-pressure, there were recovered 67% and 52%, respectively of the total
280	GLS content in fresh turnip greens (Table 2, Figure 2). In turnip tops, this recovery was
281	62% after conventional boiling (Table 4, Figure 2). The most stable GLS in both plant
282	organs after cooking were GBN, 4-OHGBS and NGBS. In turnip greens, total
283	recoveries of compounds with the largest reductions i.e. PRO, GBS and GNT were
284	35%, 41%, and 13%, respectively after conventional boiling, and 67%, 29%, and 4%
285	after high pressure cooking. Different behaviour was found for 4-OHGBS, which
286	suffered high reductions after cooking and it was recovered completely into the cooking
287	water. In turnip tops, the highest loss after conventional boiling was detected in GNT
288	which was recovered only 21%. These results are not consistent with other studies in
289	which recoveries were over 80% for all GLS (Rosa & Heaney, 1993; Vallejo, Tomás-
290	Barberán & García-Viguera, 2002; Volden, Wicklund, Verkerk & Dekker, 2008). GLS
291	losses can be explained because the breakdown of cellular membranes during cooking
292	allows the contact between glucosinolates and myrosinase. The myrosinase mediated
293	hydrolysis of glucosinolates generates an unstable aglycone intermediate,
294	thiohydroxamate-O-sulfonate, which is immediately converted to a wide range of
295	bioactive metabolites, including isothiocyanates, thiocyanates, nitriles and oxazolidines
296	(Bones & Rossiter, 1996; Fenwick, Heaney & Mullin, 1983). Some of them are volatile
297	metabolites associated with the typical bitter and hot flavour of Brassica foods
298	(Fenwick, Heaney & Mullin, 1983). Isothiocyanates and indoles exhibit protective
299	activities against many types of cancer in humans (Fahey, Zalcmann & Talalay, 2001;
300	Mithen, Faulkner, Magrath, Rose, Williamson & Márquez, 2003; Zhang & Talalay,
301	1994).

303 **3.2. Effect of cooking on phenolic compounds**

- 304 3.2.1. Effect on vegetable tissues
- 305 The HPLC-DAD analysis allowed the quantification of 14 phenolic compounds
- 306 including flavonoids, quinic acid derivatives and sinapic acids derivatives: kaempferol-
- 307 3-O-sophoroside-7-O-glucoside (F1); kaempferol-3-O-(caffeoyl)sophoroside-7-O-
- 308 glucoside (F2); kaempferol-3-O-(sinapoyl)sophoroside-7-O-glucoside (F3);
- 309 kaempferol-3-O-(feruloyl)sophoroside-7-O-glucoside (F4); kaempferol-3-O-(p-
- 310 coumaroyl)sophoroside-7-O-glucoside (F5); kaempferol-3,7-di-O-glucoside (F6);
- 311 isorhamnetin-3,7-di-O-glucoside (F7); 3-caffeoyl quinic acid (3CQAc); 3-*p*-coumaroyl
- 312 quinin acid (3pCoQAc); sinapic acid (SA); 1,2-disinapoylgentiobioside (A1); 1-
- 313 sinapoyl-2-feruloylgentiobioside (A2); 1, 2, 2'-trisinapoylgentiobioside (A3); 1,2'-
- 314 disinapoyl-2-feruloylgentiobioside (A4). Results of total phenolic content revealed
- 315 higher amount of these compounds in turnip greens (31.51 μ mol/g⁻¹ dw), than in turnip
- $16 \text{ tops (14.80 } \mu\text{mol/g}^{-1}\text{ dw})$. These differences are probably due to the high amount of SA
- 317 in turnip greens, compound present in lower quantities in turnip tops. Total phenolic

318 content found in our study was similar to those found in turnip tops by other authors

319 (Fernandes, Valentão, Sousa, Pereira, Seabra & Andrade, 2007; Francisco, Moreno,

320 Cartea, Ferreres, García-Viguera & Velasco, 2009; Sousa et al., 2008).

In turnip greens, the analysis of variance showed significant differences among cooking methods ($P \le 0.01$) for all of the flavonoids and hydroxycinnamic acids evaluated. No significant differences among varieties were found for any compound. Variety × cooking method interaction was significantly different ($P \le 0.01$) for A1, total quinic acids derivatives, total phenolics and 3CQAc may be due to similar degradation rates found between high-pressure and conventional boiling methods. In turnip tops, the analysis of variance for phenolic compounds showed significant differences between

328	cooking methods for total phenolic compounds and for most individual compounds (P \leq
329	0.05). No significant differences among varieties were found for any compound. Variety
330	× cooking method interaction was significantly different ($P \le 0.01$) for F2, F6 and A4.
331	After cooking, total phenolics content in turnip greens was reduced in 15%, 75%
332	and 72% in steaming, high-pressure and conventional boiling, respectively (Figure 1).
333	In turnip tops, total phenolics were reduced 35% in steaming and 73% in conventional
334	boiling (Figure 1). During steaming, the temperature is lower than in the other two
335	methods and the edible portions were not into contact with the cooking water.
336	Therefore, the phenolic content was less affected. In agreement with Wachtel-Galor et
337	al. (2008), boiling and high-pressure cooking had strong effects on total phenolics
338	content (Table 1). The depletion of total phenolics content after cooking could be due to
339	their breakdown or by leached into the cooking water (Vallejo, Tomás-Barberán &
340	García-Viguera, 2003).
341	The amount of favonoid glycosides lost in the cooked tissue of turnip greens
342	were 5%, 64% and 67% for steaming, conventional boiling and high-pressure,
343	respectively. In turnip tops, the loss of flavonoid glycosides was a 36% after steaming
344	and a 72% after conventional boiling (Figure 1). Our results indicate higher levels of
345	total flavonoids in the edible part after cooking than those previously reported by Price
346	et al. (1998) and Vallejo et al. (2003) which found that boiled broccoli lost a 80% of its
347	initial flavonoid content. This better retention in turnip could be explained by the
348	different flavonoid profile of <i>B. oleracea</i> and <i>B. rapa</i> . The studies mentioned before are
349	focused on total phenolic content on broccoli but, as far as we are aware, there are no
350	data avaliable about rates of degradation on individual flavonoids presents on brassica
351	vegetables after domestic cooking. Regarding to individual flavonoids, in the present
352	work we focused on the study of seven major flavonoids of <i>B. rapa</i> (Table 1).

353 Compunds F1, F2, F3, F4, F5 and F6 are flavonoids derivatives from kaempferol that 354 have been described in other brassica vegetables such as cabbage, pak choi and broccoli 355 (Ferreres et al., 2006; Harbaum, Hubbermann, Wolff, Herges, Zhu & Schwarz, 2007; 356 Vallejo, Tomas-Barberan & Ferreres, 2004). Compound F7 is a flavonoid derived from 357 isorhamnetin that was described in high quantities in *B. rapa* crops (Francisco, Moreno, 358 Cartea, Ferreres, García-Viguera & Velasco, 2009). 359 Results showed that the same cooking method have different effects on different 360 types of flavonoids, even within the same class. Besides, the loss rates of individual 361 flavonoids varied among cooking methods and plants stages. High losses, from 80 to 362 90% were detected on F5 after high-pressure and conventional boiling. Compound F3 363 has different behavior between cooking methods. After conventional boiling more than 364 86% of F3 was lost, however after high-pressure the same compound was the less 365 reduced, only by 47%. In turnip greens F6 and F7 showed good retention levels with losses between 55-60% after both cooking methods, conventional boiling and high-366 pressure. After steaming, low hydroxycinnamic acid levels were lost in both plant 367 organs, between 0 and 15% of total quinic acids derivatives and between 22 and 35% of 368 369 total sinapic acid derivatives (Figure 1). These minor losses could be due because 370 during steaming inactivation of oxidative enzymes occurs (Vallejo, Tomás-Barberán & 371 García-Viguera, 2003). By contrast, high-pressure and conventional boiling produced 372 losses close to 100% of total quinic acids derivatives in turnip greens (Table 1, Figure 373 1). In turnip tops, 3CQAc and 3pCoQAc did not show significant losses after 374 conventional boiling. Total sinapic derivatives were lost about 80% in both organs after 375 high-pressure and conventional boiling (Table 1, Figure 1). The loss rates of 376 hydroxycinnamic acids found in this work were higher than those reported in boiled 377 broccoli by other authors (Gliszczynska-Swiglo, Ciska, Pawlak-Lemanska,

378 Chmielewski, Borkowski & Tyrakowska, 2006; Price, Casuscelli, Colquhoun &

379 Rhodes, 1998; Vallejo, Tomás-Barberán & García-Viguera, 2003). In plants, phenolic

380 compounds occur in soluble forms as well as in combination with cell wall components.

- 381 Hence, large surface area in contact with the cooking water at high temperature and the
- 382 long cooking time may have been responsible of the disruption of the cell walls and the

383 compound breakdown causing greater losses of these compounds.

384

385 3.2.2. Effect on the summatory of vegetable tissues and cooking water (CW)

386 The study of CW indicated that all phenolic compounds were leached after 387 boiling (Table 2, Figure 2). The analysis of variance of phenolic content in CW showed 388 that in turnip greens there were significant differences among cooking methods for total 389 phenolics content and for most of phenolic compounds (P ≤ 0.01). On the contrary, the 390 analysis of turnip tops did not show differences among cooking methods, which means 391 that the amounts of phenolic compounds recovered were not significantly different from the initial phenolic content of the fresh vegetable. Results showed that total flavonoid 392 393 recoveries were 100% in steaming samples. After cooked at high-pressure and 394 conventional boiling increases from 5 to 70% in CW in both plant organs were found 395 (Table 2, Figure 2). The deacylated compounds F1, F6 and F7 are the main contributors 396 to the increase in the concentration of flavonoids in CW respect to the fresh portion due 397 to a greater amount of these flavonoids into the processing water. The high retention of 398 these compounds may be due the conversion of acylated flavonoids into their 399 glycosylated form. Contray to this, some hydroxycinnamic acids were lost during the 400 cooking process (Table 2, Figure 2). In turnip greens, after high-pressure only a 32% of 401 total quinic acids derivatives were recovered while in turnip tops increased the amount 402 of 3CQAc and 3pCoQAc specialy in CW of high-pressure cooking. Total sinapics in

403	turnip greens were recovered by 80%, 32%, and 18% after steaming, high-pressure, and
404	conventional boiling, respectively. In turnip tops, almost all hydroxycinnamic acids
405	were recovered. Total phenolics levels were recovered almost 100% in both plants
406	organs except after high-pressure cooking. Traditional home cooking of turnip greens
407	and turnip tops is carried out under long cooking times. Zhang and Hamauzu (2004)
408	showed that a 10-fold (from 0.5 to 5 min) prolongation of the conventional cooking
409	time caused up 2-fold total phenolic losses in broccoli and, therefore stability of
410 411	phenolics strongly depended on cooking time.
412	3.3. Effect of cooking on Vitamin C
413	The concentration of vitamin C (ascorbic acid, the predominant form of vitamin C) was
414	dramatically reduced by the processing method. The content of vitamin C in fresh turnip
415	greens and turnip tops was 62 mg/100g fw and 46 mg/100g fw, respectively. Similar
416	results were described by Mondragón-Portocarnero et al. (2006) in fresh turnip greens.
417	The fresh material suffered various manipulations before analysis (i.e., freezing, freeze-
418	drying, and grounding) that definitively affected the content of vitamin C in the samples
419	causing a dramatic lost respect to the fresh material (96%). With respect to cooked
420	samples, as expected, vitamin C was decreased after all cooking methods. After
421	steaming treatment, the loss was 64% respect to untreated fresh material and after high-
422	pressure and conventional boiling, vitamin C was not found in the edible parts.
423	Mondragón-Portocarnero et al. (2006) reported loss by 61% after blanching turnip
424	greens in water for 2 min. Other authors showed that the content of ascorbic acid in
425	broccoli declined dramatically during cooking (Vallejo, Tomás-Barberán & García-
426	Viguera, 2002; Zhang & Hamauzu, 2004) having the cooking time a higher influence on
427	ascorbic acid level than any cooking method (Zhang & Hamauzu, 2004). The results

428	obtained in the present study showed that the content of ascorbic acid not only was
429	declined dramatically during the cooking but also in the process of sample handling.
430	

431 **4. CONCLUSIONS**

432 Brassica foods include different crops such us cabbage, cauliflower, broccoli, Brussels 433 sprouts, turnips and kale. These vegetables are consumed all year around, and represent 434 worldwide used ingredients of different salads either as raw or frozen vegetables or after 435 domestic processing (cooking). Conventional methods of cooking reduce the intake of 436 potentially health-promoting compounds. Most of reports that studied the effects of 437 cooking methods on *Brassica* vegetables are focused mainly on the preservation of total 438 GLS and phenolic compounds. In this work we conducted a comprehensive study about 439 more than 20 individual GLS and phenolic compounds. The quantification was carried out with a multipurpose method for the simultaneous identification of GLS and 440 phenolics. Results have given us information on the effect of cooking on flavonoids 441 levels, some of them have been studied for first time in this work. It can be concluded 442 that steaming cooking resulted in high retention of the GLS and phenolic compounds. 443 444 No contact of the vegetables with water during steaming prevents leaching and 445 solubilization of these metabolites in the cooking water. The other two methods caused 446 similar loss rates, although in high-pressure method, plant material was less time into 447 contact with water. Varieties were affected in the same way by the cooking methods. 448 In this study we found that the greatest loss of vitamin C happened throughout 449 sample management. This indicates that not only the cooking process but also the 450 manipulation affects the retention of ascorbic acid in the tissues, due to its high degree 451 of water solubility and low stability.

 Thus, an appropriate method might be sought for <i>B. rapa</i> domestic processing is key to better retain its nutritional value at the maximum level. Our study may help consumers to make their choice of the cooking practices to retain the nutritional quality of turnip greens and turnip tops. In this regards, it is likely that <i>B. rapa</i> vegetables cooked by steaming will be better for human consumption than other cooking methods. Although since both phenolic compounds and GLS were present in high quantities in the cooking water after boiling and high-pressure, the use of this water for either soups or gravies should also be considered for increasing the intake of these health-beneficial compounds into the diet. Acknowledgements Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the invaluable help in the laboratory work. 		
 consumers to make their choice of the cooking practices to retain the nutritional quality of turnip greens and turnip tops. In this regards, it is likely that <i>B. rapa</i> vegetables cooked by steaming will be better for human consumption than other cooking methods. Although since both phenolic compounds and GLS were present in high quantities in the cooking water after boiling and high-pressure, the use of this water for either soups or gravies should also be considered for increasing the intake of these health-beneficial compounds into the diet. Acknowledgements Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. Diputación Provincial de Pontevedra, Marta Francisco acknowledges an I3P fellowship from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	452	Thus, an appropriate method might be sought for <i>B. rapa</i> domestic processing is
 of turnip greens and turnip tops. In this regards, it is likely that <i>B. rapa</i> vegetables cooked by steaming will be better for human consumption than other cooking methods. Although since both phenolic compounds and GLS were present in high quantities in the cooking water after boiling and high-pressure, the use of this water for either soups or gravies should also be considered for increasing the intake of these health-beneficial compounds into the diet. Acknowledgements Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	453	key to better retain its nutritional value at the maximum level. Our study may help
 456 cooked by steaming will be better for human consumption than other cooking methods. 457 Although since both phenolic compounds and GLS were present in high quantities in 458 the cooking water after boiling and high-pressure, the use of this water for either soups 459 or gravies should also be considered for increasing the intake of these health-beneficial 460 compounds into the diet. 461 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra, Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	454	consumers to make their choice of the cooking practices to retain the nutritional quality
 Although since both phenolic compounds and GLS were present in high quantities in the cooking water after boiling and high-pressure, the use of this water for either soups or gravies should also be considered for increasing the intake of these health-beneficial compounds into the diet. 461 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	455	of turnip greens and turnip tops. In this regards, it is likely that <i>B. rapa</i> vegetables
 the cooking water after boiling and high-pressure, the use of this water for either soups or gravies should also be considered for increasing the intake of these health-beneficial compounds into the diet. 461 462 463 464 465 Acknowledgements Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	456	cooked by steaming will be better for human consumption than other cooking methods.
 459 or gravies should also be considered for increasing the intake of these health-beneficial 460 compounds into the diet. 461 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	457	Although since both phenolic compounds and GLS were present in high quantities in
 460 compounds into the diet. 461 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra, Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	458	the cooking water after boiling and high-pressure, the use of this water for either soups
 461 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	459	or gravies should also be considered for increasing the intake of these health-beneficial
 462 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	460	compounds into the diet.
 463 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	461	
 464 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 		
 465 Acknowledgements 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 		
 466 Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 		Astrowladgements
 467 Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship 468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the 	403	Acknowledgements
468 from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the	466	Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma.
	467	Diputación Provincial de Pontevedra. Marta Francisco acknowledges an I3P fellowship
469 invaluable help in the laboratory work.	468	from the CSIC. The authors thank Rosaura Abilleira and Susana Calvo for all the
	469	invaluable help in the laboratory work.
	P	

Literature cited

Bennett, R. N., Mellon, F. A., Foidl, N., Pratt, J. H., Dupont, M. S., Perkins, L., & Kroon, P. A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees *Moringa oleifera* L. (horseradish tree) and *Moringa stenopetala* L. Journal of Agricultural and Food Chemistry, 51(12), 3546-3553.

Bones, A. M., & Rossiter, J. T. (1996). The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 97(1), 194-208.

Ciska, E., & Kozlowska, H. (2001). The effect of cooking on the glucosinolates content in white cabbage. European Food Research and Technology, 212(5), 582-587. Czarniecka-Skubina, E. (2002). Effect of the material form, storage and cooking methods on the quality of Brussels sprouts. Polish Journal of Food and Nutrition Sciences, 11/52(3), 75-82.

Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51.

Fenwick, G. R., Heaney, R. K., & Mullin, W. J. (1983). Glucosinolates and their breakdown products in food and food plants. Crc Critical Reviews in Food Science and Nutrition, 18(2), 123-201.

Fernandes, F., Valentão, P., Sousa, C., Pereira, J. A., Seabra, R. M., & Andrade, P. B. (2007). Chemical and antioxidative assessment of dietary turnip (*Brassica rapa* var. *rapa* L.). Food Chemistry, 105(3), 1003-1010.

Ferreres, F., Sousa, C., Vrchovska, V., Valentão, P., Pereira, J. A., Seabra, R. M., & Andrade, P. B. (2006). Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. European Food Research and Technology, 222(1-2), 88-98. Francisco, M., Moreno, D. A., Cartea, M. E., Ferreres, F., García-Viguera, C., & Velasco, P. (2009). Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable *Brassica rapa*. J Chromatogr A, 1216(38), 6611-6619.

Gil, M. I., Ferreres, F., & Tomas-Barberan, F. A. (1999). Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. Journal of Agricultural and Food Chemistry, 47(6), 2213-2217.

Gliszczynska-Swiglo, A., Ciska, E., Pawlak-Lemanska, K., Chmielewski, J.,

Borkowski, T., & Tyrakowska, B. (2006). Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23(11), 1088-1098.

Gómez-Campo, C. (1999). Origin and domestication. In Gómez-Campo, C. Biology of Brassica Coenospecies pp. 33-52): Elsevier, Amsterdam.

González-Molina, E., Moreno, D. A., & García-Viguera, C. (2008). Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. Journal of Agricultural and Food Chemistry, 56(5), 1669-1675.

Goodrich, R. M., Anderson, J. L., & Stoewsand, G. S. (1989). Glucosinolate changes in blanched broccoli and Brussels sprouts. Journal of Food Processing and Preservation, 13(4), 275-280.

Grubb, C. D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 11(2), 89-100.

Harbaum, B., Hubbermann, E. M., Wolff, C., Herges, R., Zhu, Z., & Schwarz, K. (2007). Identification of flavonolds and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp chinensis var. communis) by HPLC-ESI-MSn and NMR

and their quantification by HPLC-DAD. Journal of Agricultural and Food Chemistry, 55, 8251-8260.

Howard, L. A., Wong, A. D., Perry, A. K., & Klein, B. P. (1999). Beta-carotene and ascorbic acid retention in fresh and processed vegetables. Journal of Food Science, 64(5), 929-936.

Kim, S. J., Kawaguchi, S., & Watanabe, Y. (2003). Glucosinolates in vegetative tissues and seeds of twelve cultivars of vegetable turnip rape (*Brassica rapa* L.). Soil Science and Plant Nutrition, 49(3), 337-346.

Liang, Y. S., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Choi, Y. H., & Verpoorte, R. (2006). Identification of phenylpropanoids in methyl jasmonate treated *Brassica rapa* leaves using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 1112(1-2), 148-155.

Mithen, R., Faulkner, K., Magrath, R., Rose, P., Williamson, G., & Márquez, J. (2003). Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theoretical and Applied Genetics, 106(4), 727-734.

Mondragón-Portocarrero, A., Pena-Martínez, B., Fernández-Fernández, E., Romero-Rodríguez, A., & Vázquez-Oderiz, L. (2006). Effects of different pre-freezing blanching procedures on the physicochemical properties of *Brassica rapa* leaves (Turnip Greens, Grelos). International Journal of Food Science and Technology, 41(9), 1067-1072. Padilla, G., Cartea, M. E., Velasco, P., de Haro, A., & Ordas, A. (2007). Variation of glucosinolates in vegetable crops of *Brassica rapa*. Phytochemistry, 68(4), 536-545. Pereira, F. M. V., Rosa, E., Fahey, J. W., Stephenson, K. K., Carvalho, R., & Aires, A. (2002). Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (*Brassica oleracea* var. *italica*) sprouts and their effect on the induction of mammalian phase 2 enzymes. Journal of Agricultural and Food Chemistry, 50(21), 6239-6244.

Podsedek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. Lwt-Food Science and Technology, 40(1), 1-11.

Price, K. R., Casuscelli, F., Colquhoun, I. J., & Rhodes, M. J. C. (1998). Composition and content of flavonol glycosides in broccoli florets (*Brassica olearacea*) and their fate during cooking. Journal of the Science of Food and Agriculture, 77(4), 468-472.

Rangkadilok, N., Tomkins, B., Nicolas, M. E., Premier, R. R., Bennett, R. N., Eagling, D. R., & Taylor, P. W. J. (2002). The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (*Brassica oleracea* var. *italica*). Journal of Agricultural and Food Chemistry, 50(25), 7386-7391.

Rodrigues, A. S., & Rosa, E. A. S. (1999). Effect of post-harvest treatments on the level of glucosinolates in broccoli. Journal of the Science of Food and Agriculture, 79(7), 1028-1032.

Rosa, E. A. S. (1997). Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry, 44(8), 1415-1419.

Rosa, E. A. S., & Heaney, R. K. (1993). The effect of cooking and processing on the glucosinolate content: Studies on four varieties of Portuguese cabbage and hybrid white cabbage. Journal of the Science of Food and Agriculture, 62(3), 259-265.

SAS Institute. (2007). The SAS System. SAS Online Doc. HTML Format Version Eight: SAS Institute Inc. Cary, North Carolina. USA.

Sies, H., & Stahl, W. (1995). Vitamin E and vitamin C, Beta-Carotene, and other carotenoids as antioxidants. American Journal of Clinical Nutrition, 62(6), S1315-S1321.

Song, L. J., & Thornalley, P. J. (2007). Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology, 45(2), 216-224.

Sousa, C., Taveira, M., Valentão, P., Fernandes, F., Pereira, J. A., Estevinho, L., Bento, A., Ferreres, F., Seabra, R. M., & Andrade, P. B. (2008). Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chemistry, 110(4), 953-961.

Steel, R. D. G., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures in statistics: a biometrical approach, 3rd ed: McGraw Hill, New York.

Traka, M., & Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochemistry Reviews, 8(1), 269-282.

Vallejo, F., Tomas-Barberan, F. A., & Ferreres, F. (2004). Characterisation of flavonols in broccoli (*Brassica oleracea* L. var. *italica*) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 1054(1-2), 181-193.

Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2002). Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215(4), 310-316.

Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. Journal of the Science of Food and Agriculture, 83(14), 1511-1516.

Verhoeven, D. T. H., Verhagen, H., Goldbohm, R. A., vandenBrandt, P. A., & vanPoppel, G. (1997). A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chemico-Biological Interactions, 103(2), 79-129.

Verkerk, R., & Dekker, M. (2004). Glucosinolates and myrosinase activity in red cabbage (*Brassica oleracea* L. var. *capitata* f. rubra DC.) after various microwave treatments. Journal of Agricultural and Food Chemistry, 52(24), 7318-7323. Verkerk, R., Dekker, M., & Jongen, W. M. F. (2001). Post-harvest increase of indolyl

glucosinolates in response to chopping and storage of Brassica vegetables. Journal of the Science of Food and Agriculture, 81(9), 953-958.

Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver, R., Hansen, M., Gerhauser, C., Mithen, R., & Dekker, M. (2009). Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53 Suppl 2, S219.

Volden, J., Wicklund, T., Verkerk, R., & Dekker, M. (2008). Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (*Brassica oleracea* L. ssp *capitata* f. alba). Journal of Agricultural and Food Chemistry, 56(6), 2068-2073.

Wachtel-Galor, S., Wong, K. W., & Benzie, I. F. F. (2008). The effect of cooking on Brassica vegetables. Food Chemistry, 110(3), 706-710.

Zapata, S., & Dufour, J. P. (1992). Ascorbic, dehydroascorbic and isoascorbic acid simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57(2), 506-511.

Zhang, D. L., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88(4), 503-509.

Zhang, Y. S., & Talalay, P. (1994). Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Research, 54(7), S1976-S1981.

Figure captions

Figure 1. Content (% of the fresh uncooked control) of the main compounds after different cooking methods in the edible parts of turnip greens (a) and turnip tops (b).

Figure 2. Content (% of the fresh uncooked control) of the main compounds after

0

different cooking methods in CW turnip greens (a) and CW turnip tops (b).

MANUS

	Turnip greens					Turnip tops					
	Contr ol	Steami ng	Conventio nal boiling	High- pressu re	LS D (5 %)	Contr ol	Steami ng	Conventio nal boiling	LS D (5 %)		
GLS					·						
PRO	0.83a	0.57ab	0.30bc	0.23c	0.28	0.13a	0.12a	0.05a	0.4 4		
GNA	6.27a	5.38b	2.48c	2.49c	$\begin{array}{c} 0.8 \\ 0 \end{array}$	7.25a	5.43a	2.48b	2.4 7		
GBN	1.44a	1.43a	0.61b	0.63b	0.2 8	1.31a	1.01a	0.60b	0.4 4		
Total aliphatics	8.55a	7.38b	3.38c	3.35c	1.1 2	8.69a	6.56a	3.13b	2.0 8		
4-OHGBS	0.47b	0.87a	0.09c	0.26c	0.2 6	0.42a	0.40a	0.00a	0.3 7		
GBS	1.50a	1.14b	0.35ce	0.20c	0.1 7	1.54a	0.90b	0.52b	0.4 2		
NGBS	1.24a	1.16a	0.83b	0.80b	0.2 1	1.18a	1.16a	0.97a	0.2 5		
Total indolics	3.21a	3.17a	1.27b	1.25b	0.4 0	3.14a	2.46b	1.49c	0.4 5		
GNT	1.23a	1.20a	0.00b	0.03b	0.1 8	1.21a	0.88a	0.27b	0.5 2		
Total GLS	12.99 a	11.80a	4.66b	4.64b	1.3 2	12.84 a	10.02b	4.56c	2.7 5		
Flavonoids				*							
F1	2.18a	2.32a	0.85b	089b	0.3 1	2.00a	1.48a	0.65b	0.0 1		
F2	1.85a	1.67a	0.57b	0.57b	0.2 2	1.47a	1.21a	0.51b	0.2 8		
F3	1.23a	1.41a	0.16c	0.65b	0.2 7	1.93a	1.44a	0.60b	0.4 9		
F4	1.44a	1.38a	0.50b	0.64b	0.2 0	1.75a	1.22a	0.57b	0.5		
F5	0.96a	0.86a	0.40b	0.19c	0.1 7	0.97a	0.37b	0.11b	0.3 5		
F6	1.75a	1.47a	0.78b	0.78b	0.5 2	2.14a	1.37b	0.70c	0.6		
F7	3.29a	3.55a	1.32b	1.28b	0.4 6	1.76a	1.15ab	0.52b	0.7		
Total flavonoids Hydroxycinna	13.85 a	13.10a	4.58b	5.00b	1.6 3	13.10 a	8.40b	3.70c	3.1 3		
mics 3CQAc	0.41a	0.31b	0.01c	0.03c	0.0 6	0.19a	0.33a	0.16a	0.2		
3pCoQAc	0.33a	0.32a	0.00b	0.01b	0.0 5	0.15a	0.26a	0.16a	0.1 9		
Total quinic acids	0.75a	0.63b	0.01c	0.04c	0.0 9	0.40a	0.35a	0.32a	0.3 9		
SA	12.27 a	9.58b	3.04c	3.26c	1.5 8	0.68a	0.52a	0.25b	0.1 8 0.1		
A1	1.48a	0.93b	0.14c	0.07c	0.3 0	0.21a	0.13b	0.00c	0.4 6		
A2	1.73a	1.60a	0.12b	0.19b	0.3	0.25a	0.17a	0.00b	0.0		

Table 1. Mean (μ mol/g ⁻¹ dw) for the individu	al and total GLS, flavonoid and hydroxycinnamic
acid content in turnip greens and turnip tops	before (control) and after three cooking methods.
Turnin guessia	Turnin tong

A3 A4	1.68a 0.43a	0.51b 0.24b	0.01c 0.03c	0.03c 0.04c	0 0.1 1 0.0 8	0.17a 0.08a	0.14a 0.01b	0.00b 0.00с	9 0.1 1 0.0
A4 Total sinapics	16.59 a	12.86b	3.33c	3.60c	0.6 2	1.78a	1.15b	0.29c	0.3 5 2.2
Total phenols	31.51 a	26.87b	7.93c	8.67c	3.3 7	14.80 a	9.60b	4.02c	3.2 3

PRO: progoitrin; GNA: gluconapin; 4-OHGBS: 4-hydroxyglucobrassicin; GBN: glucobrassicanapin; GBS: glucobrassicin; GNT: gluconasturtiin; NGBS: neoglucobrassicin; F1: kaempferol-3-O-sophoroside-7-O-glucoside; F2: kaempferol-3-O-(caffeoyl)sophoroside-7-O-glucoside; F3: kaempferol-3-O-(sinapoyl)sophoroside-7-O-glucoside; F4: kaempferol-3-O-(feruloyl)sophoroside-7-O-glucoside; F5: kaempferol-3-O-(p-coumaroyl)sophoroside-7-O-glucoside; F6: kaempferol-3,7-di-O-glucoside; F7:isorhamnetin-3,7-di-O-glucoside; 3CQAc: 3-caffeoyl quinic acid; 3pCoQAc: 3-p-coumaroylquinin acid; SA: sinapic acid; A1: 1,2-disinapoylgentiobioside; A2: 1-sinapoyl-2-feruloylgentiobioside; A3: 1, 2, 2'-trisinapoylgentiobioside; A4: 1,2'-disinapoyl-2-feruloylgentiobioside Means with the same letter in the same row are not significant different.

Table 2. Mean (μ mol/g ⁻¹ dw) for the individu	al and total GLS, flavonoid and hydroxycinnamic
acid content in CW of turnip greens and turn	ip tops as compared to the uncooked tissue
(control) and after three cooking methods.	
Turnin greens	Turnin tons

(•••••••) •••••	Turnip greens Turnip tops								
	Contr ol	Steami ng (CW)	Conventio nal Boiling (CW)	High- pressu re cookin g (CW)	LS D (5 %)	Contr ol	Steami ng (CW)	Conventio nal Boiling (CW)	LS D (5 %)
GLS	0.83a	0.63ab	0.56ab	0.29b	0.38		0.22a	0.10a	0.4
PRO						0.13a			7
GNA	6.27a	5.44a	4.05b	3.40b	0.9 3	7.25a	5.58b	3.68c	2.7 0
GBN	1.44a	1.52a	1.13a	0.90a	0.2 5	1.31a	1.07a	0.97a	0.4 9
Total aliphatics	8.55a	7.59a	5.74b	4.59b	0.9 5	8.69a	6.87b	4.75c	2.1 0
4-OHGBS	0.47a	0.93a	0.38a	0.57a	0.2 9	0.42a	1.15a	0.23a	0.2 7
GBS	1.50a	1.23b	0.62c	0.43c	0.2 7	1.54a	1.16a	1.01a	0.5 7
NGBS	1.24a	1.21a	1.32a	1.06a	0.2 5	1.18a	1.44a	1.20a	0.2 0
Total indolics	3.21a	3.37a	2.32b	2.06b	0.4 6	3.14a	3.75a	2.44b	0.6 2
GNT	1.23a	1.27a	0.16b	0.05b	0.2 0	1.21a	1.01a	0.26b	0.4 9
Total GLS	12.99 a	12.26a	8.24b	6.71c	1.5 1	12.84 a	10.42a b	7.93b	3.1 0
Flavonoids	-								
F1	2.18b	2.61b	4.20a	4.50a	0.5 4	2.00a	2.30a	2.45a	0.8 6
F2	1.85a	1.91a	1.74a	0.79b	0.6 4	1.47a	1.10a	1.89a	0.7 0
F3	1.23b	1.44ab	1.90a	1.18b	0.6 1	1.93a	1.44a	1.07a	0.4 5
F4	1.44b	1.74ab	2.16a	1.33b	0.5 9	1.75a	1.22a	1.13a	0.5 8
F5	0.96a	1.09b	1.98a	0.47c	0.4 9	0.97a	0.51a	0.37a	0.6 1
F6	1.75b	1.83b	4.13a	3.63a	0.9 2	2.14a	2.01a	2.96a	0.7 2
F7	3.29c	4.02c	6.90a	5.35b	1.1 1	1.76a	1.52a	1.84a	0.6 2
Total flavonoids Hydroxycinna mics	13.85 b	15.20b	23.81a	17.76b	4.1 0	13.10 a	10.75a	13.40a	3.1 3
3CQAc	0.41a	0.35a	0.24ab	0.10b	0.1 7	0.19a	0.33a	0.30a	0.2 2
3pCoQAc	0.33a	0.37a	0.44a	0.14b	0.1 4	0.15a	0.26a	0.32a	0.2 4
Total quinic acids	0.75a	0.72a	0.68a	0.24b	0.3 1	0.40a	0.59a	0.62a	0.4 6
SA	12.27 a	9.74b	5.07c	4.72c	1.6 5	0.68a	0.75a	1.40a	0.2 8
A1	1.48a	0.96c	0.26c	1.11b	0.3 2	0.21a	0.13a	0.04a	0.0 9

A2	1.73a	1.64a	0.36b	0.27b	0.3 4	0.25a	0.16a	0.06a	0.0 9
A3	1.68a	0.54b	0.20c	0.12c	0.1 4	0.17a	0.14a	0.07a	0.1 0
A4	0.43a	0.24b	0.15b	0.18b	0.1 1	0.08a	0.07a	0.01a	0.0 3
Total sinapics	16.59 а	13.11b	3.04c	5.40c	1.9 6	1.78a	1.38a	1.70a	0.5 0
Total phenols	31.51 a	30.40a	32.40a	23.44b	5.0 8	14.80 a	14.20a	13.00a	3.3 3

PRO: progoitrin; GNA: gluconapin; 4-OHGBS: 4-hydroxyglucobrassicin; GBN: glucobrassicanapin; GBS: glucobrassicin; GNT: gluconasturtiin; NGBS: neoglucobrassicin; F1: kaempferol-3-O-sophoroside-7-O-glucoside; F2: kaempferol-3-O-(caffeoyl)sophoroside-7-O-glucoside; F3: kaempferol-3-O-(sinapoyl)sophoroside-7-O-glucoside; F4: kaempferol-3-O-(feruloyl)sophoroside-7-O-glucoside; F5: kaempferol-3-O-(p-coumaroyl)sophoroside-7-O-glucoside; F6: kaempferol-3,7-di-O-glucoside; F7: isorhamnetin-3,7-di-O-glucoside; 3CQAc: 3-caffeoyl quinic acid; 3pCoQAc: 3-p-coumaroylquinin acid; SA: sinapic acid; A1: 1,2-disinapoylgentiobioside; A2: 1-sinapoyl-2-feruloylgentiobioside; A3: 1, 2, 2'-trisinapoylgentiobioside; A4: 1,2'-disinapoyl-2-feruloylgentiobioside

MA