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Summary 
 In this PhD Thesis I present a new interpretation of: 1) active structures 

implicating old oceanic lithosphere; 2) the nature of the basement; and 3) the 

distribution of the basement domains and the geodynamic reconstruction of the SW 

Iberian margin, a region that hosts the slow convergent boundary between the African 

and Eurasian plates. This interpretation is based on new geophysical data acquired, 

processed and modeled in the framework of this PhD work. The main findings of my 

study are the following ones: 

 1) Recently acquired high-resolution multichannel seismic profiles together with 

bathymetric and sub-bottom profiler data (SWIM 2006 survey) from the external part of 

the Gulf of Cadiz (Eurasia-Africa plate boundary) reveal active deformation involving 

old (Mesozoic) oceanic lithosphere [Martínez-Loriente et al., 2013]. This dataset shows 

active strike-slip occurring along the prominent lineaments North and South, imaging 

seafloor displacements and active faulting to depths of at least 10 km and of a minimum 

length of 150 km [Bartolome et al., 2012]. Seismic moment tensors show predominantly 

WNW–ESE right-lateral strike-slip motion [Geissler et al., 2010]. Estimates of 

earthquake source depths close to the fault planes indicate upper mantle (i.e., depths of 

40–60 km) seismogenesis [Stich et al., 2010, Bartolomé et al., 2012], implying the 

presence of old, thick, and brittle lithosphere. Moreover, the SWIM 2006 dataset also 

reveals E-W trending dextral strike-slip faults showing surface deformation of flower-

like structures, which predominate in the Horseshoe Abyssal Plain. In contrast, NE-SW 

trending compressive structures prevail in the Coral Patch Ridge and in the Seine Hills 

[Martínez-Loriente et al., 2013]. Although the Coral Patch Ridge region is characterized 

by subdued seismic activity, the area is not free from seismic hazard. Most of the newly 

mapped faults correspond to active blind thrusts and strike-slip faults that are able to 

generate large magnitude earthquakes (Mw 7.2 to 8.4) [Martínez-Loriente et al., 2013]. 

 2) Combined seismic and gravity modeling along NEAREST profile P1 acquired 

in the external part of the SW Iberian margin, reveals the presence of a serpentinized 

peridotite basement flooring the Gorringe Bank and adjacent sectors of the Tagus and 

Horseshoe abyssal plains [Sallarès et al., 2013]. These three domains would be part of a 

wide ultramafic rock band [Sallarès et al., 2013], similar to the Zone of Exhumed 

Continental Mantle off Western Iberia [Pinheiro et al., 1992; Dean et al., 2000]. 
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Furthermore, the basement velocity structure of the southeastern part of the profile (i.e., 

the Coral Patch Ridge and Seine Abyssal Plain) indicates the presence of a highly 

heterogeneous, thin oceanic crust (4-6 km-thick), similar to that described in slow/ultra-

slow spreading centers, with local high-velocity anomalies possibly representing 

serpentinite intrusions [Martínez-Loriente et al., submitted]. 

 3) The integration of the results from NEAREST profiles P1 and P2 that runs 

across the central Gulf of Cadiz [Sallarès et al., 2011], and previously existing data 

reveals the presence of three main oceanic domains offshore SW Iberia [Martínez-

Loriente et al., submitted]: (a) the Seine Abyssal Plain domain, made of oceanic crust 

that would be generated during the first slow (~8 mm/yr) stages of seafloor spreading of 

the northeastern segment of the Central Atlantic (i.e. 190 Ma – 180 Ma) [Martínez-

Loriente et al., submitted]; (b) the Gulf of Cadiz domain, constituted of oceanic crust 

generated in the Alpine-Tethys spreading system between Iberia and Africa, which was 

coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North 

Atlantic continental break-up (Late Jurassic) [Sallarès et al., 2011]; and (c) the Gorringe 

Bank domain, made of exhumed mantle rocks that was probably generated during the 

earliest phase of the North Atlantic opening that followed the continental crust breakup 

(Early Cretaceous) [Sallarès et al., 2013]. During the Miocene, the NW–SE trending 

Eurasia–Africa convergence resulted in thrusting of the southeastern segment of the 

exhumed serpentinite band over the northwestern one, forming the Gorringe Bank 

[Sallarès et al., 2013]. These models indicate that the Seine Abyssal Plain and Gulf of 

Cadiz domains are separated by the Lineament South strike-slip system, whereas the 

Gulf of Cadiz and Gorringe Bank domains are bounded by a deep thrust fault system 

located at the center of the Horseshoe Abyssal Plain, which we refer to as the Horseshoe 

Abyssal plain Thrust [Martínez-Loriente et al., submitted]. 

 These new findings are relevant for geohazard assessment in the region. On one 

hand, the presence of active deformation has been demonstrated in the external part of 

the Gulf of Cadiz, involving structures considered inactive [e.g. Zitellini et al., 2009] 

until the present work. On the other hand, the knowledge of the nature of the SW 

Iberian margin basement may provide valuable information into the process of 

seismogenesis, such as earthquake nucleation and velocity propagation. Both aspects 

will help to refine regional seismic and tsunami hazard assessment models. 

ii



Organization of this Thesis 
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 Part I: It corresponds to the introductory section and includes Chapters 1, 2, and 

3. Chapter 1 presents the interest and motivation of this Thesis and the main objectives. 

Chapter 2 presents the geological setting of the study area, the southwest Iberian 

margin. Chapter 3 is an overview of the different geophysical methods used to carry out 

this work. 

Part II: It includes Chapters 4, 5, 6, and 7 corresponding to extended summaries 

of the results, discussion and conclusion of this Thesis. Chapter 4 includes the results of 

this Thesis, which have been divided into three blocks according to the location of the 

different structures analyzed and / or the methodology used. The discussion of this 

Thesis is included in Chapter 5, which is divided into four sections according to the 

different topics covered. Chapter 6 includes the main conclusions of this Thesis. Finally, 

Chapter 7 includes a series of suggestions (i.e. forward look) that may provide new light 

into questions that still remain open after this work.  

Part III: References. It corresponds to the alphabetic list of bibliographic 

references quoted in this Thesis. A list of acronyms used in this Thesis is also added. 

Part IV: Annexes. This Thesis includes three annexes. Annex I corresponds to 

the four articles as they appear on the respective scientific journals. Annex II 

corresponds to the uninterpreted time migrated multichannel seismic profiles SW01 to 

SW16, which have been used in this Thesis. Annex III includes the record sections of 

OBS 01 to OBS 30 from the NEAREST profile P1. 
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CHAPTER 1. Objectives and scientific approach 

1.1. Interest of the study 

 The Gulf of Cadiz, located at the SW Iberian margin, is a region of wide interest 

from a geological, geodynamical and seismological point of view. Large historical and 

instrumental earthquakes of great magnitude (Mw), such as the destructive 1755 Lisbon 

Earthquake (estimated Mw � 8.5) [e.g. Johnston, 1996; Buforn et al., 2004] and 

devastating tsunami (Figure 1.1), and the 1969 Horseshoe Earthquake (Mw 8.0) [Fukao, 

1973] nucleated there. This region hosts the Africa-Eurasia plate boundary, which is 

currently characterized by a slow NW-SE convergence (3.8-5.6 mm/yr) between both 

plates [e.g. Nocquet and Calais, 2004; DeMets et al., 2010] (Figure 1.2). 

Figure 1.1. Destruction of Lisbon after the 1755 earthquake and tsunami viewed by an 

18th century French artist [from Baptista et al., 1998]. 

  During the last two decades, numerous geological and geophysical surveys have 

been carried out in the region seeking for faults that could be potential sources of large 

magnitude earthquakes [e.g. Sartori et al., 1994; Tortella et al., 1997; Hayward et al., 

1999; Zitellini et al., 2001, 2004, 2009; Gutscher et al., 2002; Gràcia et al., 2003a, 

2003b; Terrinha et al., 2003, 2009; Bartolome et al., 2012; Martínez-Loriente et al., 

2013] (Figure 1.3) and trying to understand better the nature and limits between the 

different geological domains and its geodynamic evolution since the Mesozoic to 
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present day [e.g. Purdy, 1975; Srivastava et al., 1990; González et al., 1996; Gràcia et 

al., 2003a; Contrucci et al., 2004; Rovere et al., 2004; Jaffal et al., 2009; Sallarès et al., 

2011, 2013; Martínez-Loriente et al., submitted]. Concerning active tectonics, the most 

recent finding, and probably the most outstanding one, has been the recognition of the 

SWIM Fault Zone (SFZ), a 600 km long dextral strike-slip deformation zone connecting 

the Gorringe Bank with the Moroccan shelf [Zitellini et al., 2009] (Figure 1.2). Most of 

the structures studied in this PhD Thesis are located in the external part of the Gulf of 

Cadiz (west of 8º W), and in some cases, in the area located south of the SFZ, which 

comprises the Coral Patch Ridge and part of the neighboring Horseshoe and Seine 

abyssal plains. The tectonic structures of this area have been considered as inactive 

mainly due to (1) the lack of instrumental seismicity associated with them [Zitellini et 

al., 2009], and (2) the low resolution of pre-existing multichannel seismic (MCS) 

profiles, where deformation of Quaternary units could not be recognized [e.g. Sartori et 

al., 1994; Tortella et al., 1997] (Figure 1.2). Thus, to properly evaluate the seismic and 

tsunami hazard in the SW Iberian margin is necessary to characterize in detail the new 

active tectonic structures identified in the external part of the Gulf of Cadiz, as given 

their oceanic location (150 km offshore Portugal), they may represent a significant 

geohazard for the surrounding coastal areas that has not been counted for to date. 

Part I: Introduction
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Figure 1.2. Regional topographic and bathymetric map of the southwest Iberian margin 

constructed from digital grids (~90 m grid-size) released by SRTM-3 and the ESF EuroMargins 

SWIM multibeam compilation [Zitellini et al, 2009]. Seismicity from the Instituto Geográfico 

Nacional catalogue for the period between 1965 and 2012 is depicted [I.G.N., Catalogue]. 

Small gray dots are epicenters of earthquakes for 2.5 < Mw < 3.5, and large gray dots for 

earthquakes of Mw > 3.5. Black stars correspond to epicenters of historical and instrumental 

earthquakes with Mw � 6.0. 1: Tavira Earthquake, 27 December 1722, estimated Mw 6.5 

[Baptista and Miranda, 2009]; 2: Proposed epicenter location for the Lisbon Earthquake, 1 

November 1755, estimated Mw 8.5 [Buforn et al., 2004]; 3: Setubal Earthquake, 11 November 

1858, estimated Mw 7.1 [Martinez-Solares, 2003]; 4: 1883, estimated Mw 6.1, 5: Benavente 

Earthquake, 23 April 1909, Mw 6.0 [Mezcua et al., 2004]; 6: Horseshoe Earthquake, 7 

November 1915, Mw 6.2 [IGN Catalogue]; 7: 5 December 1960, Mw 6.2 [Buforn et al., 2004]; 

8: Guadalquivir Bank Earthquake, 15 March 1964, Mw 6.6 [Stich et al., 2005a]; 9: Horseshoe 

Earthquake, 28 February 1969, Mw 7.9-8.0 [Fukao, 1973]; 10: Horseshoe Fault Earthquake, 

12 February 2007, Mw 6.0 [Stich et al., 2007]. Red arrows show the direction of convergence 

between the Eurasian and African plates from the NUVEL1 model [Argus et al., 1989]. ACM: 

Alvarez Cabral Moat; AS: Ampere Seamount; GuF: Guadalquivir Fault; HF: Horseshoe Fault; 

HV: Horseshoe Valley; IHB: Infante Don Henrique Basin; LC: Lagos Canyon; LN: Lineament 

North; LS: Lineament South; MPB: Marquês de Pombal Block; MPF: Marquês de Pombal 

Fault; PAS: Principes de Avis Seamount; PB: Portimão Bank; PC: Portimão Canyon; PSF: 

Pereira de Souza Fault; SC: Sagres Canyon, SVC: São Vicente Canyon; SVF: São Vicente 

Fault; SFZ gray band: SWIM Fault Zone [Gràcia et al., 2003a; Terrinha et al., 2003; Zitellini 

et al, 2004, 2009; Bartolome et al., 2012]. Inset: Plate tectonic setting of the southwest Iberian 

margin at the boundary between the Eurasian and African Plates. The blue rectangle 

corresponds to the area depicted in Figure 1.2. 

Regarding the deep structure, the basement of the SW Iberian margin results of a 

complex geodynamic history and tectonic evolution of the area, which is located 

between the African, Eurasian and North-American plates [e.g. Srivastava et al., 1990; 

Tucholke et al., 2007; Schettino and Turco, 2009]. In addition, the area hosts probably 

one of the oldest oceanic lithosphere currently preserved on Earth [e.g. Sartori et al., 

1994; Rovere et al., 2004; Sallarès et al., 2011; Martínez-Loriente et al., 2013], and 

consequently the nature and distribution of the basement in SW Iberia has been a matter 

of enduring debate during decades [e.g. Purdy, 1975; Sartori et al., 1994; Tortella et al., 

1997; Hayward et al., 1999; Jiménez-Munt et al., 2010; Sallarès et al., 2013]. The area 

has been the site of multiple experiments including deep-sea drilling [e.g. Hayes et al., 

Chapter 1: Objectives and scientific approach

5

_________________________________________________



1972; Ryan et al., 1973], dredging [e.g. Malod and Mougenot, 1979], deep-sea 

submersible expeditions [e.g. Auzende et al., 1984; Girardeau et al., 1998], geophysical 

surveys with seismic data acquisition [e.g. Sartori et al., 1994; Banda et al., 1995; 

González et al., 1996; Torelli et al., 1997; Zitellini et al., 2004; Sallarès et al., 2011, 

2013], and potential field data modeling [e.g. Galindo-Zaldívar et al., 2003; Gràcia et 

al., 2003a; Thiebot and Gutscher, 2006; Fullea et al., 2010]. The debate on the nature 

and origin of the basement underlying the SW Iberian margin is mainly due to the lack 

of modern, high-quality geophysical data allowing to constrain their deep structure and 

physical properties. This type of observations provide key information to understand the 

process of continental extension during the opening of the Central- and North-Atlantic 

until lithospheric breakup, the formation of the Continental Ocean Transition (COT) 

and the subsequent geodynamic evolution spanning from the Mesozoic extension to the 

Miocene-to-present-day convergence. In addition, a better knowledge of the nature of 

the basement may help to better evaluate regional seismic and tsunami hazard 

assessment models. 

Figure 1.3. Map of the SW Iberian margin with the successive multichannel seismic surveys, 

refraction and wide-angle seismic experiments, deep-sea drilling well sites and sediment cores 

acquired in the region. Grey-shaded bathymetry corresponds to the ESF EuroMargins SWIM 

multibeam compilation [Zitellini et al., 2009]. 
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1.2. Objectives 

 This PhD Thesis has been developed in the framework of National and European 

projects focused on different topics. The European Science Foundation (ESF) -

EuroMargins SWIM1 (Project leader: N. Zitellini, P.I.: E. Gràcia) and the Plan Nacional 

I+D+I (2004-2007) EVENT-SP22 (P.I.: E. Gràcia) projects mainly focused on the 

characterization of seismogenic and tsunamigenic faults in South Iberia. The 

Framework Program VI European Union project NEAREST3 (P.I.: N. Zitellini) and the 

Spanish project NEAREST-SEIS4 (P.I.: V. Sallarès) focused on the deep seismic 

structure of the SW Iberian margin. 

 In this framework, the main goals of this PhD Thesis are: 

a) To identify, characterize and quantify the active geological structures potential 

sources of large earthquakes and tsunamis in the external part of the Gulf of 

Cadiz.  

b) In order to better understand the associated seismic hazard, it is necessary to 

provide information on the physical properties of the basement, the deep-

geometry of the geological structures, and to prove the affinity and boundaries 

between the different geological domains of the SW Iberian margin.  

c) Finally, this information is put together to propose a plausible framework for the 

geodynamic evolution of the region since the Pangaea break-up to the present-

day plate configuration. 

 The final aim is to highlight the significance of all these observations regarding 

the earthquake and tsunami hazard, in order to contribute to its mitigation and to reduce 

the vulnerability of the Iberian and African coasts. 

__________________ 
1SWIM: Earthquake and tsunami hazards of active faults at the South Iberian margin: 
deep structure, high-resolution imaging and paleoseismic signature. 

2EVENT: Integration of new Technologies in Paleoseismology: Characterization of 
Seismogenic and Tsunamigenic faults in South Iberia. 

3NEAREST: Integrated observatories from near shore sources of tsunamis: Towards an 
early warning system. 

4NEAREST-SEIS: Caracterización sísmica y paleosismicidad de estructuras 
tsunamigénicas en el Golfo de Cádiz (Margen SO de Iberia)”. 
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1.3. Definition of general concepts 

 From ancient times, geological disasters have been a matter of interest. Today, 

this attention is evident in the media coverage of the latest events occurred, such as the 

earthquakes and tsunamis of Sumatra in 2004 and the Tohoku earthquake and tsunamis 

of Japan in 2011. Earthquakes are producing large economic loses and social impact. 

Two possible reasons for the increased risk of earthquakes are the exponentially 

growing population and the uncontrolled urbanization of hitherto inhabited areas. To 

mitigate the damage caused by earthquakes and reduce the number of casualties there is 

a need to improve the management policies (e.g. civil protection, improve emergency 

protocols, perform seismic hazard studies). In this context, this PhD Thesis focus into 

two complementary aspects that should help to better understand the potential hazard 

associated to the studied area: a) the characterization of active structures recently 

identified in the external part of the Gulf of Cadiz, which represent a significant 

earthquake and tsunami hazard for the South Iberian and North African coasts that has 

not been accounted for to date; and b) the study of the nature of the basement flooring 

the SW Iberian margin as well as their geodynamic evolution, which may provide 

valuable information into the process of seismogenesis (i.e. earthquake nucleation and 

velocity propagation). Both aspects will help to refine regional seismic and tsunami 

hazard assessment models. With the aim of defining basic concepts, this section focuses 

in general aspects of seismic hazard, seismicity, identification of seismic zones, 

historical and paleoseismic data collection, as well basic concepts of plate tectonics. 

1.3.1. Basic concepts of seismic hazard 

 A catastrophe or natural disaster is defined as any situation in which the 

damage to people, property, or society in general is sufficiently severe that recovery, 

rehabilitation, or both, are a long, involved process [Nigg, 1996]. Thus, geological 

disasters may be generated by any geological agent. Among them, seismic disasters are 

the ones generated by an earthquake. 

 Risk refers to a catastrophe that may happen in the future, and thus it is linked to 

resistance of the social system (vulnerability) and also to the hazard (Risk = 

Hazard*Vulnerability). 
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 Vulnerability is defined as the degree to which people, property, resources, 

systems, and cultural, economic, environmental, and social activity is susceptible to 

harm, degradation, or destruction on being exposed to a hostile agent or factor [Wisner, 

2004].  

 Seismic hazard describes the potential for dangerous, earthquake-related natural 

phenomena such as ground shaking, fault rupture, or soil liquefaction [Reiter, 1991]. 

These phenomena could result in adverse consequences to society such as the 

destruction of buildings or the loss of life. Seismic risk is the probability of occurrence 

of these consequences [Reiter, 1991] (Figure 1.4).  

Figure 1.4. The cartoon ironically illustrates that risk information and communication is the 

link between risk perception (i.e., people's observations, judgments and evaluations of hazards 

they are or might be exposed to) and risk management (i.e., activities of individuals or 

authorities to eliminate or mitigate the causes and/or impacts of hazardous events) [from Yeats 

et al., 1997]. 

 There are two main groups of methods to study and evaluate the seismic hazard of 

a region. Deterministic methods are those which, for the most part, make use of discrete, 
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single-valued events or models to arrive at scenario-like descriptions of earthquake 

hazard [Reiter, 1991]. This analysis requires the specification of three basic elements: 

an earthquake source, a controlling earthquake of specific size and means of 

determining the hazard at a certain distance to the site [Reiter, 1991]. Probabilistic 

methods allow the use of multi-valued or continuous events and models. Hazard 

descriptions incorporate the effects of all the earthquakes believed to be capable of 

affecting a particular site. The probability of different magnitude (or intensity) of 

earthquakes occurring is included in the analysis. Moreover, it results in an estimate of 

the likelihood of earthquake ground motion (or some other damage measure) occurring 

at the location of interest [Reiter, 1991]. Figure 1.5 shows the differences between 

seismic hazard estimations depending of the method used.  

Figure 1.5. Example of different seismic hazard results obtained in the Iberian Peninsula using 

different probabilistic methods. a), b), and c) show average seismic hazard, while a’) b’) and c’) 

show the worst probable scenario. a) and a’) represent the peak ground accelerations with a 

39.3% of probability of occurrence in 50 years (the recurrence interval is 100 years). b) and b’) 

represent the peak ground accelerations with a 10% of probability of occurrence in 50 years 

(the recurrence interval is of 475 years). c) and c’) represent the peak ground acceleration with 

a 5% of probability of occurrence in 50 years (the recurrence interval is 975 years) [Peláez and 

Casado, 2002]. 
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 To properly evaluate the seismic hazard of a given region is necessary to know the 

characteristics of the study area, such as the seismicity of the region or the regional 

seismic attenuation [Benito and Jiménez, 1999]. The first step is to study the seismicity 

and therefore, identify seismic zones and analyze the seismic information of the region. 

1.3.1.1. General concepts of seismicity 

 An earthquake is a sudden motion or trembling in the Earth caused by the abrupt 

release of strain on a fault, generating seismic waves [Keller and Pinter, 2002]. 

Earthquakes are usually a result of a fault rupture, although can also be caused by 

volcanic activity, landslides, or explosions. Earthquakes are classified according to the 

magnitude (Table 1.1).  

Descriptor Magnitude Average annual number of events 
Great >8.0 1 
Major 7-7.9 18 
Strong 6-6.9 120 
Moderate 5-5.9 800 
Light 4-4.9 6.200 (estimated) 
Minor 3-3.9 49.000 (estimated) 
Very minor <3.0 Mw 2-3: ~1000/day (estimated) 

Mw 1-2: ~8000/day (estimated) 

Table 1.1. Worldwide magnitude (Mw) and frequency of earthquakes by descriptor classification 

[Keller and Pinter, 2002] (http://www.neic.cr.usgs.gov). 

 A seismogenic zone is a system of active faults capable of generating earthquakes 

of similar characteristics with the property that the seismicity has to be uniform at any 

point in the system [Keller and Pinter, 2002]. 

 A fault is defined as a fracture or fracture system along which rocks have been 

displaced; that is, rocks on one side of the fault have moved relative to rocks on the 

other side [Keller and Pinter, 2002].  

 A fault zone is a group of related fault traces that are sub-parallel in map view 

and often partially overlap in en echelon or braided patterns. Fault zones vary from a 

meter to several kilometers wide [Keller and Pinter, 2002]. 
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 The definition of active fault has changed over time. The first one encompassed 

the concept of a fault that is moving at present [Wallace et al., 1986], but this term is 

ambiguous [Perea, 2006]. In regions with high motion between plates, a fault is 

considered active if it has moved during the Holocene or even during the historic period 

[Machette, 2000]. Other terms less specific, as potentially active fault, are also used to 

refer to faults that moved during the Quaternary [Machette, 2000]. In regions with low 

or moderate seismicity, such as the SW Iberian margin, it is considered as active a fault 

that moved during the Quaternary. In order to solve this problem of terminology, names 

specifying the period of activity of the fault are used. Thus, a Holocene active fault 

means that is active during the last 10 ka, or a Late Quaternary active fault means that 

has moved during the last 130 ka [Machette, 2000]. Inactive fault refers to a fault has 

not moved during the Quaternary [Keller and Pinter, 2002]. 

 The slip rate of a fault is defined as the ratio of slip (displacement) to the time 

interval over which that slip occurred [Keller and Pinter, 2002]. The average 

recurrence interval on a particular fault is defined as the average time interval between 

earthquakes, and it may be determined by three methods: 

a) Paleoseismic data: averaging the time intervals between earthquakes recorded in the 

geological record. 

b) Seismicity: using historical earthquakes and averaging the time intervals between 

events. 

c) Slip rate: assuming a given displacement per event and dividing that number by the 

slip rate. For example, if the average displacement per event is 1 m (1000 mm) and the 

slip rate is 2 mm/yr, then the average recurrence interval would be 500 yr. 

 Nevertheless, fault slip rates and recurrence intervals tend to be variable over 

time, casting suspicion on rates averaged over long periods of time. Both will vary 

depending on the time interval for which data are available [Keller and Pinter, 2002].  

1.3.1.2. Identification of seismic zones 

 Assessment of earthquake hazard at a particular site starts with identification of 

the tectonic framework (geometry and spatial pattern of faults or seismic sources) in 
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order to predict earthquake ground motion [Keller and Pinter, 2002]. Another major 

step in site assessment is to develop time histories (relationship between properties of 

seismic waves and time) of ground motion resulting from the largest earthquakes that 

could shake the site of interest [Keller and Pinter, 2002]. Thus, to start the study of the 

past seismicity, it is necessary to exactly define the study zone and the dimensions of 

the seismogenic area of influence. 

 In the case of the offshore areas, assigning earthquakes to individual faults is not 

an easy task. The main difficulty is related with the fact that the location of earthquakes 

epicenters may have errors of tens of kilometers, because the seismological centers are 

located onshore, away from the earthquake sources. Moreover, the geological 

framework is in general poorly known than in onshore areas, due to the difficulty in 

obtaining marine data. The methodology to study offshore faults are in general based on 

indirect methods (seismic and acoustics), and this is mainly due to the inaccessibility of 

the offshore faults and difficulties to make direct in situ observations. One of the few 

examples is the North Anatolia Fault at the Marmara Sea that was studied with the 

highly performing remotely operated vehicle (ROV) Victor 6000 after the 1999 Izmit 

Earthquake (Turkey) (Figure 1.6) [Armijo et al., 2005].  

Figure 1.6. a) ROV Image of the seafloor in the Marmara Sea showing a fresh scarp 

corresponding to the last earthquake event of year 1912 (Mw 7.4). Vertical free face is 1-1.5 m 

high. The black box locates Figure b. b) Arrows indicate the direction of the striae at the fault 

plane [Armijo et al., 2005]. 

 A new methodology recently developed by Lorito et al. [2010] to study the 

kinematics and properties of offshore sources consists of analyzing the source of the 

2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of 

an inhomogeneous dataset made up of tide gauges, satellite altimetry, and far-field GPS 
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recordings (Figure 1.7). Their purpose was the recovery of the main kinematic rupture 

parameters (slip, rake, and rupture velocity) and the deduction of the rigidity (µ) of the 

source zone, estimating the slip from tsunami data and the seismic moment from 

geodetic data. The general agreement between their source model and previous studies 

supports the effectiveness of this approach to the joint inversion of geodetic and tsunami 

data for the rigidity estimation. 

Figure 1.7. Best (a) and average (b) models for the 2004 Sumatra earthquake, as recovered by 

the joint inversion of the tsunami and geodetic datasets. Gray ellipses under the source zone 

highlight that in this case the rigidity (µ) is an extra free parameter [Lorito et al., 2010]. 

1.3.1.3. Historical and paleoseismic data 

 Once defined and characterized the study area, the existing seismic data of the 

region needs to be gathered. The main sources of information are: 

a) Instrumental and macroseismic catalogues: The instrumental catalogues include 

comprehensive, complete and accurate information about the major earthquakes that 

occurred since the beginning of the XXth century [e.g. Stich et al., 2006]. The 
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macroseismic catalogues are useful for earthquakes occurred prior to the instrumental 

record over the past centuries. Galbis [1932, 1940] promoted a comprehensive 

compilation of existing information before the XXth century of the SW Iberia margin.  

b) The historical seismicity documentation has inaccuracies that require the 

participation of the historians who know the particularities of each epoch in the region 

of study [e.g. Martín-Escorza, 2006].  

c) The isoseismal maps are based on the intensity assessments of earthquakes, and are 

characterized by a large subjective component depending on the different sources of 

information. 

d) Submarine paleoseismology: In the case of the southern Iberian Peninsula and its 

offshore areas, the relatively short period of instrumental (<50 years) and historical 

(<2000 years) earthquake catalogues [e.g. Peláez and López Casado, 2002] in which 

seismic hazard assessment models are largely based, may not be sufficient, especially 

when considering high magnitude earthquakes with long recurrence intervals (> 1000 

years) [e.g. Masana et al., 2004; Gràcia et al., 2006, 2010; Vizcaino et al., 2006] (Figure 

1.8).  

Figure 1.8. Turbidite ages separated by study areas of the SW Iberian margin for the last 2500 

years. Black lines correspond to the ages of instrumental and historical earthquakes and 

tsunamis of estimated Mw � 8.0 that occurred during this time period whereas dashed lines 

correspond to historical earthquakes and tsunamis of estimated Mw � 6.0 and < 8.0. IDHB: 

Infante Don Henrique Basin; MPF: Marques de Pombal Fault; HAP: Horseshoe Abyssal Plain; 
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TAP: Tagus Abyssal Plain. b) Age of the widespread turbidite events linked to the instrumental 

and historical earthquakes, tsunamis and paleotsunamis of the SW Iberian Margin. E9 (in grey) 

is a widespread turbidite event that might be related to the 8.2 ka cold event which is not 

considered for calculating the regional recurrence interval [Gràcia et al., 2010]. 

 A submarine paleoseismic approach may allow to determine past seismic activity 

and to obtain a recurrence rate for large magnitude earthquakes (Mw> 6.0). To 

investigate the recurrence rate of large Holocene events, such as the 1755 Lisbon 

Earthquake, Gràcia et al. [2010] tested the ‘‘turbidite paleoseismology’’ concept [e.g. 

Goldfinger et al., 2003] in the SW Iberian margin. There, coeval turbidites from distal 

depositional areas can be used as a paleo-earthquake proxy during the high-stand 

Holocene period [Gràcia et al., 2010], and this may account for the origin of 7 

widespread events identified which age correlates with the dates of instrumental and 

historical records, and tsunami deposits (Figure 1.8). The recurrence interval for great 

earthquakes obtained for the Holocene is as approx. 1800 years [Gràcia et al., 2010].  

1.3.2. Basic concepts of plate tectonics 

 The lithosphere, the hard and rigid outer layer of the Earth, comprises the crust 

and the uppermost mantle (Figure 1.9). Its thickness is considered to be the depth of the 

isotherm (surface of constant temperature) associated with the transition between the 

brittle and viscous behavior. The temperature at which the olivine, the weakest mineral 

in the upper mantle, begins to deform viscously (~1000 °C) is often used to set this 

isotherm [Parsons. and McKenzie, 1978]. The lithosphere is thinnest in the oceanic 

regions (about 100 km) and thicker in continental regions (about 200 km), where its 

base is poorly understood [Fowler, 1990]. The lithosphere is divided into small number 

of nearly rigid plates, the tectonic plates, which are in relative motion with respect to 

one another over the asthenosphere, the weaker, hotter, and deeper part of the upper 

mantle [Turcotte and Schubert, 2002] (Figure 1.9).  
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Figure 1.9. Scheme of the Earth’s internal structure with inset showing detailed breakdown of 

structure (not to scale) [USGS, 2013]. 

 Most of the deformation resulting from the plate motion takes place at the plate 

boundary. There are three types of plate boundaries: 

a) Divergent boundaries (accretional or constructive) plates are moving away from 

each other, and are represented by the mid-ocean ridge system or continental rifts

(Figure 1.10). Along the axis of the ridges, new plate material (i.e. oceanic crust) is 

derived from the mantle and it is added to the lithosphere [Fowler, 1990]. Along 

continental rifts zones, the continental crust breaks up generating graben structures with 

a rift valley flanked by normal faults, and it is gradually thinning beneath the rift valley 

by thermomechanical processes associated with extensional or shear stresses [Fowler, 

1990] (Figure 1.10). 

b) Convergent boundaries (consuming or destructive) plates are approaching each 

other, and most are represented by the oceanic trench, island arc systems of 

subduction zones where the denser plate of the two colliding plates descends into the 

mantle and is destroyed [Fowler, 1990] (Figure 1.10). 

c) Conservative boundaries the plates move laterally relative to each other and are 

represented by transform faults systems (Figure 1.10). The lithosphere is neither 

created nor destroyed [Fowler, 1990]. 
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Figure 1.10. The major tectonic plates, mid-ocean ridges, trenches and transform faults 

[Fowler, 1990]  

 The motion of the tectonic plates relative to each other is associated with a 

number of forces, some of which drive the motion and some resist the motion. If the 

plates are moving at a constant velocity, then there must be a force balancing (driving 

forces=resistive forces) [Fowler, 1990]. The forces acting on plates are classified into 

two groups depending on whether they act at the bottom surface of plates or at plate 

boundaries [Forsyth and Uyeda, 1975].  

Resistive forces include: 

a) Mantle drag force (FDF): the coupling of plates and the underlying asthenosphere 

cause the force acting at the bottom surface of plates (Figure 1.11). Since plate velocity 

is independent of the area of the plate, FDF is probably a resistive force which increases 

with the area of the plate. This implies that oceanic plates are moving faster than the 

underlying mantle [Kennett, 1982]. 
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b) Slab resistance (FSR): It is a resistive force acting on the plate due to viscous drag 

that is proportional to the viscosity of the asthenosphere and velocity of subduction 

(Figure 1.11). 

c) Colliding resistance (FCR) and transform fault resistance (FTF): They are resistive 

forces acting between plates that cause shallow earthquakes (Figure 1.11). The 

magnitude of these forces is independent of the relative velocity between plates [Forsyth 

and Uyeda, 1975]. When the strain energy accumulated reaches a certain level, slip on 

the fault occurs, releasing strain energy as an earthquake [Kennett, 1982].  

 Driving forces include: 

a) Ridge push (FRP): is due to gravitational sliding which pushes plates apart at the 

boundary and it is created by the rising convection beneath the ridge, which forces the 

ridge to spread out to obtain a lower energy state [Kennett, 1982] (Figure 1.11). 

b) Slab pull (FSP): is a negative buoyancy force that acts on the dense, downgoing slab 

[Kennett, 1982] (Figure 1.11). The pull of the slab requires a density contrast that is due 

to the temperature contrast, which is time dependent (i.e. FSP is dependent on the 

subduction rate). Increased viscosity and density in the mantle at depths of 500 to 600 

km precludes penetration of the slab to very great depths. Pulling from the trenches is a 

form of thermal convection in which the driving forces are supplied by gravity acting on 

the density contrasts induced by the cooling of the upper mantle [Kennett, 1982]. 

c) Suction (FSU): is a downwarping of the oceanic plates at trenches, creating an empty 

space which is continually filled by the seaward movement of the continental plate 

[Elsasser, 1971].  
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Figure 1.11. Forces acting on the lithospheric plates. Abbreviations of forces: FCR: colliding 

resistence; FCD: continental drag; FDF: drag force; FRP: ridge push; FSP: slab-pull; FSR: 

slab resistance; FSU: suction; FTF: transform fault resistance [Kennett, 1982]. 

 Only the oceanic part of any plate is created or destroyed. The seafloor spreading 

at a mid-ocean ridge produces oceanic lithosphere, and at subduction zones, where 

continental and oceanic materials meet, it is the oceanic plate which is subducted and 

destroyed due to its higher density [Fowler, 1990]. As the oceanic lithosphere moves 

away from an ocean ridge, it cools, thickens, and becomes denser because of thermal 

contraction [Turcotte and Schubert, 2002]. In some cases, the denser lower continental 

crust, together with the underlying continental mantle lithosphere, can be recycled into 

the Earth’s interior in a process known as delamination [Turcotte and Schubert, 2002]. 

 The oceanic crust is created at ocean ridges when the plates move away from 

each other. The hot mantle rock flows upward to the gap created by the plate 

divergence. The upwelling mantle rock cools by conductive heat loss to the surface. The 

cooling rock accretes to the base of the spreading plates, becoming part of them 

[Turcotte and Schubert, 2002]. The “complete ophiolite complexes” (and by inference 

oceanic lithosphere) had a large stratiform sequence of rock units: basaltic pillow lavas, 

sheeted diabase dike complex, layered and non-layered gabbroic to ultramafic rocks, 

interpreted as oceanic crust. These rock units lie above melt-depleted peridotites, 

interpreted as residual upper mantle (Figure 1.12) [Penrose Conference Participants, 

1972]. The seismic structure of the oceanic crust was interpreted in terms of two 

velocity layers: Layers 2 with compressional wave velocities of ~5.0-6.0 km/s and layer 

3 with velocities of ~6.5-7.5 km/s. Beneah the Moho discontinuity, upper mantle was 

characterized by velocities > 8.0 km/s [Buck et al., 1998] (Figure 1.12). Layer 2 is 

composed of extrusive volcanic flows that have interacted with the seawater to form 

pillow lavas and intrusive flows primarily in the form of sheeted dikes. A typical 

thickness for layer 2 is 1.5 km [Turcotte and Schubert, 2002]. Layer 3 is made up of 

gabbros and related cumulate rocks that crystallized directly from the magma chamber. 

The thickness of typical layer 3 is 4.5 km [Turcotte and Schubert, 2002] (Figure 1.12).  
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 The uppermost mantle underlying the oceanic crust is primarily composed of 

ultramafic rocks (i.e. peridotite), mainly composed by olivine and orthopyroxene and 

with a density of 3300 kg/m3 (Figure 1.12). The peridotite has a greater melting 

temperature than basalt and is therefore more refractory. It is the crystalline residue left 

after partial melting produced the basalt [Turcotte and Schubert, 2002]. Often the 

minerals forming the peridotites suffer a hydration and low temperature metamorphic 

transformation resulting in a new rock referred to as serpentinite. The alteration process 

is named serpentinization. The crust is distinguished from the upper mantle by the 

change in chemical composition that takes place at the Moho or Mohorovicic 

discontinuity [Turcotte and Schubert, 2002]. 

 The continental crust averages 35 km thick and a density of 2700 kg/m3. The 

variability of the structure of the continental crust is like all their other properties, a 

direct result of the diverse processes and the long time over which they have formed. 

Generally, the crust is thick beneath the young mountain ranges and thin beneath young 

basins and rifts. The continental crust has been formed from mantle material over the 

time by a series of melting, crystallization, metamorphic, erosional, depositional, 

subduction and other reworking event. The average composition of the continental crust 

Figure 1.12. Internal structure 

and composition of oceanic 

crust and correlations with 

seismic data. The generalized 

columnar section of rock units 

and structures is based on the 

reconstruction of ophiolite 

complexes with the assumption 

that contacts between major 

rock units are horizontal and 

that dikes are vertical [Penrose 

Conference Participants, 

1972]. 
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is more silica-rich than that of oceanic basalts. Simplifying, the continental upper crust 

is similar to granodiorite and the lower crust is probably granulite. The oldest material 

tends to concentrate towards the centre of a continent (cratons) with the young material 

around it [Fowler, 1990]. 

 In non-volcanic continental margins (e.g. the SW Iberian margin) are defined 

the continent-ocean transition (COT), a region on the continental margin lying 

between the edges of thinned-unequivocal continental crust and of unequivocal oceanic 

crust. The COT is characterized by a significant crustal thinning, and it includes both 

magmatic and sedimentary components in proportions that vary along and across the 

margin, and may also include areas of failed sea-floor spreading [Colwell et al., 2006] 

(Figure 1.13). In the COT may be present exhumed continental mantle peridotite due to 

ultraslow spreading rates upon initiation of seafloor spreading [Whitmarsh et al., 2001]. 

The continent-ocean boundary (COB) is the inboard edge of unequivocal oceanic 

crust [Colwell et al., 2006]. 

Figure 1.13. Example of deep crust geometry on the rifted margin of SW Iberia. CD: 

continental domain; LCC: lower continental crust; LOC: lower oceanic crust; MCC: middle 

continental crust; OCT: ocean–continent transition; ThD: thinned domain; TD: transitional 

domain; UCC: upper continental crust; UOC: upper oceanic crust [Pereira et al, 2011]. 
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CHAPTER 2. Geological setting of the SW Iberian 

margin 

 The Gulf of Cadiz is located in the SW Iberian margin and hosts the present-day 

plate boundary between Africa and Eurasia that connects the Azores triple junction to 

the west with the Straits of Gibraltar to the east [e.g. Olivet, 1996] (Figure 2.1). This 

complex plate boundary, named Azores Gibraltar Fault Zone (AGFZ), is divided into 

three segments according to their changing tectonic behaviour. In the west, the Terceira 

Ridge shows dextral transtensional divergence and is characterized by oceanic-crust 

accretion at present. The central segment corresponds to the Gloria Fault, a large, 

dextral strike-slip fault. Finally, the eastern segment, running from the Gorringe Bank to 

the Straits of Gibraltar, is dominated by a NW-SE trending convergence. The plate 

boundary within this eastern segment is not well established because deformation is 

distributed over a broad area of about 200 km wide [e.g. Srivastava et al., 1990; Roest 

and Srivastava, 1991; Sartori et al., 1994; Argus et al., 1998; Zitellini et al., 2009] 

(Figure 2.1).  

Figure 2.1. Shaded bathymetry map of the Azores-Gibraltar region showing the plate 

boundaries between Eurasia, Africa and North America with the main elements of plate 

boundaries superimposed [modified from Zitellini et al., 2009]. AGL: Azores-Gibraltar Line or 

Fracture Zone; GC: Gulf of Cadiz; GF: Gloria Fault; MAR: Mid-Atlantic Ridge; TR: Terceira 
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Ridge. Solid yellow line: plate boundaries from Bird [2003]. White box corresponds to location 

of the study area (Figure 2.2). Small red circles: epicenters from ISC (M>4), 1964 to Present, 

http://www.ISC.ac.uk. Focal mechanisms from CMT catalogue for whole area, 

http.//www.seismology.harvard.edu. Arrows at right bottom corner show the relative movement 

of Africa with respect to Eurasia at the centre of the Gulf of Cadiz, according to different 

authors. Black arrows deduced from geological indicators [Purdy, 1975] and red arrows from 

GPS [Calais et al., 2003; Nocquet and Calais 2004]. Fig.2 corresponds to Figure 2.3. Inset: 

location of the Euler pole and the relative movement of Nubia with respect to Eurasia after 

Fernandes et al. [2003]. 

 Plate kinematic models and GPS observations (Figure 2.1) show that Africa is 

currently moving in a NW-WNW direction with respect to Iberia at 4–5 mm/yr [e.g. 

Argus et al., 1989; Calais et al., 2003; Nocquet and Calais, 2004; DeMets et al., 2010; 

Noquet, 2012]. This convergent movement is the responsible of the intense seismic 

activity of low to moderate magnitude that characterize the region [e.g. Buforn et al., 

1995; Stich et al., 2005]. However, large magnitude destructive earthquakes such as the 

1755 Lisbon Earthquake and Tsunami (estimated Mw� 8.5), have also nucleated in the 

region [e.g. Baptista et al., 1998; Buforn et al., 2004; Stich et al., 2007] (Figure 2.1). 

2.1. Geodynamic evolution  

The morphology and tectonic structure of the SW Iberian margin result from a 

complex geodynamic history including successive deformation phases undergone by the 

region since the initial break-up of Pangaea, combined with the changes in location and 

kinematics of the Eurasian-African plate boundary [e.g. Srivastava et al., 1990]. In the 

last 20 years different plate kinematic models have been proposed for the Atlantic 

region [e.g. Mauffret et al., 1989; Malod and Mauffret, 1990; Srivastava et al., 1990; 

Roest and Srivastava, 1991; Olivet, 1996; Stamplfi et al., 2002; Sahabi et al., 2004; 

Tucholke et al., 2007; Schettino and Turco, 2009; Labails et al., 2010]. These kinematic 

models overall agree regarding the evolution of the major tectonic stages, but differ in 

the location of some specific events and they do not provide enough detailed 

information about the evolution of the SW Iberian margin. 

 After the initial stage of the Central Atlantic Ocean (CAO) opening in the Lower 

Jurassic [e.g. Withjack et al., 1998; Le Roy and Piqué, 2001; Roeser et al., 2002; Sahabi 
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et al., 2004; Schettino and Turco, 2009; Labails et al., 2010], Mauffret et al. [1989] and 

Malod and Mauffret [1990] proposed an oblique rifting between Iberia and Africa from 

late Jurassic to Lower Cretaceous (Figure 2.2aI). A wide transform zone involving 

transcurrent faults that opened pull-apart basins controlled the formation of the South 

Iberian and North African margins (Figure 2.2aII, bI). Based on magnetic anomalies, 

Srivastava et al. [1990] proposed a model in which the plate boundary between Eurasia 

and Africa jumped between North- and South-Iberia since anomaly M0 (120 Ma). 

Figure 2.2. a) Sketch of the kinematic evolution of the Eurasian, North America and Africa 

plates from Gràcia et al. [2003b]. Gray areas depict main compressional zones (modified from 

Olivet [1996]). b) Simplified cross-sections of the Gulf of Cadiz evolution: (I) During the 

Mesozoic extensional stage (M0, 120 Ma), and (II) During the Neogene compressional phase 

(C6, 10 Ma), located in 2.3aII and 2.3aIV, respectively. GCIW: Gulf of Cadiz Imbricated 

Wedge (modified from Gràcia et al. [2003b]). 
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 At the beginning of Chron 33 (83.6 Ma), Iberia was attached to the African plate 

and a convergent boundary between Eurasia and Iberia was formed, beginning the early 

Pyrenean orogeny [e.g. Srivastava et al., 1990]. At Chron 24 (~56 Ma) the convergence 

rates associated to the Pyrenean and Alpine orogeneses were very slow [e.g., Schmid et 

al., 1996; Vergés et al., 2002] (Figure 2.2 aIII). The rift-drift transition in the Atlantic 

and the slow convergence at Pyrenean orogen continued until chron C13n (33.1 Ma), 

when several new plate boundaries were activated. The AGFZ was established between 

Africa and Iberia [Roest and Srivastava, 1991], and the Pyrenean belt ceased to be a 

major plate boundary and Iberia remained fixed to Eurasia [Schettino and Turco, 2006] 

(Figure 2.2 aIV). 

 A regional N-S compression has dominated the evolution of the Gulf of Cadiz 

since Chron 6 (20 Ma), subducting the African plate under the South Sardinian Domain 

and opening the Algero-Provençal basin during the early and middle Miocene 

[Andrieux et al., 1971; Sanz de Galdeano, 1990]. Consequently, the Western 

Mediterranean area was closed causing the westward migration of the Internal Zones of 

the Betic and Rif Cordilleras (Figure 2.2aIV). The direction of the regional compression 

rotated toward the NNW-SSE during the Tortonian [e.g., Sanz de Galdeano, 1990], and 

large allochthonous units and gravitational accumulations were emplaced toward the 

Gulf of Cadiz (Figure 2.2bII). Preexisting extensional structures controlled the 

distribution of these units [e.g. Torelli et al., 1997; Gràcia et al., 2003b; Medialdea et 

al., 2004; Iribarren et al., 2007]. 

2.2. Morphology 

Tortella et al. [1997] subdivided the SW Iberian margin into two morphotectonic 

domains: (a) the external part, the region between the Gorringe Bank and Cape São 

Vicente; and (b) the internal part that corresponds to the Gulf of Cadiz sensu stricto, 

between the Cape São Vicente and the Straits of Gibraltar (Figure 2.3). The external 

part is characterized by a complex and irregular topography, dominated by the presence 

of large seamounts, deep abyssal plains and massive ridges [e.g. Bergeron and Bonnin, 

1991; Gràcia et al., 2003a, 2003b; Terrinha et al., 2003; Zitellini et al., 2004]. The 

internal part is characterized by smoother topography, the offshore prolongation of the 
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External Betics [Gràcia et al., 2003b], and by a prominent NE-SW trending positive 

free-air gravity anomaly [Dañobeitia et al., 1990; Gràcia et al., 2003b]. 

Figure 2.3. Bathymetric map of the SW Iberian margin resulting of a total of nineteen 

successive swath-bathymetric surveys from 14 different European institutions: the EuroMargins 

SWIM multibeam compilation [Zitellini et al, 2009]. Main morphological features are located. 

ACM: Alvarez Cabral Moat; AS: Ampere Seamount; GuF: Guadalquivir Fault; HF: Horseshoe 

Fault; HV: Horseshoe Valley; IHB: Infante Don Henrique Basin; LC: Lagos Canyon; LN: 

Lineament North; LS: Lineament South; MPB: Marquês de Pombal Block; MPF: Marquês de 

Pombal Fault; PB: Portimão Bank; PAS: Principes de Avis Seamount; PC: Portimão Canyon; 

PSF: Pereira de Souza Fault; SC: Sagres Canyon, SVC: São Vicente Canyon; SVF: São Vicente 

Fault [Gràcia et al., 2003a; Terrinha et al., 2003; Zitellini et al, 2004]. 

 The internal part of the Gulf of Cadiz comprises the following main structures 

(from east to west). The Gibraltar Arc that integrates the Betic and Rif mountain belts of 

Alpine Orogeny, characterized by north, south and west vergent low-angle thrust 

systems with a radial tectonic transport [e.g. Sanz de Galdeano, 1990]. The area near the 

arc is characterized by the presence of a wide continental shelf, where the offshore 

prolongation of the External Betics and Rif units were deposited constituting the Gulf of 
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Cadiz Imbricated Wedge (GCIW) [e.g. Iribarren et al., 2007], also named as 

Guadalquivir Allochthonous Unit [e.g. Gràcia et al., 2003b] or Gulf of Cadiz 

Accretionary Wedge [e.g. Gutscher et al., 2002] (Figure 2.3). The Neogene convergence 

between Iberia and Africa caused the emplacement of a number of allochtonous units 

that have been identified from the internal Gulf of Cadiz to the Horseshoe Abyssal Plain 

[e.g. Flinch et al., 1996; Torelli et al., 1997; Maldonado et al., 1999; Gràcia et al., 

2003b; Iribarren et al., 2007]. In addition, this internal part is characterized by large-

scale diapiric processes, the presence of gas and gas hydrates in the subsurface [e.g. 

Somoza et al., 2002; Pinheiro et al., 2003], and by the numerous features on the seafloor 

related with fluid leakage, mud volcanoes, and an important contourite system in the 

slope [Henandez-Molina et al., 2003]. The Guadalquivir and Portimao banks correspond 

to Mesozoic horsts that have been reactivated during the compressive stage, such as that 

NE-SW trending Guadalquivir Fault [Gràcia et al., 2003b]. The south-Portuguese 

continental margin is characterized by the presence of incised canyons, such as the São 

Vicente, Lagos, Portimao and Alvarez Cabral Moat [e.g. Terrinha et al., 2003] (Figures 

2.3, 2.4).  
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Figure 2.4. 3D block diagrams of selected morphological features of the study area. A) Slide 

scar on the western flank of the S. Vicente canyon. B) Slide scar on the western flank of the 

Sagres valley. C) Slide scar on the Horseshoe fault scarp at the intersection with the WNW–ESE 

trending lineaments. D) D. Carlos salt diapir protruding through the top of the Portimão Bank 

Note the incisions on both flanks of the plateau, mainly on the northern side [Terrinha et al., 

2009].

 The singular feature of the external part of the Gulf of Cadiz is the presence of 

three deep basins, from north to south: the Tagus, Horseshoe, and Seine abyssal plains 

(Figure 2.3). They are separated by sets of NE-SW-trending structural highs, 

approximately perpendicular to the current plate convergence. The Tagus Abyssal Plain 

(TAP) (5150 m depth) is separated from the Horseshoe Abyssal Plain (HAP) (4850 m 

depth) by the Hirondelle Seamount, the Gorringe Bank (GB), the Infante Don Henrique 

slope basin, and the Marques de Pombal block. The GB is a massive ridge of 220 km-

long and 90 km-wide going from ~5 km depth to 27 m below sea level, and where one 

of the largest amplitude gravity anomalies of the word has been reported [e.g. Soriau, 

1984; Bergeron and Bonnin, 1991]. To the south, the HAP is separated from the Seine 

Abyssal Plain (SAP) (4400 m depth) by the Coral Patch Seamount (CPS) and the Coral 

Patch Ridge (CPR). In the SAP, we highlight the presence of a set of folds and faults 

with NE-SW orientation and some salt diapirs [e.g. Bergeron and Bonnin, 1991; Sartori 

et al., 1994; Terrinha et al., 2009; Zitellini et al., 2009] (Figure 2.3). 

2.3. Main geological structures 

During the last fifteen years numerous geophysical cruises have been carried out 

in the framework of European and national projects such as RIFANO [Sartori et al., 

1994]; IAM [Banda et al., 1995]; BIGSETS [Zitellini et al., 2001]; PARSIFAL [Gràcia 

et al., 2003a]; TASYO [Somoza et al., 2003]; HITS [Gràcia et al., 2001]; SISMAR 

[Gutscher et al., 2002]; VOLTAIRE [Zitellini et al., 2004]; SWIM [Gràcia et al., 2006]; 

MATESPRO [Terrimnha et al., 2009]; MOUNDFORCE [Somoza et al., 2007]; 

TOPOMED [Gràcia et al., 2011; Ranero et al., 2012]. The main goal was to better 

understand the complex plate boundary between Eurasia and Africa, and to characterize 

active structures in order to identify the tectonic source of the 1755 Lisbon Earthquake. 

As a result of this exhaustive mapping and research numerous active structures (i.e., 
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which moved during the last 10.000 years according to the definition of Keller and 

Pinter [2001]) have been discovered in the SW Iberian Margin (Figure 2.5). 

Figure 2.5. Structural map of the SW Iberian margin from Zitellini et al. [2009]. Active 

structures are represented in red, inactive faults in blue, the boundary of the Gulf of Cadiz 

Imbricated wedge is depicted in purple. Contour lines (each 200 m) from the SWIM bathymetric 

compilation [Diez et al., 2005; Zitellini et al., 2009].  

 Among the active structures that have been studied in detail, the most relevant are 

the following, from the external to the internal Gulf of Cadiz: 

 a) The Pereira de Souza Fault (PSF). It is an N-S trending, west-dipping normal 

fault (65 km-long) that has a 1.5 km-high prominent escarpment and was formed during 

the Mesozoic rifting phase [Gràcia et al., 2003a; Terrinha et al., 2003] (Figures 2.3, 2.5, 

2.6). The compressional phase of middle Miocene to late Miocene age caused a slight 

inversion tectonics deforming the hanging wall of the Pereira de Souza fault 

[Rasmussen et al., 1999]. At the foot of the fault, turbidites are deposited forming levees 

that can be followed on the swath bathymetry for as much as 20 km. This active mass 

wasting sedimentation is associated to the uplift of the West Portuguese Margin, carried 

on top of distributed active thrusts, such as the Horseshoe Fault or the Marquês de 

Pombal Thrust [Gràcia et al., 2003a]. 
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 b) The Marquês de Pombal Fault (MPF). This structure was first recognized 

during the RIFANO-1994 cruise and it was the subject of a detailed survey during the 

BIGSETS-1998 cruise [Zitellini et al., 2001, 2004] and HITS-2001 [Gràcia et al., 2001; 

2005]. The MPF is a 55 km-long NNE-trending reverse fault that dips 24º towards the 

SE showing a very steep monoclinal fold at the hanging-wall block [Zitellini et al., 

2001, 2004; Gràcia et al., 2003a; Terrinha et al., 2003] (Figures 2.3, 2.5, 2.7). The 

escarpment in the northern part (where it reaches a maximum uplift of 1.2 km) is steeper 

than in the southern part. This fault has a significant activity as indicated by the folded 

Holocene sediments identified in high-resolution seismic profiles. Furthermore, in the 

central part of the escarpment numerous scars and landslide deposits have been 

identified probably associated with the activity of the fault [Gràcia et al., 2003a, 2005; 

Vizcaino et al., 2006] (Figure 2.8).  

 The MPF was the first structure proposed as a tectonic source for the 1755 Lisbon 

Earthquake [Baptista et al., 1998]. However, the dimensions of this structure (length, 

area) are insufficient to generate an earthquake with magnitude Mw � 8.5, the estimated 

magnitude for the Lisbon Earthquake [Mendes-Victor et al., 1999], even if considering 

simultaneous ruptures of individual reverse faults playing as an unique thrust system 

[e.g. Zitellini et al., 2001]. In fact, to achieve a Mw � 8.5, the hypothetical length 

rupture should be the double of the MPF, thus involving other faults, such as the 

Horseshoe or the Pereira de Souza faults, as proposed by Gràcia et al. [2003a] and 

Terrinha et al [2003], respectively.  

Figure 2.6. Line-

drawing interpretation 

of multichannel seismic 

profile across the 

Pereira de Souza Fault 

(PSF) (modified from 

Gràcia et al. [2003a]). 
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Figure 2.7: a) Post-stack time migrated profile BS11 showing the main features of the Marquês 

de Pombal Fault. b) Zooms of the post-stack time migrated profiles BS20, BS22, and BS24, 

across the MPF scarp where the fault is imaged reaching up to the surface or deforming 

shallow reflectors (modified from Zitellini et al. [2001]). 
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Figure 2.8. a) Color shaded-relief bathymetric map of the Marquês de Pombal area in the 

southwest Portuguese Margin. Contour interval is 50 m. Main seafloor elements are depicted. 

Box locates Figure 2.8b. b) Interpreted acoustic backscatter map with 50 m isobaths overlain. 

Intensity of backscattered signal is related to the nature of seafloor, roughness and slope angle. 

Reflective surfaces (e.g. steep slopes, landslide deposits, rock outcrops) are white; less 

reflective surfaces (e.g. flat and sediment-covered areas) are dark-gray. The Marquês de 

Pombal Fault and morphological features of the Marquês de Pombal slides are depicted. 

Sediment cores collected in the area are located [modified from Gràcia et al., 2005; Vizcaino et 

al., 2006]. 

d) The Horseshoe Fault (HF). It is a NE-SW trending reverse fault oriented 

perpendicular to the present-day kinematic motion of Africa respect to Iberia, which 

separates the Horseshoe Valley from the HAP [Gràcia et al., 2003a; Zitellini et al., 

2004] (Figures 2.3, 2.5, 2.9). The HF is an east-dipping thrust that displaces the late 

Miocene chaotic seismic facies unit (the Horseshoe Gravitational Unit, HGU) [e.g. 

Torelli et al., 1997; Iribarren et al., 2007] and reaches the seafloor generating a 

prominent escarpment [Gràcia et al., 2003a; Zitellini et al., 2004]. The morphological 

scarp of the HF strongly diminishes from north to south. To the south of the Lineament 

North (LN) the acoustic basement is shallower than in the north and the observed 

reverse fault displacement is smaller. Most of the scarp is possibly caused by thin 

skinned thrusting in this segment [Terrinha et al., 2009]. Those changes from north to 

south have important implications on the interpretation of the fault behavior and 

propagation. The HF has a significant associated seismic activity, as evidenced by the 

earthquake of 12 February 2007 (Mw=6.0) [Stich et al., 2007] (Figures 2.3, 2.5, 2.9). 

Based on the calculated focal mechanism of this earthquake, the fault parameters of the 

source of 1755 Lisbon Earthquake were proposed [Stich et al., 2007]. 

Figure 2.9. Line-

drawing interpretation 

of multichannel seismic 

profile across the 

Horseshoe Fault (HF) 

(modified from Gràcia 

et al. [2003a]). 
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 d) The Guadalquivir Fault (GuF). This fault bounds the south of the Guadalquivir 

and the Portimão banks. The GuF was formed during the Mesozoic rifting phase as a 

normal fault and has been subsequently reactivated and inverted during the Neogene 

compressive stage [Gràcia et al., 2003b]. The two banks sit in lateral continuity and are 

dissected by a set of extensional NW-SE trending faults. The southern limits of the 

banks abuts against a thrust fault that changes direction from NE-SW trending to E-W, 

from the east towards the west (Figures 2.3, 2.5, 2.10). There is a strong positive 

gravimetric anomaly that reaches 130 mGal associated to the banks [Gràcia et al., 

2003b]. In the Guadalquivir Bank, Paleozoic basement corresponding to the Hercynian 

continental crust crops out [González et al., 1998], crops out. 

Figure 2.10. Interpreted MCS profile BS5 in the central part of the Gulf of Cadiz, across the 

Guadalquivir Bank, where Paleozoic basement has been dredged, on the basis of dredges. GuF: 

Guadalquivir Fault; LM: Late Miocene; MM: Middle Miocene (modified from Gràcia et al. 

[2003b]).  

 e) The SWIM Lineaments. These structures are WNW-ESE dextral strike-slip 

faults that cut across all tectonic structures and geological formations from the 

Mesozoic basement through the Holocene sediments [Bartolome et al., 2008; Terrinha 

et al., 2009]. The SWIM Lineaments were identified for the first time on the 

bathymetric compilation done in the framework of the SWIM project [Zitellini et al., 

2009] (Figure 2.3). The main SWIM Lineaments are: the Lineament North (LN) and the 

Lineament South (LS). The LN extends about 50 km from the Horseshoe Valley to the 

northern half of the GCIW. The 125 km-long LS is clearly depicted on the swath 

bathymetry from the Moroccan platform to the middle of the HAP crossing the GCIW 

(Figures 2.3, 2.5, 2.11, 2.12). The SWIM Lineaments offset the HF and thus it is 
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hypothesized that the SWIM Faults initiated their strike-slip movement during the 

Pliocene [Terrinha et al., 2009]. Mathematical and analogue models developed by Rosas 

et al. [2012] suggested the beginning of its activity at 1.8 Ma. At Present, the SWIM 

Lineaments and the Horseshoe Fault are both active and cross cut each other. According 

to their length, Bartolome et al. [2008] suggested that these faults could generate 

earthquakes of Mw =7.1 (LN) and Mw= 7.5 (LS) based on the empirical relationships 

established by Wells and Coppersmith [1994] and Stirling et al. [2002]. Obviously, due 

to their strike-slip motion these structures are not candidate for the 1755 Lisbon 

Earthquake, but they are an important source of seismic activity in the region and can 

accommodate part of the convergence between the Eurasian and African plates 

[Bartolome et al., 2008] (Figures 2.11, 2.12).

Figure 2.11. Shaded relief swath-bathymetric map showing the SWIM Lineament South running 

from the Horseshoe Abyssal Plain through the Gulf of Cadiz Imbricated Wedge. The view is 

from the Horseshoe Abyssal Plain to the WNW and 45° elevation. The image clearly shows the 

positive and negative features and scarps arranged along the Lineament South [Zitellini et al., 

2009]. 
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Figure 2.12. a) Combination of multichannel seismic profiles IAM4 and IAM3 and b) 

corresponding seismostratigraphic and tectonic interpretation (modified from Rosas et al. 

[2012]). The SWIM1 corresponds to the Lineament South (LS) referred in the text, and CF1 and 

CF2 are secondary strike-slip faults. 

 f) The SWIM Fault Zone (SFZ). It is a 600 km long dextral strike-slip narrow 

deformation zone coincident with a small circle centered on the pole of rotation of 

Africa with respect to Eurasia, that connects the Gloria Fault to the Rift-Tell Fault Zone, 

two segments of the plate boundary between Africa and Eurasia [Zitellini et al., 2009]. 

The SFZ comprises a group of large WNW–ESE trending dextral strike-slip faults, 

including the Lineament South (LS). This band of deformation, interpreted as the 

present-day plate boundary between Africa and Eurasia, would act as a limit between 

the seismic (at north) and aseismic (at south) zones of the SW Iberian margin [e.g. 

Zitellini et al., 2009] (Figures 1.2, 2.5). 
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 Among the most-likely inactive structures, the following are the most relevant: 

 a) The Gorringe Bank (GB). It is the most important topographic feature of the 

area. The GB is a NE-SW elongated ridge, 200 km-long and 80 km-wide, that raised ~5 

km above the adjacent abyssal plains [Tortella et al., 1997] (Figures 2.3, 2.5, 2.13). It is 

constituted by the Gettysburg and the Ormonde seamounts, with a minimum depth of 40 

m and 60 m respectively [e.g., Kazmin et al., 1990]. The DSDP Site 120 drilled at the 

GB (Figure 2.5) showed that it is composed by mafic and ultramafic rocks [Ryan et al., 

1973]. Accordingly, the GB was interpreted to be an uplifted block of crustal and upper 

mantle rocks [Auzende et al., 1978; Auzende et al., 1982; Ryan et al., 1973; Féraud et 

al., 1986; Girardeau et al., 1998] generating one of the most prominent gravimetric 

anomalies of the world [Souriau, 1984; Galindo-Zaldívar et al., 2003] (Figure 2.13).  

Figure 2.13: Satellite-derived free-air gravity anomaly of the Gorringe Bank and adjacent 

features. Contour interval of 10 mGal. Gravity data are from Sandwell & Smith [1997] 

(modified from Galindo-Zaldívar et al. [2003]). Thick lines indicate the location of gravity 

profiles of Galindo-Zaldívar et al. [2003]. Stars correspond to earthquake epicenters from the 

USGS database [2001]. AS: Ampere Seamount; CPS: Coral Patch Seamount; HP: Horseshoe 

Plain; HS: Hirondelle Seamount; GeS: Gettysburg Seamount; GR: Gorringe Ridge; OrS: 

Ormonde Seamount; SP: Seine Plain; TP: Tagus Plain.
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 Recently acquired high-resolution bathymetric data from the two summits of the 

Gorringe Bank together with groundtruthing (sampling and submarine camera) gave 

new insights on the nature of the rocks cropping out [De Alteriis et al., 2005]. The 

Gettysburg Seamount shows an almost perfectly circular summit resulting from the 

blanket of bioclastic sediments over an igneous ‘core’ consisting of sheared and foliated 

serpentinites. Its circular shape suggests that the origin of the seamount may correspond 

to a mantle serpentinite diapir. In contrast, the elongated summit of the Ormonde 

Seamount shows a N60 escarpment on its southeastern flank (Figure 2.14), probably 

related to a fault scarp. Its basement morphology corresponds to the outcrops of igneous 

rocks consisting of gabbros, volcanics and dyke intrusions, in agreement with previous 

works [Ryan et al., 1973; Auzende et al., 1978, 1982; Girardeau et al., 1998]. Terraced 

surfaces may indicate relative sea-level oscillations with partial emersion of the two 

summits probably occurred during the last glacial cycle (past 120 ka) [De Alteriis, et al., 

2005]. 

Figure 2.14: Color shaded relief map of the Ormonde Seamount at the top of the Gorringe 

Bank. Digital terrain model is based on a 10×10 m grid cell size. Elevation (coloured vertical 

bar) and scale bar are in metres [De Alteriis et al., 2005]. 

 The GB is asymmetric with the northern flank steeper than the southern. This 

asymmetry is reflected by the different degree of tectonic deformation which is very 

intense in the northern side and on the apex of the seamount, while it is minor in the 
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southern flank [Terrinha et al., 2009]. According to Sartori et al. [1994], the GB over-

thrusted the TAP for 4-5 km (Figure 2.15). This movement produced the observed uplift 

and Ryan et al. [1973] suggested that occurred during post-Langhian pre-early Pliocene 

time. A relevant unconformity detectable in the TAP marks the end of the 

northwestwards directed over-thrusting of the GB. This unconformity has a regional 

significance being widespread all over the TAP and it corresponds to the unconformity 

of Middle Miocene age described by Mauffret et al. [1989] in the area (Figure 2.15). It 

is considered that the activity of the thrust finished at Early Pliocene, although the Plio-

Quaternary sediments show a slight deformation associated with the main thrust [Sartori 

et al., 1994]. This deformation should not be neglected taking into account the 

seismicity associated with the GB (Figure 2.13). In fact, the GB has been considered as 

a possible tectonic source of the 1755 Lisbon Earthquake [Fukao, 1973; Gjevik et al., 

1997] until the modeling of tsunami arrival times suggested that the source should be 

located closer to the Portuguese coast and with a ~N-S trend [Baptista et al., 1998].  

Figure 2.15. a) Multichannel seismic transects of lines AR03 and AR08 across the Gorringe 

Bank; and b) corresponding line drawing (modified from Sartori et al. [1994] and Zitellini et al. 

[2009]). 
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 b) The Gulf of Cadiz Imbricated Wedge (GCIW). This structure has been 

identified by seismic data onshore, in the Guadalquivir basin [Berástegui et al., 1998], 

and offshore, in the Gulf of Cadiz [e.g., Tortella et al., 1997; Maldonado et al., 1999; 

Gràcia et al., 2003b; Somoza et al., 2003; Medialdea et al., 2004; Iribarren et al., 2007]. 

According to these authors, the GCIW is characterized by seismically chaotic facies and 

by the presence of numerous diffractions and hyperbolic reflections (Figures 2.16, 

2.17). They also suggested that this unit mainly consists of Triassic evaporites and a 

succession of Jurassic to Middle Miocene sedimentary rocks as documented for the 

allochthonous units at the front of the Betic Belt. The GCIW occupies about 58.000 km2 

of the NW Africa and SW Iberia margins. It displays 300 km-length in an ENE–WSW 

direction and between 150 and 200 km-width in a NW–SE direction [Iribarren et al., 

2007] (Figures 2.3, 2.5). It consists of a thrust complex with an imbricated sedimentary 

cover that thins out from east to west, reaching a maximum thickness of about 11 km in 

the eastern part [e.g., Maldonado et al., 1999; Gràcia et al., 2003b; Somoza et al., 2003; 

Medialdea et al., 2004; Iribarren et al., 2007]. There is no consensus regarding the 

evolution and tectonic behavior of this unit. The most accepted hypothesis suggested 

that the GCIW is an allocthonous body tectonically emplaced by the westward 

migration of the Gibraltar arc between ~15 Ma and ~8 Ma [e.g., Gràcia et al., 2003a, 

2003b; Iribarren et al., 2007; Medialdea et al., 2004; Torelli et al., 1997] (Figures 2.16, 

2.17). Alternatively, the GCIW has been interpreted as an accretionary prism on top of 

an eastward-subducting oceanic slab [Maldonado et al., 1999]. Gutscher et al. [2002] 

suggested that this subduction is still active under the Gibraltar Arc and that it could be 

the source of the 1755 Lisbon Earthquake. However, there are important observations 

that rule out this hypothesis, as the presence of Plio-Quaternary sediments sealing the 

structure in the north [Gràcia et al., 2003b; Iribarren et al., 2007] and southern edges 

[Zitellini et al., 2009], as well as the almost complete absence of seismic or volcanic 

activity associated with the presumed active subduction [Stich et al., 2005]. In the HAP 

a large gravitational unit was emplaced in the Late Miocene. This unit was referred as 

“Giant Chaotic Body” [Torelli et al., 1997] although the name recently proposed by 

Iribarren et al [2007], Horseshoe Gravitational Unit (HGU), is the one used in this work 

(Figures 2.3, 2.5, 2.16, 2.17). 
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Figure 2.16. a) Line drawing of the multichannel seismic profile GC3 acquired along the 

Spanish continental shelf with the location of the main structural units: Campo de Gibraltar, 

External Betics, Guadalquivir Allochthonous unit, Front, and Foreland. EJ: Early Jurassic; 

MM: Middle Miocene; LM: Late Miocene: UC: Upper Cretaceous. TWT: two-way time. (b) 

Timing of emplacement of the aforementioned units (modified from Gràcia et al. [2003b]). 

Figure 2.17. Multichannel commercial seismic line ONAREP 9355-87 encompassing the 

southern edge of the Gulf of Cadiz accretionary wedge and olistostrome near the Rharb Valley, 

in the Moroccan margin [Zitellini et al., 2009]. 
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2.4. Stratigraphy 

 The stratigraphy defined in the region is based on the small number of existing 

commercial wells located in the shelf, and several of them concentrated in the Algarve 

Basin. Therefore, the stratigraphy of the study area is mainly focused on the continental 

shelf [Mulder et al., 2006] (Figures 2.3, 2.18). The numerous MCS profiles acquired in 

the internal part of the Gulf of Cadiz are correlated with the commercial wells drilled in 

the Spanish shelf [e.g., Maldonado et al., 1999; Gràcia et al., 2003b]. Thus, the 

correlation has allowed distinguishing the following stratigraphic and 

seismostratigraphic units [Gràcia et al., 2003b; Lopes et al., 2006] (Figure 2.18):  

Figure 2.18. Schematic stratigraphy from five wells located in the Algarve shelf (see map for 

location). The names of the wells are: I: Imperador; R: Ruivo; C: Corvina; A1: Algarve 1; A2: 

Algarve 2 (modified from Lopes et al. [2006]). 
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a) The Paleozoic basement is mainly composed of shales, coal and volcanic rocks. The 

seismic facies are characterized by discontinuous, high-amplitude, low-frequency 

hyperbolic facies [Lopes et al., 2006]. 

b) The Triassic is composed by anhydrite and gypsum (evaporites), which formed 

diapiric structures. The seismic facies that characterized the Triassic unit shows variable 

amplitude and frequency [Lopes et al., 2006]. 

c) The Jurassic to early Cenozoic units are mostly composed of limestones, marls and 

dolomites [Lanaja, 1987; Maldonado et al., 1999; Gràcia et al., 2003b; Lopes et al., 

2006]. These units are characterized by low-amplitude, highly reflective discontinuous 

seismic facies. 

d) The late Miocene unit, the GCIW, consists of a mixture of Triassic gypsum and clays 

with incoherent bedding enclosing blocks of heterogeneous lithologies of Triassic, 

Upper Cretaceous and Paleocene age [e.g., Maldonado et al., 1999; Gràcia et al., 2003b; 

Iribarren et al., 2007]. This unit is characterized by high-frequency, high-amplitude, 

discontinuous hyperbolic facies, which hinders imaging of underlying seismic units. 

e) The Plio-Quaternary unit is composed of a 1000 m of silty-clays and clays [e.g. 

Lopes et al., 2006]. The seismic facies show well stratified reflectors with high-

frequency, low-amplitude and very good lateral continuity. 

 In the framework of this PhD Thesis, lithostratigraphic information from the Deep 

Sea Drilling Program (DSDP) Site 135 [Hayes et al., 1972], located on top of the Coral 

Patch Ridge and crossed by two of the pre-stack depth migrated seismic profiles (SW07 

and SW13), was used to date specific seismic horizons and to assign lithologies to the 

seismic units identified in the MCS profiles of the external part of the Gulf of Cadiz 

(Figure 1.3). Furthermore, seismostratigraphic units have been correlated with units 

previously defined in the area [e.g. Tortella et al., 1997; Hayward et al., 1999; 

Medialdea et al., 2004]. The unprecedented higher resolution of the SWIM 2006 MCS 

dataset presented in this Thesis enabled us to revise the existing units and to define new 

sub-units and seismic horizons in the first km below the seafloor. These results are 

explained in detail in Martínez-Loriente et al. [2013]. 
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2.5. Seismicity 

 The SW Iberian margin is characterized by an intense seismic activity of moderate 

magnitude [e.g. Buforn et al., 1995]. The seismicity indicates that while to the west of 

the GB the plate boundary is located in a narrow zone, to the east the deformation 

extends over a wide area. It is mainly located between the Gorringe and Guadalquivir 

banks, and north of the SFZ that acts as a limit between the seismic and aseismic zones 

of the SW Iberian margin [e.g. Grimison and Chen, 1986; Stich et al., 2005; Zitellini et 

al., 2009] (Figures 1.2, 2.1, 2.19). The eastern segment of the AGFZ, the convergent 

plate boundary between Africa and Eurasia, generates this seismic activity that is 

distributed over a 200 km-wide diffuse band [e.g. Sartori et al., 1994] (Figure 2.1). Plate 

kinematic models and GPS observations show that Africa is currently moving in a NW-

WNW direction with respect to Iberia at 4–5 mm/yr [e.g. Grimison and Chen, 1986; 

Argus et al., 1989; Nocquet and Calais, 2004; DeMets et al., 2010; Noquet, 2012] 

(Figure 2.19). 

Figure 2.19. a) Seismicity distribution from the NEIC catalog for the 1976–2010 period 

(http://earthquake.usgs.gov/earthquakes/eqarchives/epic/) and CMT focal mechanisms 

(http://www.globalcmt.org, 1976–2011); b) velocity field in a Eurasia fixed reference frame 

(modified from Noquet [2012]).  
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 A local network of 24 broadband ocean bottom seismometers (OBS) deployed in 

the Gulf of Cadiz during a year recorded numerous small-to-moderate magnitude 

earthquakes (ML = 2.2-4.8) that concentrated at a depth of 40-60 km, with only few 

events nucleating shallower than 30 km [Geissler et al., 2010] (Figure 2.20). The 

epicenters of the earthquakes analyzed in this work are mainly concentrated in two 

distinct clusters close to the northern and southern terminations of the HF, and both are 

north to the SFZ (Figure 2.20). The northern cluster shows a general ~NNE�SSW trend, 

parallel to the HF, while the southern cluster shows a WNW�ESE trend, corresponding 

to a strong spatial and directional consistency with the dextral shear zone marked by the 

SWIM lineaments [Geissler et al., 2010].  

Figure 2.20. Bathymetry map with the faults [after Zitellini et al., 2009], location of OBS and 

land stations (white triangles), and the seismicity from the bulletin of the Institute of Lisbon. 

GB: Guadalquivir Bank; CSV: Cape San Vincent; HSF: Horseshoe Fault; MPF: Marquês de 

Pombal Fault; PB: Portimão Bank; SFZ: SWIM Fault Zone (modified from Geissler et al. 

[2010]).

Chapter 2: Geological setting of the SW Iberian margin

45

_________________________________________________



 Moment tensor solutions show predominantly reverse to strike-slip fault 

mechanisms with NW-SE oriented P-axes [Geissler et al., 2010] parallel to the 

maximum shortening (ShMAX) between the Eurasian and African plates (Figure 2.21). 

There are differences in the focal mechanism between the northern and southern 

seismicity clusters. The northern cluster corresponds to an obliquely oriented 

compressive regime, with WNW-ESE compression (�1 at N103°E/26°) and E-W 

extension (�3 at N221°E/43°), while the southern cluster is characterized by a strike�slip 

regime with N�S compression (�1 at N351°E/ 12°) and E�W extension (�3 at N81°E/2°) 

[Geissler et al., 2010] (Figure 2.21). Thus, compression acts in the northern cluster, 

trending perpendicular to present�day plate convergence [Geissler et al., 2010]. In the 

southern cluster a strike�slip regime acts trending parallel to plate convergence, and 

their location, trend and stress suggested present-day activity of a steep dextral shear 

zone associated with the SWIM lineaments, which have been proposed to represent the 

Eurasia�Africa plate boundary [Zitellini et al., 2009; Geissler et al., 2010].  

Figure 2.21. Bathymetric map with the main faults after Zitellini et al. [2009]. Focal 

mechanisms linked with the epicenter locations. Focal depths <20 km (yellow dots), 40 to 55 km 

(red), and >55 km (pink) are indicated. Ellipses outline the two seismic clusters discussed in the 
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text. Insets: stereographic misfit plots of the grid�search for �1 for the northern (N) and 

southern (S) clusters; blue triangles mark the best solutions for � 1 (modified from Geissler et 

al. [2010]). 

 The largest historical earthquakes that have hit the western Atlantic coast have 

been generated in the Gulf of Cadiz. Thus, the earthquake that destroyed Cadiz in 60 

B.C. [Campos, 1991] and the seismic events of 1531, 1722, or 1722 [Fukao, 1973; 

Mendes-Victor et al., 1991; Simões et al., 1992] showed that this region is under an 

important earthquake and tsunami hazard (Figure 1.2). The 1st November 1755 took 

place the most catastrophic of these events, the Lisbon Earthquake, which generated 

tsunamis that affected the coasts of Portugal, Spain, Morocco, and North Atlantic. 

Lisbon was practically destroyed and, according with conservative estimates, it caused 

more than 60.000 casualties [Baptista et al., 1998, 2003]. The estimated magnitude is 

Mw=8.5 [Abe, 1989; Martins and Mendes-Victor, 1990] and the location of the 

epicenter has been a matter of debate during decades [e.g., Udías et al., 1976] (Figure 

1.2).  

 Based on the empirical relationships established by Wells and Coppersmith 

[1994] that relate the length of the surface rupture of the fault with the earthquake 

magnitude, the Lisbon Earthquake rupture should be at least 200 km long. Different 

source candidates have been proposed during the last years, such as: The MPF and HF 

[Gràcia et al., 2003a; Zitellini et al., 2004]; the MPF and PSF [Terrinha et al., 2003]; the 

GCIW [Gutscher et al., 2002]; the combination between an offshore fault with the 

Tagus Fault [Vilanova et al., 2003]; or a L-shaped rupture located ~100 km SW of the 

San Vicente Cape (The Guadalquivir Bank with the MPF) [Baptista et al., 1998]. 

However, none of these models satisfactorily accounts for the estimated magnitude of 

the earthquake and tsunami arrival times onshore. For this reason, it is necessary to 

focus efforts on studying the structures that have generated earthquakes during the 

instrumental period, such as the 1969 earthquake (Mw 7.9-8.0) with the epicenter 

located in the HAP [Fukao, 1973]. A detailed characterization of these structures could 

provide key information and restrictions to evaluate the possible sources of the 1755 

Lisbon Earthquake and Tsunami. 
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CHAPTER 3. Methods 

3.1. Data acquisition 

3.1.1. SWIM 2006 cruise 

 In June 2006 the external part of the Gulf of Cadiz was investigated using 

geophysical methods during the SWIM 2006 cruise, carried out in the framework of the 

ESF-EuroMargins SWIM project (Earthquake and Tsunami Hazards in the SouthWest 

Iberian Margin: high-resolution imaging of active faults and paleoseismic signature). 

Sixteen high-resolution MCS profiles (SW01 to SW16), together with Simrad EM120 

swath-bathymetry and backscatter, TOPAS sub-bottom profiles, magnetics and gravity 

data were acquired during this survey onboard the Spanish RV Hesperdies (PI. E. 

Gràcia) (Figure 3.1), totalizing more than 2700 km of marine geophysical data. The 

main goals of the project and survey were: 

 a) To image the shallow geometry, pattern and style of deformation of neotectonic 

 structures, and correlation with its seafloor morphology; 

 b) To provide new constraints into the deep crustal structure and timing of the 

 main tectonic events in the region;  

 c) To identify and characterize the seismogenic structures responsible of the 1969 

 earthquake (Mw 8) to use it as a proxy to evaluate the potential sources of the 

 1755 Lisbon Earthquake and tsunami; 

 d) To explore the activity of the faults in the HAP, to calculate its paleoseismic 

 parameters and to identify and characterize mass transport deposits and submarine 

 landslides associated to the main active faults of the region.  

 The geophysical profiles were acquired perpendicular to the main structures 

identified in the bathymetry data of the external part of the Gulf of Cadiz and that had 

been compiled shortly after [Zitellini et al., 2009]. The location of the profiles can be 

divided into two sectors (Figure 3.1): a) profiles perpendicular to the HF and crossing 

the northern deformation part of the HAP (SW01 to SW06); and b) profiles across the 

CPR and neotectonic structures in the neighboring HAP and SAP (SW09 tot SW14). A 
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third group of profiles (SW07, SW08, and SW16) were acquired as tie-lines for the 

seismic data. 

Figure 3.1. Bathymetric map of the external part of the Gulf of Cadiz with the location of the 

multichannel seismic (MCS) profiles acquired during the SWIM 2006 survey (white lines), and 

the refraction and wide-angle reflection seismic (WAS) profiles acquired during the NEAREST-

SEIS 2008 survey (black lines). The location of the sediment cores and the DSDP Sites used for 

calibration of the TOPAS profiles and the MCS profiles are indicated. 

 In the framework of this PhD thesis, I have processed the MCS profiles SW08 to 

SW13 and, in addition, I have also performed the pre-stack depth migration (PSDM) of 

profiles SW13 and SW16. Finally, I have carried out the interpretation of the whole 

dataset acquired during the SWIM 2006 survey, including bathymetric and backscatter 
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maps, TOPAS high-resolution profiles, and MCS profiles by incorporating information 

from Deep Sea Drilling Project (DSDP) and other sediment cores acquired in the area. 

3.1.2. NEAREST-SEIS 2008 cruise

In November 2008, two refraction and wide-angle reflection seismic (WAS) profiles 

were collected (P1 and P2, Figure 3.1) in the SW Iberian margin in the frame of the 

NEAREST-SEIS geophysical cruise, which was part of the FP6-EU NEAREST 

(Integrated Observations from NEAR shore sourcES of Tsunamis: towards an early 

warning system) project. The survey was run onboard the Spanish RV Hesperdies (PI. 

V. Sallarès), and its main objectives were the following ones: 

 a) Provide information about the physical properties of the basement beneath the 

 seafloor and the geometry of the boundaries between different geological layers; 

 b) Identify the nature of the crust and the limits of the different crustal domains 

 in the region based on this information; 

 c) Obtain information to construct a 3-D P-wave velocity model to be used for 

 improving earthquake locations along this complex plate boundary region 

 between NW Africa and SW Iberia. 

 The WAS profile P1 extends from the TAP at north, to the SAP at south, across 

the GB, HAP, CPR and SH. Profile P2 runs from the Portuguese continental shelf to the 

SAP, across the GCIW. 

 During this PhD Thesis, I have processed, analyzed, modeled, and interpreted the 

data acquired by Ocean Bottom Seismometers (OBS) along the profile P1, and re-

interpreted the profile P2. 

3.2. Geophysical methods used 

 One of the main goals achieved within the framework of this PhD thesis is the 

integration and joined interpretation of the results obtained from data acquired using 

different geophysical methods to accomplish a comprehensive study of the first 30 km 
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of lithosphere in the SW Iberian margin. This multidisciplinary integration has allowed 

me to study at different scales and resolutions the main active structures and the nature 

of the basement, and thus improve the knowledge of the external part of the Gulf of 

Cadiz with very detailed and complete information. Following, I will describe each of 

the methods used as well as the information obtained that is relevant for my 

investigation. 

3.2.1. Swath-bathymetry and acoustic backscatter

 The multibeam echosounder provides an accurate and complete understanding of 

the depth, morphology, and nature of the seafloor. The echosounders measure water 

depths by sending acoustic pulses from the transmitter and by receiving their reflections 

(or echo) from the seafloor. The acoustic transmission and reception is usually done 

through a transducer, which emits a signal composed of several straight beams forming 

a band perpendicular to the ship's axis. In modern deep-water systems, the swath 

covered on the seafloor can be up to 7 times the water depth. If we are working in an 

area of 4800 m like the HAP, the maximum width swept is of 33.6 km. This allows for 

the coverage of a large area over a relatively short period of time [Diez and Gràcia, 

2005] (Figure 3.2). Multibeam echo-sounders are composed by: transmission and 

reception arrays, transmission electronics, reception unit, user interface (with system 

control options and real-time processing results) and ancillary systems, such as a 

positioning system, attitude sensor unit (giving roll, pitch, heave and the heading 

values), and sound velocity profiles [Diez and Gràcia, 2005]. The main characteristics 

of the instrument are: acoustic frequency, maximum angular aperture, number of beams, 

beam spacing, length of emission and cadence of the emission [Diez and Gràcia, 2005]. 

The resolution of systems increases with frequency, but also does the attenuation in the 

water. The echosounders for deep waters use frequencies between 12 and 15.5 kHz, 

whereas the ones used for surveying shallow waters use higher frequencies of 100-200 

kHz [Bourillet et al., 1996]. The subbottom penetration is determined by the frequency: 

the lower the frequency, the more it penetrates into sediments. The maximum angular 

aperture determines the swath width. Typical values are from 90º to 150º and beam 

spacing can be equidistant or equiangular. The signal used on the acoustic emission is 

referred as “pings”, portions of sinusoidal signals restricted to a length. The resolution 
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increases with the pulse lasts (between 1ms in shallow waters and 15 ms in deep 

waters). The cadence of the emission is the length between two successive emissions of 

the sounder, and it is longer than the duration of the trajectory of going and return of the 

more external beams. The echosounders provide two types of complementary data: 

depth and acoustic reflectivity [Augustin et al., 1996] (Figure 3.3). 

 During the SWIM 2006 survey a Simrad EM120 multibeam echosounder was 

used. This echosounder is characterized by an emission frequency of 13 kHz and it 

operates at depth ranging from 20 to 11000 m, with a vertical resolution of 10 to 40 cm. 

The length of the pulse is 2, 5, 15 ms, with a sampling frequency of 2 kHz. The angular 

coverage is 150º, with 191 beams and beam opening of 1º x 2º, covering a maximum of 

5.5 times the depth (the precision is 0.25% of the depth). It includes information from 

attitude sensor Seapath 200 / MRU 5 and Hypaq navigation system, which allow real-

time electronic compensation of ship motion and wave height to the acquired data 

[Gràcia and SWIM cruise party, 2006]. 

 Digital terrain models (50 m grid size) and slope maps were constructed using the 

Caraibes-TD bathymetric processing software (IFREMER, France) (Figure 3.3a). The 

main steps during data processing included loading of the raw data, searching for 

possible errors due to the variations in water column sound velocity profiles and 

motions of the vessel (roll, pitch, yaw and heave), and invalidation of the noisy external 

beams. Once these corrections were incorporated, data was filtered and cleaned up using 

different methods, such as raw data automatic cleaning by comparison with a reference 

DTM (using a band-pass filter). A final manual cleaning using a ping graphical editor 

allowed us to get more depth data control. After filtering, bathymetric data was 

interpolated at nodes of a regular-spacing grid of 30 meters in order to get a final DTM. 

Figure 3.2. Scheme how a multibeam 

echosounder surveys the seafloor. It 

provides two types of complementary 

information: swath bathymetry and 

sonar imagery [Interactive oceans, 

2013].

Chapter 3: Methods

53

_________________________________________________



An interpolation in time between the sound velocity profiles has been applied to the 

whole dataset. The bathymetric dataset cover an area of about 90 x 120 km (Figure 

3.3a) and was merged with the EuroMargins SWIM bathymetric compilation published 

by Zitellini et al. [2009] (Figure 2.4), providing detailed morphostructural information 

and allowing us to identify new seafloor ruptures, corresponding to fault scarps and 

fault traces. 

 Acoustic backscatter data from the Simrad EM 120 echosounder was also 

acquired simultaneously to the bathymetric data. Operations of filtering and 

interpolation have been carried out in order to obtain the final reflectivity mosaic 

(Figure 3.3b). The interpretation of the acoustic backscatter data provides information 

about the nature of seafloor, roughness and slope angle. In the study area, high-

reflective areas (dark gray) correspond to coarse sediments (turbidites), steep slopes 

and/or rock outcrops whereas low-reflectivity areas (pale gray) correspond to 

hemipelagic sediments (Figure 3.3b). 

Figure 3.3. a) Swath-bathymetry acquired during the SWIM 2006 survey. Contour lines every 

100 m, in a grid cell of 100 m. Yellow colors correspond to depths of ~3200 m and dark blue 

~4900 m. b) Acoustic backscatter mosaic of the central part of Figure 3.3a showing high-

reflective areas (dark gray) corresponding to coarse sediments (turbidites), steep slopes and/or 

rock outcrops, whereas low-reflectivity areas (pale gray) correspond to hemipelagic sediments. 
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3.2.2. High-resolution sub-bottom profiler

 Sub-bottom profilers are designed to obtain high-resolution seismic profiles of the 

uppermost layers of the seafloor, penetrating the sediments to as much as few hundred 

meters. During the SWIM 2006 survey the Simrad TOPAS (TOpographic PArametric 

Sounder) PS18 seismic profiler was used in order to investigate the upper sediment 

layers below the seafloor. TOPAS is a high-resolution sub-bottom profiler with 

parametric effect, which consists in the generation of a low-frequency signal (0.5-6 

kHz) by non-linear interaction between two high-frequency signals (15 and 21 kHz, 

centered symmetrically around 18 kHz) (Figure 3.4). The parametric sources have the 

advantage of generating a low frequency signal beam with no distinct side-lobe 

structure. The beam tapers off smoothly with spurious signals due to side-lobes. Thus, a 

small transducer can generate narrow beam, low-frequency signals providing good sub-

bottom penetration with excellent spatial resolution. The TOPAS PS18 uses a primary 

frequency of 18 kHz, and a secondary frequency of 1 to 6 kHz. Maximum vertical 

resolution is of 0.2 ms, and bandwidth of 4º - 6º. We have used a Chirp pulse wavelet 

with a pulse length of 20 ms, a triggering rate of 1.5 seconds using frequencies of 1.5 - 5 

kHz to record a trace length of 300 ms during the SWIM 2006 cruise. Data was 

recorded with a sampling frequency of 16 kHz and a band pass filter of 2 kHz in two 

formats: TOPAS raw for the brute data and SEG-Y for the processed data [Gràcia and 

SWIM cruise party, 2006]. 

 A total of 16 profiles of high-resolution Simrad TOPAS seismic profiler 

corresponding to more than 1455 nm (2700 km) have been acquired during the SWIM 

2006 cruise simultaneously to the MCS survey, at a boat speed of 5 knots. Most of the 

profiles are oriented perpendicular to the active faults (NW-SE and NNW-SSE). The 

Figure 3.4. Scheme of the 

functioning of a high-resolution 

parametric sub-bottom profiler, 

which may provide high-

resolution seismic profiles of the 
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TOPAS data acquired gives us detailed stratigraphic information on the uppermost tens 

of meters below the seafloor (80 to 100 m at an assumed sediment velocity of 1.5 km/s) 

(Figure 3.5), providing new insights into the control of neotectonic structures over the 

Plio-Quaternary sedimentary layers, as well as subsurface tectonic geometry of the 

active structures. The best results have been achieved in flat areas with highly 

penetrative sediments, while abrupt slope areas and rock outcrops display very low 

penetration. Acquisition was sometimes difficult due to the complex topography of the 

area, with scarps over 500 m high. In those cases, signal was lost and side echoes were 

obtained at the foot of the scarps. The profiles crossing the HAP appear noisier and less 

defined than the ones from the SAP, denoting coarser infilling in the basin mainly 

caused by mass transport deposits, interpreted as turbidites and slumps (Figure 3.5). 

 Following the acoustic signature of the data, different seismic facies have been 

identified in the area (Figure 3.5), defining facies as the set of observable properties in a 

seismic profile for a layer or group of layers: (1) highly penetrative and continuous 

well-stratified facies, which is the most common facies in the study area; (2) 

discontinuous to broken stratified and hyperbolic facies, corresponding to unstable areas 

located near rock outcrops or high-slope areas; (3) faulted stratified facies, 

corresponding to the Horseshoe and Coral Patch Ridge Fault area; (4) low penetration 

chaotic to transparent facies on top or embedded into the sedimentary sequence, 

corresponding to mass wasting deposits. 

 In addition, we have established age control in some key horizons easily 

identifiable in the TOPAS profiles on the basis of sediment cores located in the 

Horseshoe (MD03-2703 and MD03-2704) and Seine abyssal plains (JC27-20) (Figure 

3.1). Sediments consisted in an alternance between hemipelagic intervals and turbidite 

events [e.g. Lebreiro et al., 1997; Gràcia et al., 2010]. The date calibration ( 14C dates) 

reveal Holocene age sediments at the seafloor of the abyssal plains, with values of 615-

725 Cal yr BP at 50-52 cm below the seafloor in the HAP and 2355-2476 Cal yr BP at 

3-5 cm below the seafloor in the SAP. This information is valuable not only for 

interpretation of the TOPAS profiles but also for determining the age of faults that 

rupture up to the seafloor. 
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3.2.3. Multichannel seismic data

 Multichannel seismic (MCS) reflection is a method of exploration geophysics 

based on the propagation of sound waves  partially reflected in the Earth surface and 

sub-surface boundaries separating layers with different physical properties and acoustic 

impedance (Figure 3.6). Hence, the properties of the Earth's sub-surface (i.e. velocity 

propagation) can be estimated: the higher is the acoustic impedance between two layers, 

larger is the reflection generated in the boundary between them. The final aim of the 

method is to obtain a subsurface image of a cross-section of the Earth. The 

instrumentation of a standard marine MCS experiment is composed by a controlled 

acoustic energy source consisting of an array of airguns and an arrangement of receivers 

(streamer of hydrophones) (Figures 3.6, 3.7). 

Figure 3.6. Sketch of a standard marine multichannel seismic experiment. The image shows the 

acoustic pulse generated by the seismic source (airguns) traveling down the water column and 

below the seafloor. Seismic signals reflected at acoustic discontinuities (i.e. seafloor and sub-

seafloor layers) are recorded by the receiver system (streamer) towed at a certain depth.  

 The airgun array (Figure 3.7a) generates a synchronized high-energy acoustic 

pulse that will be transmitted in the water column down to the seafloor, where the 

energy is reflected and refracted into the Earth subsurface layers characterized by 

discontinuities with different acoustic impedance. These systems use the air generated 

by the compressors to produce an explosive blast into the water by each gun. A single 
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airgun produces a pulse of energy, known as pressure signature. This pulse of energy 

shows an initial energy burst followed by secondary bursts of less energy caused by the 

interaction between the air bubbles and the water [Parkes and Hatton, 1986]. The 

amplitude and period between these bubble pulses depends on the depth of the gun and 

the size of the main air chamber in the gun. Hence, the guns are distinguished by their 

air capacity chambers. Ideally, the seismic source must be as close as possible to a 

single pulse of energy that is a spike. Thus, in order to minimize the bubble oscillations 

made by an array of guns of different chamber sizes fired simultaneously, the time of 

the first burst should be synchronized maximizing the energy of the first bubble and 

destroying the rest of the signal. By this procedure, the resulting seismic wave increases 

its total amount of acoustic energy produced and flattens its frequency content over the 

range of the typical seismic frequencies. Seismic sources are towed behind the ship at 

certain depth and are fired at a specified time, named shot interval. 

 Seismic receivers (Figure 3.7b) consist of a set of hydrophones distributed along a 

cable towed behind the ship, named streamer (Figure 3.6). This device allows the 

detection and digital recording of the elastic waves traveling across the water column, 

reflected in the seafloor and subseafloor and returning back to the receivers. The 

hydrophones are made of piezoelectric ceramic pieces that convert the water pressure of 

the seismic waves into voltage differences. The hydrophones are usually spaced equally 

at a characteristic distance known as group interval, around 25 m or 12.5 m for deep 

MCS exploration and 3.125 or 6.25 m for high MCS resolution exploration. Some 

decades ago, streamers were filled with kerosene, whose density is slightly lower than 

the water, ensuring the buoyancy of the streamer during the experiment, and acting as 

an insulator of seawater. Nowadays, streamers are a solid-state system of hydrophones 

that are no longer filled by any fluid, ensuring reliability and a smaller diameter in 

winches for transport and mobilizations. The buoyancy, also used as safety system in 

case of emergency at sea, is still important at present day and is regulated by a set of 

stabilizers, named “birds”. Birds are distributed along the streamer to hydrodynamically 

compensate any deviation along the desired depth of the receivers, usually due to bad 

sea conditions. Birds also incorporate a compass in order to accurately locate the 

position of the hydrophones along the streamer. 
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Source and receivers of the SWIM 2006 experiment  

 The SWIM 2006 MCS profiles were acquired using a 10 m long gun array 

composed by 8 Bolt airgun models 1500LL and 1900 LLX-T (Figure 3.7a). The array 

was deployed at 6 m depth, configured as a configuration of a combination of alone and 

cluster of two gun positions. The airgun volume capacity used during the experiment 

was 265, 255, 175, 165, 2x55 (cluster), and 2x40 (cluster) cubic inches (totalizing 1050 

cubic inches, equivalent to 17.2 l). Air pressure was supplied to the guns by 4 onboard 

Hamworthy compressors model 4TH190W70 able to produce 304 m3/h of air at a 

working pressure of 140 bars (2000 PSI). A minipulse gun controller (Hydrasystems) 

was used to trigger and synchronize the gun array, firing each 37.5 m. The receivers 

used to record the acoustic waves were an analogical streamer Teledyne model 40508 

with 2.4 km long of active section, formed by 96 channels (25 m separation) and towed 

at 7 m depth (Figure 3.7b). 12 birds located at the head of each section of the streamer 

controlled the depth. MCS data were recorded in SEGD 48058 rev-1 format at a 

sampling rate of 2 ms and a record window of 11 s two-way travel time (TWTT). 

Figure 3.7. a) Airgun array used during 

the SWIM 2006 survey onboard the R/V 

Hesperides. b) Detail of the 2.4 km-long 

Teledyne analogic streamer used during 

the acquisition experiment. 
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Quality control during the SWIM 2006 experiment  

 Seismic profiles were named SW01 to SW16, totalizing 2010 km of MCS 

acquired data. The quality control data made onboard the R/V Hesperides included a 

data resampling, channel and shot edition, top mute picked in the shot domain, a true 

amplitude recovering in order to correct the loss of energy for spherical divergence, an 

FK and bandpass filters, a predictive deconvolution, NMO corrections at a constant 

velocity of 1700 m/s and stack. This processing sequence allowed us to obtain the first 

images (i.e., brut stack). Poststack processing consisted in spiking deconvolution (120 

ms operator length) and constant velocity Stolt FK migration (1500 m/s). A bandpass 

filter (10-15-70-80 Hz) was performed before the final display. 

3.2.3.1. Standard MCS processing sequence  

 In this section we present the processing sequence of the MCS data that allowed 

to improve the brut stack images obtained onboard during the acquisition experiment. 

The processing sequence (Figure 3.8) was designed and implemented by the author of 

this Thesis together with Dr. Rafael Bartolome in the laboratory of the Marine 

Technology Unit (CSIC). The software used was a ProMAX digital processing system, 

version 6.0, of the Landmark Graphics company running in a SunBlade 2000 

workstation equipped with a DAT cartridge of 4 mm. 
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Figure 3.8. Final processing flow performed to the multichannel seismic profiles acquired 

during the SWIM 2006 experiment.  

 The processing sequence (Figure 3.8) includes a first set of actions and algorithms 

designed to improve the signal/noise ratio of the original traces (or shot gathers) and 

correct for any delay occurring during acquisition. It includes: 1) data re-sampled from 

2 to 4 ms to reduce the size of the dataset; 2) shot gather editing by remove swapped 

and duplicated files; 3) channel editing by remove noisy and corrupted channels; 4) 

static correction of -59 ms to each channel due to a existing time lag between the 

recording window and shot triggers; 5) generic enhancement of the signal: the seismic 

wave front loses energy as it propagates through the Earth as a result of absorption, 

transmission/reflection losses and geometrical spreading. To compensate this loss of 

energy, we have used a true amplitude recovery by applying a time and space variant 

gain to the raw seismic shots using a velocity field; 6) the top mutes were picked in the 

shot domain to eliminate signal noise before the seafloor; 7) application of a bandpass 
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filter minimum phase (between 10/15 and 70/80 Hz) with the aim to reduce the spatial 

aliasing and the high-amplitude and low-frequency sea noise; 8) application of a FK 

filter (using a fan filter of -12500 m/s and 4100 m/s between 10 and 80 Hz) to remove 

dip noise in the MCS profiles with no important slope changes. The F-K filter can be a 

source of problems if it is applied in an incorrect way, since it can delete signals coming 

from dip events at big offsets when confusing them with a dip noise (Figure 3.9). For 

this reason, the F-K filter was not included in the processing sequence designed for the 

preparation of the seismic data prior to the pre-stack depth migration (PSDM). 

Figure 3.9. Zooms during the pre-stack depth migration of profile SW13. a) Result obtained of 

the applying an incorrectly designed F-K filter before doing the pre-stack depth migration. b) 

Seismic image of the real structure observed using a non F-K depth migration. 

 A second step of the processing data includes the deconvolution previous to stack 

in order to reduce reverberation and other short period multiples of the primary arrivals. 

A predictive deconvolution (minimum phase with 180 ms operator length and 14 ms 

prediction lag) was applied to the data. Then, filters to remove the multiple were 

designed, which are especially important in areas with faults and with a shallow water 

column. In our study area, multiple arrivals come at the same time that primary of the 

deeper reflectors, but with a different dip. Although we could probably suppress most of 

these multiples just by stacking the data with the correct velocity, this step is very useful 
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prior to pick the stack velocity, as it is hard to see the primary arrivals to pick the 

correct velocities and suppressing them. 

 A special effort was made to assign the experiment geometry to the shot gathers 

when CMP building and bining. The experiment geometry, and the shot interval 

estimation in particular, was calculated using the ship navigation GPS data, resulting a 

35 to 48 fold CMPs for line SW-01 (theoretical shot rate of 25 m) and 25 to 33 fold for 

the rest of the profiles (theoretical shot rate of 37.5 m). The difference between both 

shot intervals, theoretical and real, is due to the time-dependent shooting system of the 

ship instead of space-dependent. Thus, the shooting interval (25 m for SW01 and 37.5 

m for the rest of the profiles) is previously calculated by the trigger system making a 

prediction of the time that the ship would take to place in that position. This assumption 

is not always true due to changes in velocity and direction of the ship, especially during 

bad weather. After CMP sorting, traces were normal moveout (NMO) corrected by 

velocities picked at every profile. The picking interval depends of the geological 

complexity of each profile. The processing sequence concludes performing the stack of 

the data and a constant velocity Stolt FK migration (post-stack migration 1500 m/s) 

(Figure 3.8).   

 Unmigrated time images are not accurate geometric representations of the Earth 

sub-surface because they are distorted, contain diffractions associated with faulting, and 

thus do not provide proper information about its real depth and geometry. Areas of 

geological complexity, such as salt bodies, shallow gas-charged zone, rugged 

bathymetry, faulted blocks, steep dipping layers will need the application of migration. 

The general goal of migration is to make the stacked section appear similar to a 

geological cross-section along the seismic line. Migration moves dipping reflectors into 

their true sub-surface positions and collapse diffractions, thereby delineating detailed 

subsurface features, such as fault planes. In fact, it is not necessary to have complex 

structures to take advantage of migration: occasional disruptions of reflection 

continuity, which give rise to diffractions due to growth faults, that are subtle on the 

stacked section, become apparent on the migrated section. Migration of seismic data 

will correct the assumption of flat-geological layers, by moving the energy (seismic 

arrivals) to the locations with the correct common midpoint. Migration does not 

displace horizontal events; it moves dipping events in the updip direction and collapses 

diffractions, thus helping to overcome the limitations of geophysical methods imposed 
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by rough topography or geometry, such as faults, folding, unconformities, salt bodies, 

etc., relocating the features events to their real place, not the time or space where they 

were recorded at the surface during the seismic experiment. As explained in previous 

sections, the morphology of the Gulf of Cadiz is characterized by the presence of 

numerous irregularities at the seafloor generated by faulting, mass movements, etc. 

Hence, to study in detail the active structures identified in the external part of the SW 

Iberian margin, quantify recent offsets, perform detailed structural interpretations, 

calculate seismic parameters, and use the geometry of the structure as input for tsunami 

modeling, it is crucial to perform a migration (in time or in depth, before o after the 

stack) to obtain the correct geometry of the reflectors (i.e. depth and dip). 

 There are different types of migration: 

a) Time and depth migrations: Time migration is appropriate as long as lateral velocity 

variations are mild to moderate. When the lateral velocity gradients are significant, time 

migrations do not produce the true sub-surface image. Instead, we need to use depth 

migration, the output of which is a depth section. 

b) After stack (post-stack) and before stack (pre-stack) migrations: When a stacked 

section is migrated, we use the post-stack migration. The post-stack migration uses the 

theory applicable to data recorded with a coincident source and receiver (zero-offset) 

location, that is, we assume that a stacked section is equivalent to a zero-offset section. 

During the stack we collapse the offset (horizontal) axis by stacking the data onto the 

midpoint-time plane at zero offset assuming hyperbolic “moveout” [Yilmaz, 1987]. 

Because of the presence of strong lateral velocity variations, the hyperbolic assumption 

may not be appropriate for certain reflections on some CMP gathers. The assumption 

that a conventional stack section is equivalent to a zero-offset section is also violated in 

the presence of strong multiples and conflicting dips with different stacking velocities. 

If this assumption is not valid, we cannot use post-stack migration. This is the case for 

reflections occurring at the same time with different stacking velocities: when a flat 

event is intersected by a dipping event, we can only choose a stacking velocity favoring 

one of these two events, not both, and then the stacking process degrades the quality of 

the image. Stacking the data with migration corrections, the so-called pre-stack depth 

migration (PSDM), gives an appropriate image of the surface and it is, among all types 

of migrations, further superior in case of large dips or complex bodies. Thus, in the 
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presence of conflicting dips, stack no longer is equivalent to a zero-offset section and 

we must use PSDM, where a migration of unstacked data is performed. 

3.2.3.2. Pre-stack depth migration (PSDM) 

 PSDM takes into account ray-path bending and thus corrects for distortions 

caused by laterally variable velocities, providing the correct depth image of complex 

structures, such as faults. The clarity of the migrated section is preferable not only for 

geometrical reasons but also to correctly interpret a seismic image (Figure 3.10).  

 Another advantage of PSDM is the fact that MCS data are traditionally 

represented in time (TWT) rather than depth (km) (Figure 3.10). Vertical exaggeration 

changes with depth (because velocity usually increases with depth) thus distorting the 

perspective and changing the dip of the faults planes. To know the real geometry of 

tectonic structures it is necessary to obtain seismic images in depth instead of time. 

Figure 3.10. a) Pre-stack time migration (PSTM) showing seismic reflectors on the up throw 

displaying classic fault shadow “sag” (red circle). b) The same reflectors are correctly 

positioned after pre-stack depth migration (PSDM). Also, reflectors on the down throw of the 

fault (green circle) are better imaged in the depth section, after modeling and imaging with the 

correct velocity field. 
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 Due to the extremely complex geometry of the surface and sub-surface geology in 

the SW Iberian margin (i.e. there is a sharp contrast in lateral or vertical velocities), and 

the consequent amount of diffractions in the seismic data acquired during the SWIM 

2006 experiment, we have decided to perform the PSDM in selected profiles. Correct 

migration requires an accurate velocity model, but obtaining the appropriate velocity 

model is a difficult task. In fact, the lack of a correct velocity model is generally the 

most important factor that prevents applying migration to “move” dipping events to its 

correct position in a standard multichannel seismic processing flow. 

 PSDM of the profiles presented in this work have been performed using the 

Kirchhoff summation algorithm. It is based on the nonzero-offset traveltime equation 

for a point scattered. Instead of summing along the zero-offset diffraction hyperbolas 

(as the post-stack migration), amplitudes are summed along the nonzero-offset 

diffraction traveltime trajectories [Yilmaz, 1987]. As with the zero-offset case, the 

velocity field dictates the curvature of these summation paths. Each common-offset 

section is imaged separately in this way and the results are then superimposed (stacked) 

to produce the migrated section. Clearly, pre-stack migration produces a better section 

because all dips are present in the section. Although we can solve the conflicting dips 

problem by the migration before stack, other problems are associated with this 

approach, namely (1) it is expensive in terms of computation complexity, and (2) it is 

very sensitive to errors made in the velocity field determination. These errors are most 

severe at steep dips, precisely where migration before stack should be most useful, 

making sometimes the migrated section difficult to interpret due to unfair migration 

derived from erroneous velocity.  

 Accurate velocity definition is the key factor in PSDM: the quality of the final 

image is related to the construction of the velocity model. The method for constructing 

the velocity model is known as depth-focusing error analysis of the MCS data, and I 

carried out at the Institute of Geosciences of IFM-GEOMAR (Kiel, Germany), using the 

SIRIUS software package (GX Technology). This package includes PSDM with depth-

focusing analysis based on finite-difference and ray-tracing algorithms [McBarnet, 

2000]. The velocity model is constructed layer by layer iteratively. Since velocities 

generally increase with depth, errors in migration are usually larger in deep events 

(Figure 3.11). Also, the steeper the dip, the more accurate the migration velocities need 

to be.  
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Figure 3.11. Panels used for the velocity picking during the third iteration of a SWIM 2006 

profile. a) Pre-stack depth migration obtained in a previous iteration and velocity picking in a 

new horizon. b) Velocity focusing analysis showing the energy concentration in a semblance 

display. Interval velocity picked depicted by white vertical lines. c) The same velocity focusing 

analysis of the central panel and the CMP gathers overcorrected (“smile” shape); velocity 

needs to be reduced. 
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 The first iteration of the focusing analysis to obtain the velocity model begins 

with the water velocity in order to replace the seafloor in depth. In the next iteration, a 

new horizon (usually the clearest and most continuous reflector) is defined where new 

migration velocity analyses will be performed in specified CMP positions, usually at 

constant intervals, to obtain a homogeneous velocity field. These analyses consist in 

various attempts of migration with different velocities and producing a display of 

envelope of velocity (or semblance) versus depth. In practice, the processor has to pick 

the maximum semblance focusing velocity (where the energy is focused) in the velocity 

vs depth display. Simultaneously, to improve the quality of velocity picks, we 

performed the velocity analyses from a number of neighboring CMP gathers often 

summed (Figure 3.11).  

 Thus, a new step of migration can be done with the new velocity model that will 

migrate properly until the horizon has been picked. The result is the input for the next 

iteration where a new horizon is chosen and new velocity analyses will be done. Each 

iteration becomes increasingly accurate as interval velocities and structure becomes 

clearer. This iterative modeling is strongly coupled with geological interpretation 

(horizons). Thus, lateral velocity variations are defined and the depth structure is 

revealed. Once the final structure/velocity model is confirmed, the depth-focusing errors 

are close to zero for all depths. The final velocity model used for the PSDM of profile 

SW16 is shown in Figure 3.12. The velocity models obtained by PSDM of profiles 

SW01 to SW07, SW13 and SW16 were used to perform the post-stack Kirchoff time 

migration (PSTM) of the rest of seismic sections. This was possible because the profiles 

were acquired at close distance to each other. An image of all uninterpreted time 

migrated MCS profiles (SW01 to SW16) are presented in Annex II.  
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Figure 3.12. Multichannel seismic profile SW16. a) Stacked time-section. b) Pre-stack depth 

migrated (PSDM) section with the velocity model superimposed. c) PSDM profile SW16. Red 

triangles indicate location of the SWIM 2006 MCS profiles that cross this line. 
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3.2.3.3. Criteria for MCS data interpretation 

Both PSDM and PSTM profiles were exported as SEG-Y format, including the CDP’s 

coordinates in UTM projection, to import the MCS data into the SMT Kingdom Suite-

software to perform the structural and stratigraphic interpretations.  

 The interpretation started with the identification of seismic facies following their 

acoustic properties: configuration, amplitude, frequency, continuity, and interval 

velocity. The seismic facies are controlled by the lithofacies of the different materials, 

by the geometry of the stratigraphic surfaces, and by the thickness and lithology of the 

layers [Vera Torres, 1994]. Following this criteria, we have identified 6 seismic facies 

(Figure 3.13): a) parallel stratified facies; b) folded stratified facies; c) truncated 

stratified facies; d) chaotic facies; e) transparent facies; and f) hyperbolic facies.  

Figure 3.13. Examples of seismic facies identified in the SWIM 2006 multichannel seismic 

profiles. a) parallel stratified facies; b) folded stratified facies; c) truncated stratified facies; d) 

chaotic facies; e) transparent facies; and f) hyperbolic facies. 

 After facies classification, a set of major regional discontinuities were identified, 

which represent the boundaries between the seismic units defined within the acoustic 

basement and sedimentary cover, correlating them between profiles. The DSDP Site 

135 [Hayes et al., 1972], drilled in the study area, allowed us to assign ages and 

lithologies to the seismostratigraphic units defined. These results are explained in detail 

in Martínez-Loriente et al. [2013]. 

 Seismic acquisition in areas with rough bathymetry, as the SW Iberian margin, 

can result in poor seismic imaging, which may be aggravated depending on the sense of 

data acquisition (towards foreland or hinterland). Folds can be distorted or partially 

imaged in seismic sections and lacking in quality resolution of steeply dipping fold 

limbs (Figure 3.14). Nevertheless, faults were identified in our MCS profiles by: 1) fault 

cutoffs: terminations of reflections or abrupt changes in reflection attributes at fault 
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surfaces; 2) terminations of folds limbs or kink bands; and 3) direct fault-plane 

reflections produced by changes in velocity and density across or within fault zones. 

Cutoffs and fault plane reflections directly constrain fault positions [e.g. Shaw et al., 

2005] (Figure 3.14). At the tip of the upper flats of some thrust faults, structural wedges 

were identified, containing two connected fault segments that bound a triangular, or 

wedge-shaped, fault block. These two fault segments merge at the tip of the wedge and 

the slip on both faults accommodates propagation of the wedge tip and causes folding 

[Medwedeff, 1989]. Structural wedges are characterized by: 1) presence of coeval fore- 

and back-thrusts; 2) folding localized along an active axial surface pinned to the wedge 

tip; and 3) folds in the footwall of the backthrust that produce structural relief [Shaw et 

al., 2005] (Figure 3.14). 
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Figure 3.14. Pre-stack depth migrated (PSDM) section of MCS profile SW13 across tectonic 

structure SH3 (see location in Figure 3.1). a) Uninterpreted section showing the stratigraphic 

and structural criteria followed in this study for interpretation. Orange dots depict the hanging 

wall cutoffs and green dots the footwall cutoffs. Red vertical lines show the progressively 

thinning of the growth strata towards the structural high. b) Tectonic and seismostratigraphic 

interpretation of the section. No vertical exaggeration. 

 Last, we have defined active structures as the ones deforming the Quaternary 

units. In this case, our criterion is based on: a) surface ruptures generated by dip-slip 

and strike-slip faults, and b) development of young folding and growth-strata 

configuration generated by blind-thrust faults. The ages of growth-strata define the 

timing of deformation. In contractional fault-related folds, growth-strata thin out across 

fold limbs and toward structural highs (Figures 3.12 and 3.14). Growth fold patterns 

imaged in seismic data often yield insights into the folding mechanism and sediment-to-

uplift ratio positions [Shaw et al., 2005]. 

3.2.4. Combined seismic and gravity data modeling

 WAS data differ from the more conventional MCS acquisition systems in the fact 

that the receivers do not move with the sources so that the relative distance between 

source and receiver is variable and can be arbitrarily large. An offshore WAS system 

consists of a source, generally an array of airguns, and a number of Ocean Bottom 

Seismometers (OBS) that are deployed at the seafloor and record the pressure variations 

in the water using hydrophones and/or the three components of particle velocity using 

three orthogonal geophones (Figures 3.16, 3.17). The airgun array generates acoustic 

waves that propagate through the medium and are reflected, transmitted or refracted at 

the geological boundaries that are characterized by acoustic impedance contrasts. The 

part of the seismic wavefield that bounces back to the seafloor is finally recorded by 

receivers at different offsets and combined to construct the so-called receiver gathers or 

record sections (Figura 3.15). In contrast with more conventional MCS data, WAS data 

are not designed to directly provide time images of the subsurface: they should be 

modeled to obtain a 2D/3D map of the structure and properties of the subsurface. 
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Figure 3.15. Example of a record seismic section corresponding to the vertical component of 

OBS 28. The vertical axis represents reduced travel time (in seconds), and the horizontal axis is 

offset from OBS position (in km). Band-pass (5–15 Hz) and AGC filtering was applied to the 

raw data. Reduction velocity is 7 km/s.  

 Traditionally, modeling was made following forward, or trial-and-error, methods 

where formal error analysis is not possible. More recently, inverse models where the 

optimal model parameters are formally calculated based on minimization criteria of a 

misfit function have been developed and they are more the norm than the exception. 

The most widely used tomographic method is travel-time inversion, where the arrival 

times of some pre-defined seismic phases (either reflections or refractions) are used to 

obtain a 2-D velocity model of the seismic waves (generally P-waves), together with the 

geometry of the main geological discontinuities (e.g., sediments-basement or sediments-

crust boundaries) in the case that wide-angle reflected phases are also used. This is the 

WAS modeling method that was applied in this work. 

 In the following sections I first present the characteristics of the WAS acquisition 

system as well as the instrumentation used during the NEAREST-SEIS survey, and then 

I describe the fundamentals and inversion parameters of the joint refraction and 

reflection inversion method used to model the data. 
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Figure 3.16. Basic sketch of a standard marine refraction and wide-angle reflection seismic 

(WAS) experiment. The image shows the acoustic pulse generated by the seismic source (airgun 

array) traveling downward. The acoustic signals, reflected at the acoustic discontinuities of the 

seafloor and sub-seafloor and refracted trough the earth and recorded by the receiver system 

(Ocean Bottom Seismometers, OBS). 

Source and receivers of the NEAREST-SEIS 2008 experiment 

 The different WAS profiles of the NEAREST-SEIS 2008 survey were acquired 

with a source constituted by a total of 7 guns of the model Bolt-1500LL organized in 2 

arrays (Figures 3.16, 3.17a). The main array was ~12 meters long and the second 

consisted of only one gun dragged off the stern on amidships. The function of the group 

of guns generates a pulse of acoustic energy in the water after receiving an electric 

signal from the Seismic Laboratory. The energy generated is obtained after the release 

of the compressed air that is constantly supplied by a group of compressors and is 

contained in fixed volume chambers. The energy pulse is generated and activates the 

solenoid valves installed on each gun, thus causing the sudden opening of the piston that 

hold the air in the gun chamber. 

 The source array and firing interval was designed to be the best adapted to this 

particular experiment (i.e. WAS), for which the key element is to obtain the maximum 

possible energy concentrated at the lowest possible frequency range. The array design 

was done using Gundalf commercial software. The capacities of the guns deployed 

during this survey were the following: 2x500, 2x1000, 255, and 265 cubic inches (c.i.) 
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in the main group and the other was of 1000 square inches on amidships, for a total 

volume 4510 c.i. The separation between guns was of 2.5 meters between plates and of 

0.8 meters in the case of a cluster that consisted of the 255 and 265 c.i. guns, all of them 

working at a depth of 12 meters. To supply the air to the guns at the work pressure of 

140 bars, 4 Hamworthy compressors, model 4TH190W70 were used. Each had the 

capacity of supplying 304m3/h of air at the given pressure. The shooting frequency on 

both lines was 90 seconds. 

Figure 3.17. a) Airgun array used during the NEAREST-SEIS 2008 survey onboard the R/V 

Hesperides; b-d) Ocean bottom seismometers (OBS) used during the experiment; b) Detail of 

the MicrOBS model from IFREMER [Auffret et al., 2004]; c) Detail of the LC2000 model OBS 

from UTM-CSIC; and d) Sketch of the instrument components. 

 Regarding the receivers, the OBS pool consisted on: a) 17 short period 

instruments of LC2000 model (Figures 3.16, 3.17c-d), built at the Scripps 

Oceanographic Institution (USA), which constitute the Spanish OBS pool operated by 

the Unidad de Tecnología Marina (UTM) from the CSIC; and b) 19 MicrOBS model 

(Figure 3.17b) designed and operated by IFREMER [Auffret et al., 2004]. Both types of 

OBS are similar concerning their characteristics. They measure the three components 
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with a seismometer, and also incorporate a hydrophone that uses piezoelectric sensors to 

measure the changes in pressure, which are related with the energy of motion. The OBS 

also have a clock incorporated to control the seismic recorded time and a power system 

with the batteries needed for the operation (for seismicity monitoring, the instruments 

can be left at the seafloor for long periods of time, over a year). Each instrument 

comprises an anchor, a glass float assembly on which the lifting bail is attached, a 

polyethylene frame holding the sensors, an acoustic release transponder, a data logger, 

and a burn-wire-based release (Figure 3.17d). The recovery system consists of: a float 

that provides buoyancy needed to return to the sea surface; an iron grate anchor held to 

the base of the poly frame that counteracts the effect of the float when the receiver must 

be placed at the seafloor; and the acoustic release transponder that is responsible for 

releasing the anchor, which remains in the seabed and it will not recovered. After the 

anchor is released for recovery, the glass balls in the floating package, as well as the 

synthetic foam blocks provide sufficient buoyancy to lift the instrument at about 45 

m/min to the sea surface. The tracking system to recover the instrument at any time of 

the day includes a flag, a satellite radio and a flashing light, in addition to the acoustic 

signals that it sends allowing to measure the distance with the vessel (Figure 3.17d). 

3.2.4.1. Processing and phase picking 

 30 OBS were deployed along the 340 km-long NEAREST profile P1, which runs 

from the TAP at the northwest to the SAP at the southeast, crossing the GB, the HAP, 

the CPR and the SH (Figure 3.1). The OBS record sections have a good overall quality, 

especially in what concerns the first arrivals (Figures 3.18, 3.19). The water wave 

arrival was used to relocate the instruments in the seafloor using an in-house developed 

grid search algorithm, and the calculation of the clock-drift corrections was also 

performed. To improve lateral coherence and increase signal-to-noise ratio a standard 

processing sequence was applied to the record sections, and included: a de-bias, a 

whitening deconvolution (0.5), a butterworth band-pass filter (4-18 Hz), and an AGC 

filtering. 
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Figure 3.18. a) Example of a record seismic section corresponding to the vertical component of 

OBS 28 of NEAREST profile P1. The vertical axis represents reduced travel time (in seconds) 

and the horizontal axis is offset from OBS position (in km). Band-pass (5–15 Hz) and AGC 

filtering was applied to the raw data. Reduction velocity is 7 km/s. b) Corresponding ray path of 

OBS 28. Vertical axis represents depth (km), and horizontal axis is distance along profile (km). 

The white labels indicate the seismic phases that have been identified and modeled. 

 A total of 20.022 picks were manually picked including: sedimentary (Ps), intra-

crustal (Pg) and upper-mantle (Pn) refracted phases, and reflections at the sediment-

basement interface (PsP), at the crust-mantle (PmP) boundary in the SAP, and at a 

deeper structure located in the middle of the HAP (PtP) (Figures 3.18, 3.19). It is 

important to note that PmPs interpreted to be reflections at the Moho boundary were 

identified in the southern half of the profile that includes the CPR and SH areas, 

whereas they were lacking in the northern half that encompasses the TAP, GB and the 

HAP. A picking uncertainty of the order of half of the domain signal period (~10 Hz) 

was assigned to the travel time pickings that accounts for the phase quality, individual 

picking errors, and a possible systematic shift. For Ps, Pg and near-offset Pn phases, the 

average uncertainty was ~50 ms, while it was ~70 ms for far-offset Pn’s, PsP’s, PmP’s, 

and PtP’s. 
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Figure 3.19. Recorded seismic sections corresponding to the vertical component of OBS01 (a), 

OBS03 (b), OBS09 (c), OBS11 (d), OBS13 (e), and OBS16 (f), OBS20 (g), OBS22 (h), OBS27 

(i), OBS28 (j), and OBS30 (k) deployed along NEAREST profile P1 (Figure 3.1). The vertical 

axis represents reduced travel time (in seconds), and the horizontal axis is offset from OBS 

position (in km). Band-pass (5–15 Hz) and AGC filtering was applied to the raw data. 

Reduction velocity is 7 km/s. The white labels indicate the seismic phases that have been 

identified and modelled (see text for description). 

3.2.4.2. Joint refraction and reflection travel-time inversion method 

 In this section, the main steps of the seismic tomography of travel times of first 

arrivals and reflections method are described and summarized in the schematic diagram 

of Figure 3.20. The goal of travel-time inversion is to recover a ‘best-fit’ model by 

iteratively minimizing the travel-time misfit between the observed data and data 

simulated using a seismic ray tracer. It is divided in two parts: 1) The forward problem, 

in which the data are simulated; and 2) The inverse problem, where a misfit function is 

defined and minimized following local optimization criteria. 

Figure 3.20. Schematic diagram of the main steps of the travel-time inversion method. 
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 In this work the the 2-D velocity model along the NEAREST profile P1 was 

obtained using the tomo2d joint refraction and reflection travel-time inversion code 

[Korenaga et al., 2000] (Figure 3.20). This method allows the determination of the 

velocity model and the geometry of a floating reflector from the simultaneous inversion 

of travel-times from first arrivals and from a single reflected phase.  

 There exist a number of different techniques to solve the forward problem and to 

calculate ray paths and travel times along them. The basic theories for the forward 

traveltime calculation include the Huygen’s principle, the Fermat’s principle, and the 

Snell’s law. The Huygen’s Principle says that each point of a wavefront may be 

considered the source of secondary wavelets that spread out in all directions with a 

speed equal to the waves propagation velocity. The Fermat’s principle selects the 

minimum traveltime by searching for a connection between an entry point for a ray 

starting from a particular marine source to all seafloor nodes. The Snell’s law describes 

the ray behavior crossing an interface. The wavefront ray-tracing can be solved by 

different techniques; calculating first-arrival wavefront traveltimes and associated 

raypaths solving by finite-difference extrapolation method the eikonal equation, 

applying an analytical solution to expand a wavefront or using graph theory to expand a 

wavefront by finding the shortest path for all connections [Moser et al. 1992; Zhang et 

al., 1998; Korenaga et al., 2000; Van Avendonk et al., 2001]. In the case of tomo2d, 

travel-times and ray paths are calculated using a hybrid ray-tracing scheme based on the 

graph method [Moser, 1991] and a local ray bending refinement [Moser et al., 1992]. 

The subroutine of tomo2d that calculates the ray trajectories and travel-times along them 

is called tt_forward. 

 For the inversion, tomo2d solves iteratively a linearized version of the forward 

problem. With this linearized approximation of the forward problem, the observed 

traveltimes, t, picked on the shot gathers now satisfy the relation t = G's'. The size of G 

is equal to the number of observed traveltimes multiplied by the number of model 

parameters. The computation of the residual traveltimes vector, dt, can be defined by 

dt=Gs Where is considered that G is equal to G’ at first order of an unknown model 

perturbation vector, s = s - s’, assuming that the segment length passing through each 

layer do not change when the velocity model experiments a small variation respect the 

true model. G is called sensitivity matrix or Fréchet derivative matrix. Without a priori 

information on the scale of velocity variations, the way to invert is restricted to the 
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model space with additional "regularization" constraints. tomo2d uses smoothness 

constraints on both velocity, �, and depth, d, perturbations, using the so-called 

predefined correlation lengths, also 1-D smoothing constraints for slowness 

perturbation, one each for horizontal and vertical directions, and one for depth 

perturbation, Ld. Gaussian smoothing within one decay length is used for all smoothing 

matrices. In the case of depth determination, depth kernel weighting parameter, w, 

weights the relative weighting of depth sensitivity in the Fréchet matrix. If an 

independent additional information of the medium is available, a jumping strategy 

based on damping matrices, D, for velocity and depth nodes can be incorporated. This is 

used to change some parts of the model preferentially, for example in a layer-stripping 

strategy. The minimization of the travel-time residuals is done through the direct 

inversion of a modified version of the Fréchet matrix that contains also the 

regularization (smoothness and damping) terms. Iterative sparse matrix solvers based on 

a conjugate gradients method LSQR algorithm [Paige and Saunders, 1982] provide the 

minimum-norm solution, obtained when a very small difference in travel-time residuals 

are obtained in two consecutive iterations. The travel time inversion package used in 

tomo2d is called tt_inverse. 

 In the case of this work, a three-step layer-stripping procedure was performed 

consisting of adding the data sequentially, starting from the shortest offsets/uppermost 

levels, and finishing with the longest offsets/deepest levels as described by Sallarès et 

al. [2011] (Figures 3.20, 3.21). This strategy allows to account for sharp velocity 

contrast across geological interfaces such as the sediment-basement or the crust-mantle 

boundary. In the first step, we inverted travel-times from the sedimentary layer and the 

geometry of the sediment-basement interface (i.e., we used Ps and PsP seismic phases) 

(Figure 3.21a). In the second step we incorporated also the basement phases, which in 

the southeastern half of the profile include the Pg and PmP arrivals, a part of the Ps, to 

obtain the crustal velocity distribution and Moho geometry (Figure 3.21b). In this step 

we included the inverted velocity model of the sediments as initial model, with a 

damping factor of 100 to 1, to let the inversion modify the model preferably within the 

crust. The starting velocity model below the sediment boundary was a 1-D model 

starting at 5 km/s and with a constant velocity gradient of 0.33 s-1. The initial Moho 

reflector was set at 6 km below the sediment-basement boundary. In the last step we 

incorporated the mantle information so that we used the Ps, Pg, Pn and PtP phases to 
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obtain the upper-mantle velocity distribution and the geometry of the deep floating 

reflector located beneath the HAP (Figure 3.21c). In this last step the previously 

obtained model that includes sediments and crust was included as initial model with an 

over-damping factor of 100 to 1 to make the inversion modify preferably the upper 

mantle. The starting velocity model below the sediment boundary in the northern half of 

the profile and below the Moho in the southern half was a 1-D model starting at 7.8 

km/s and with a constant velocity gradient of 0.02 s-1 (Figure 3.21). 

Figure 3.21. Intermediate results at the three steps of the layer-stripping inversion procedure of 

the NEAREST profile P1. White circles indicate OBS locations. Black lines show the different 

geological interfaces (sediment-basement boundary, crust-mantle boundary or Moho, and deep 

floating reflector located beneath the HAP) inverted in the different steps. a) Inverted velocity 

model for the sedimentary layer using the Ps and PsP seismic phases; b) Inverted velocity 

model for the basement in the southeastern part of the profile, added to the sedimentary layer, 

using the Ps, Pg, and PmP phases; c) Final inverted velocity model obtained by tomographic 

inversion of the whole data set, constituted by arrival times of Ps, PsP, Pg, PmP, Pn and PtP 

phases.  

 The final 2-D velocity model is presented in Figure 3.21c, whereas representative 

examples of record sections for various instruments in each domain are shown in Figure 

3.19 (the travel-time picks, fits, and ray paths of all of the record sections are presented 
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in the Annex III). The final root mean square (rms) residual corresponding to the model 

in Figure 3.21c is 61 ms; giving a chi-squared value of 0.89. The grid spacing to solve 

the forward problem is �x=500 m and �z=50 m immediately below the seafloor to 500 

m in the bottom of the model, the damping for velocity and depth is 15%, and the 

smoothing correlation lengths are 2-8 km horizontally, and 0.25-2 km, from top to 

bottom, vertically. The derivative weight sum (DWS), which is the column-sum vector 

of the velocity kernel [Toomey and Foulger, 1989], it is a measure of ray coverage and 

provides information on the linear sensitivity of the inversion. It is shown in Figure 

3.22. 

Figure 3.22. Derivative weight sum for the 2D velocity model shown in Figure 3.21c. 

3.2.4.2.1. Uncertainty of the velocity model parameters 

 In order to estimate the uncertainties of the final model (Figure 3.21c) due to a 

combination of the starting model selected, the experiment geometry, the theoretical 

approximation made, and data picking errors, we performed a Monte Carlo-type 

stochastic error analysis for each of the three-step models obtained with the layer-

stripping method (Figure 3.21). The approach followed [Korenaga et al., 2000; Sallarès 

et al., 2005] (Figure 3.23) consist of the following two steps: (1) A set of 300 2-D 

models is constructed by randomly perturbing the Moho depth (± 0.5 km) and the 

velocity of the crustal nodes (± 0.7 km/s) of the final velocity model shown in Figure 

3.21. These bounds are considered reasonable according to a priori lithological 

information. That way we generate a set of 300 2-D starting models and reflectors  
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Figure 3.23. Schematic diagram of the uncertainty analysis procedure  

 Besides, (2) 300 noisy datasets are built by adding random picking errors (± 20 

ms) to each arrival from the initial dataset, together with common phase errors 

accounting for a possible systematic shift in the picking of a given seismic phase (± 20 

ms), and common receiver errors (± 20 ms). (3) The 2-D model is parameterized, and a 

2-D inversion is performed for each random initial model with a random dataset using 

the inversion parameters described in the previous section. The mean deviation of 

velocity and depth parameters with respect to the final solution can be considered as a 

statistical measure of the uncertainties [Tarantola 1987; Matarese 1993]. The mean 

deviation of the 300 inverted final models and the error bar of all interfaces are shown 

in Figure 3.24. 
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Figure 3.24. Velocity uncertainty for the 2D intermediate and final models shown in Figure 

3.21c. It corresponds to the mean deviation of the 300 solutions obtained in the stochastic 

Monte Carlo analysis (see text for details). Velocity units are km/s. White circles indicate OBS 

locations. 

3.2.4.3. Velocity-derived density modeling 

3.2.4.3.1. Velocity-density empirical relationships 

 The final velocity model (Figure 3.21c) has been complemented with gravity 

modeling. The gravity analysis was done converting the WAS-derived seismic velocity 

(Vp) to density (�) using different empirical velocity-density relationships for each 

geological layer assuming a given lithological composition. In the case of the 

sedimentary cover, we used the Hamilton’s [1978] law for shale (�=0.917+0.747Vp-

0.08Vp
2). This relationship is based on a global compilation from drilling data together 

with MCS and WAS sound velocity measurements. In the case of the basement, we 

tested three different empirical relationships according to the three possible 

interpretations for the nature of the layer below the sedimentary cover (i.e. continental 

crust, exhumed serpentinized peridotite or oceanic crust) (Figure 3.23). For continental 

crust we used Christensen and Mooney’s [1995] relationship (�=5.055-14.094/Vp) 
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(Figure 3.25a), for the exhumed mantle rock we used Carlson and Miller’s [2003] 

relation for low-T serpentinized peridotite (�=1.5722+0.1963Vp) (Figure 3.25b), and for 

oceanic crust we employed Carlson and Herrick’s [1990] (�=3.81-6.0/Vp) which is valid 

for Layer 2/3 basalts and gabbros (Figure 3.25c).  

Figure 3.25. a) Average velocity versus average density for a variety of rock types abundant in 

the continental crust at a pressure equivalent to 20 km depth and 309ºC (modified from 

Christensen and Mooney [1995]); b) Estimated variation of seismic velocities and bulk density 

with serpentinization at 1000 MPa and 400ºC (modified from Carlson and Miller [2003]); c) 

Wet-bulk density versus P-wave slowness in laboratory samples from ophiolites and from the 

upper oceanic crust. Velocities were measured at 40 MPa confirming pressure under water-

saturated conditions. "Miscellaneous" includes rock types present but not abundant in the 

oceanic crust (serpentinites and amphibolites). Solid line is best fit of density on slowness and 

dashed lines represent rms error (modified from Carlson and Raskin, [1984] and Carlson and 

Herrick, [1990]). 

 Density and velocity were corrected from in situ to laboratory conditions and 

vice-versa using experimental estimates of pressure (P) and temperature (T) partial 

derivatives for oceanic and continental crust [Korenaga et al., 2001] and for 

serpentinized peridotite [Kern and Tubia, 1993]. In the three cases, the density of the 

uppermost basement in the top and the NW flank of the GB have been reduced between 

0% at 1.5 km deep, to a maximum of 30% just below the seafloor, to account for the 

effect of rock fracturing. The aim is to prove if the density model obtained is compatible 

with the observed free-air gravity data [Sandwell and Smith, 2009].  
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3.2.4.3.2. Calculation of the gravity anomaly 

 To calculate the gravity anomaly generated by a vertically- and laterally-

heterogeneous 2-D density model we used a code based on Parker’s [1974] spectral 

method as implemented by Korenaga et al. [2001]. In this approach, the 2-D gravity 

anomaly gz caused by a 1-D density variation �(x) bounded by two limits z=z1(x) and 

z=z2(x) (Figure 3.26) is expressed in the Fourier domain as a function of the density 

distribution between these two limits as follows [Parker, 1972]: 

 In this expression F[gz] represents the 1-D Fourier transform with respect to the 

horizontal coordinate, and G, z0, and k are the universal gravity constant, the vertical 

coordinate of the observation plane, and the horizontal wave-number, respectively. This 

approximation includes usually a restriction to constant thickness to separate the F[�] 

term from other higher-order terms with topography variations and to construct an 

iterative inversion formula for the density inversion (Figure 3.26).  

 This limitation can be overcome noting that the 1D density variation between 

z1(x) and z2(x) can be also expressed as that of a layer of constant thickness with 

topographic variations [Korenaga et al., 2000]. This can be expressed in a numerically 

efficient form as follows: 

Figure 3.26. Sketch showing the 

2D model geometry for the 

inversion of gravity anomalies in 

the presence of upper and bottom 

geometry [from Korenaga et al., 

2001] 
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 In this case, za=min(z1), z2=max(zb), zr1=(za+max(z1))/2 and zr2=(zb+min(z2))/2; 

because the convergence of the infinite series summation is fastest when the reference 

plane is located between the top and bottom boundaries of the target area (Parker, 

1972). It is thus possible to obtain an iterative inversion formula for the density 

variation just by re-arranging the terms and expressing F[�] as a function of F[gz]. This 

is the expression that is used to calculate the gravity anomaly of the different models 

tested in this work, using the code grav2d [Korenaga et al., 2001]. 

3.2.4.4. Velocity-derived serpentinization degree 

 In order to estimate the serpentinization degree (�) of the basement present in the 

northwestern part of the NEAREST profile P1 (i.e, from the TAP to the northern half of 

the HAP), the basement velocity was also transformed to � using Carlson and Miller’s 

[2003] relationship (�= -29.8 Vp + 236.4; � is in %.). The authors develop a model that 

relates the degree of serpentinization and water content of partially serpentinized 

peridotites to their seismic P-wave velocities (Figure 3.27). Thus, we can test the 

potential range of � variation in the basement using this linear relationship.  

Figure 3.27. Estimated variation of 

seismic velocities with serpentinization 

and water content at 1000 MPa and 

400ºC (modified from Carlson and 

Miller [2003]).
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CHAPTER 4. Results 
 The results obtained in the framework of this PhD Thesis concern to specific 

geographical areas that have been explored using different geophysical tools. Thus, I 

have divided this chapter in three main sections or zones according to the location of the 

structures analyzed and/or the methodology applied: 

- Zone 1 corresponds to the area where the two largest SWIM Lineaments, LN and LS, 

are located. They are characterized in Bartolome et al. [2012] using the SWIM 2006 

dataset. 

- Zone 2 includes the HAP, CPR and SH areas that have been analyzed also with the 

SWIM 2006 dataset in Martínez-Loriente et al. [2013]. 

- Zone 3 extends further North including the GB and the southeastern TAP, and 

includes the WAS NEAREST profile P1, which is described in Sallarès et al. [2013] 

and Martínez-Loriente et al. [submitted]. 

Figure 4.1. Bathymetric map of the SW Iberian margin. The multibeam bathymetry is a merge 

of the SWIM compilation [Zitellini et al., 2009] and GEBCO digital atlas (General Bathymetric 

Chart of the Oceans; http://www.gebco.net/). The white boxes depict the three zones defined in 

this chapter. 
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4.1. Seismic evidence for active strike-slip faulting along the Eurasia-

Africa plate boundary (Zone 1) 

 In this section we present the characterization of the shallow and crustal structure 

of the two most prominent SWIM lineaments, the north (LN) and south (LS) (Figures 

4.1, 4.2), from a comprehensive, multi-scale seismic imaging data set. In addition, we 

have incorporated seismo-tectonic data to characterize both the fault kinematics and the 

relationship between the lineaments and recent seismic events. Three seismic sections 

across the LS (SW10, SW12, and SW13) and one profile across the LN (SW01) are 

presented here (Figures 4.2, 4.3, 4.4), improving the spatial control regarding the length 

and importance of the LS and LN. Seismo-tectonic data are used to investigate the 

kinematics and depth of the structures that generated the imaged lineaments. 

Figure 4.2. Color-shaded bathymetric map of southwest Iberian margin and tectonic 

interpretation [modified from Zitellini et al., 2009]. Bathymetry is from SWIM compilation 

(available in Zitellini et al., 2009, at 250 m grid cell) and GEBCO (General Bathymetric Chart 

of the Oceans; http://www.gebco.net/) data set. White lines depict multichannel seismic 

reflection and TOPAS (topographic parametric sounder) profiles presented in this section. 
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Yellow circles correspond to epicenter locations for period 1915–2009 (Instituto Geográfico 

Nacional [IGN] catalogue; http://www.ign.es/ign/layout/sismo.do). Redstars represent 

epicenters of large events. 1: 12 September 1320, intensity I = X; 2: 11 January 1755, estimated 

Mw 8.5 (Buforn et al., 1995); 3: 07 November 1915, Mw 6.2 (IGN catalogue); 4: 15 March 

1964, Mw 6.6 (Stich et al., 2005); 5: 28 February 1969, Mw 8.0 (Fukao, 1973); 6: 9 June 1969, 

Mw 5.9 (Stich et al., 2005); 7: 2 December 2007, Mw 6.0 (Stich et al., 2010). White arrows 

show direction of Eurasian (EUR) and African (AFR) plate convergence (DeMets et al., 2010). 

GF—Gloria fault; SFZ— SWIM fault zone; LN—lineament north; LS— lineament south; SVF—

São Vicente Fault; MPF—Marquês de Pombal Fault; HF—Horseshoe Fault. White rectangle 

shows location of Figure 4.5. 

4.1.1. Multi-scale seismic imaging of the SWIM Lineaments 

 The LS is a WNW-ENE–trending (average strike 105° ± 2°) linear morphological 

feature that extends for 150 km across the Horseshoe Abyssal Plain (HAP) and the Gulf 

of Cadiz imbricated wedge (GCIW) (Figure 4.2). In the MCS profiles, the LS 

corresponds to a 2–3-km-wide fault zone. It is associated with a transparent seismic 

facies bounded by sub-vertical faults (Figure 4.3) and cuts across the entire sedimentary 

sequence, which ranges from Mesozoic to Quaternary age. The LS is a deep-seated sub-

vertical fault that roots in the basement to at least 9.5 s two-way traveltime (equivalent 

to a depth of ~10 km), which is the maximum penetration of the MCS data (Figure 4.3).  

 Swath-bathymetry and TOPAS profiles across the LS show variations in structural 

geometry along certain segments of the fault (Figure 4.3). Ridges and basins appear 

where the fault undergoes changes in strike and dip, defining restraining and releasing 

bends analogous to those observed in strike-slip faults exposed on land [Sylvester, 

1988]. The TOPAS images also reveal seafloor surface ruptures along the LS, showing 

positive and negative flower-like structures (Figure 4.3). Toward the western end of the 

LS (profile SW10, located in the HAP), no surface ruptures were observed in the MCS 

data. However, the highest resolution of the TOPAS image compared to the bathymetric 

data revealed a small Holocene anticline, breaching out to the seafloor, that indicates 

present-day activity [Gràcia et al., 2010] (Figure 4.3). Our study extends the western 

limit of the studied LS 30 km farther west, indicating a minimum length of 180 ± 5 km. 
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 The LN is a WNW-ENE–trending structure (average strike of 100° ± 2°) that is 

130 ± 5 km long and crosses the northern part of the GCIW (Figures 4.2 and 4.4). The 

pre-stack depth-migrated section of SW01 shows a lack of continuity in the top of an 

Early Eocene reflector across the LN around common mid-point 4500 (Figure 4.4), and 

a 4.8-km-wide blanked transference zone extends below the Mesozoic units to a depth 

of 9 km. A vertical displacement of 1.7 km, also detected from gravity modeling and 

wide-angle seismic data [Sallarès et al., 2011], is apparent at the base of the Late 

Miocene GCIW unit (Figure 4.4). Taking into account the coast to basin wedge 

geometry of the imbricated wedge allochthonous unit [Gutscher et al., 2002], and 

northward thinning observed in profile SW01, the abrupt difference in the wedge 

thickness across the LN may provide stratigraphic evidence for eastward displacement 

of the northern fault block, demonstrating right-lateral slip along the LN (Figure 4.4). 

Although most of the difference in thickness may be explained by dextral strike-slip 

motion along the fault, some vertical component along the LN cannot be excluded. For 

example, the SW01 TOPAS profile revealed a positive flower-like structure, with the 

seafloor rising up to a height of 120 m (Figure 4.4). Surface deformation of Quaternary 

sediments confirms that present-day tectonic activity is occurring along this structure. 

Fault activity is further confirmed by the presence of mud volcanoes and fluid-escape 

features along the SWIM lineaments [Hensen et al., 2007], suggesting that they may act 

as conduits for fluid flow. 
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Figure 4.4. TOPAS (topographic parametric sounder) and interpreted depth-migrated 

multichannel seismic reflection section from seismic profile SW01 across Lineament North. 

TWTT—two-way travel time; VE—vertical exaggeration; CMP—common mid-point; Plio-Q— 

Pliocene–Quaternary; GCIW—Gulf of Cadiz imbricated wedge. 

4.1.2. Assigning recent earthquakes to the SWIM Lineaments 

 The orientation of the moment tensor following an earthquake indicates the sense 

of motion along a specific fault. Regional waveform inversion and local broadband 

OBS monitoring indicate that numerous moderate-magnitude earthquakes (Mw 3–5) 

have occurred near the SWIM lineaments. The moment tensor inversions of these 

earthquakes show WNW-ENE–trending nodal planes, with right-lateral slip at shallow 

to intermediate depths (8–55 km) (Figure 4.5). Some of the scatter within the epicenter 

data can be attributed to location errors associated with the landbased station networks, 
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which can be as large as ~20 km [Geissler et al., 2010]. Moment tensors are consistent 

with the average strike and overall geometry of the LN and LS, as identified from 

bathymetry and seismic data, and with the relative westward motion of the African plate 

inferred from GPS measurements [Nocquet and Calais, 2004]. This indicates that 

present-day right-lateral motion is ongoing along these structures. Analogue modeling 

experiments, which reproduced the surface morphologies of the SWIM lineaments [i.e., 

Rosas et al., 2009], are also in agreement with dextral strike-slip motion. The 

occurrence of earthquakes at depths of 40–60 km [Stich et al., 2010] suggests that 

displacement along the lineaments involves old (Late Jurassic), thick, and brittle 

lithospheric plates. This finding is consistent with the expected thickness of the 

seismogenic layer in old oceanic lithosphere [e.g., McKenzie et al., 2005]. 

Figure 4.5. Gray-shaded relief map showing focal mechanisms of recent earthquakes (Stich et 

al., 2005, 2010; Geissler et al., 2010). Depths of seismic events are in parentheses (in km). 

Isobath interval is 100 m. 
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4.2. Acoustic and seismic imaging of active structures of the external 

part of the Gulf of Cadiz (Zone 2) 

 The aim of this part of the study is to characterize the pattern and timing of 

deformation of the tectonic structures located in the Coral Patch Ridge (CPR) region as 

well as Horseshoe and Seine abyssal plains (HAP and SAP, respectively), floored by 

Mesozoic oceanic lithosphere (Figures 4.1, 4.6). Using acoustic and multi-scale seismic 

data from the SWIM 2006 cruise, we show that although there is little seismicity 

associated with these tectonic structures, they accommodate part of the present-day 

Eurasian-African plate convergence, and are therefore active. Our findings demonstrate 

that the newly mapped structures represent a significant earthquake and tsunami hazard 

for the South Iberian and North African coasts that had not been accounted for to date. 
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Figure 4.6. Colour shaded-relief bathymetric map of the external part of the Gulf of Cadiz 

surveyed during the SWIM 2006 cruise. Contour interval is 50 m. Main morphostructural 

features are identified. The multichannel seismic (MCS) reflection profiles from the SWIM 2006 

cruise presented in this study are depicted as thick orange lines, whereas TOPAS profiles are 

indicated by black thick lines. Deep MCS reflection (RIFANO 1992 and IAM 1993) [Sartori et 

al., 1994; Tortella et al., 1997] and wide-angle seismic (WAS) profiles (P1 and P2 from 

NEAREST-SEIS 2008) [Martínez-Loriente et al., 2011; Sallarès et al., 2011, 2013] used for this 

study are located. The portion of the WAS profile P1 presented in Sallarès et al. [2013] is 

depicted by a black dashed line. DSDP Sites 120 and 135 and sediment cores MD03-2703, 

MD03-2704 and JC27-20 are also located. 

4.2.1. Morphology and stratigraphy of the Coral Patch Ridge and neighboring 

Horseshoe and Seine Abyssal Plains 

4.2.1.1. Seafloor morphology 

 We characterized the three main morpho-structural domains of the external part of 

Gulf of Cadiz (HAP, CPR and SAP) on the basis of high-resolution bathymetric maps 

(Figures 4.6 and 4.7c), slope map (Figure 4.7a) and backscatter data (Figure 4.7b). The 

eastern HAP is a NE-SW trending 4850 m deep basin bounded to the north by the GB 

and to the south by the Horseshoe and Coral Patch Ridge faults (Figures 4.6 and 4.7c). 

The slope map illustrates the flat character of the HAP with slopes lower than 0.1º 

(Figure 4.7a). The high/medium reflectivity in the acoustic backscatter map (Figure 

4.7b) suggests the presence of turbidite and hemipelagic sediments in the HAP, as 

confirmed by sediment cores [e.g. Lebreiro et al., 1997; Gràcia et al., 2010]. In addition, 

groups of aligned E-W trending elongated highs, 7-16 km-long, 4 km-wide and 20 to 

165 m-high are also identified (Figures 4.6, 4.7). These ridges are visible in the slope 

map with gradients between 3º and 5º and can be distinguished by their lower 

reflectivity (Figure 4.7). They correspond to the westward continuation of the SWIM 

Faults [e.g. Zitellini et al., 2009; Bartolome et al., 2012].  
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Figure 4.7. a) Slope map of the external part of the Gulf of Cadiz where main features are 

located. The SWIM Fault Zone (SFZ) [Zitellini et al., 2009] is depicted as a transparent gray 

band. White rectangle locates Figure 3b. b) Acoustic backscatter map of the Coral Patch 

region. High-reflectivity is depicted in dark gray and low-reflectivity in pale gray. c) 3D 

bathymetric map of the study area, view from the west. Main features are labeled. HF: 

Horseshoe Fault; NCP: North Coral Patch Ridge Fault; SCP: South Coral Patch Ridge Fault; 

SH1 to SH6: Seine Hills faults. 

 The CPR is a rhomboidal-shaped ridge with a long E-W axis of 160 km that 

separates the HAP from the SAP (Figures 4.6 and 4.7c). Morphologically, the CPR 

includes two main levels: the northern and deepest (4250 m) part of the ridge, limited 

by the North Coral Patch Ridge (NCP) fault, and the southern and higher part (3080 m 
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depth), bounded by the South Coral Patch Ridge (SCP) fault (Figure 4.7). The slope 

map illustrates the steep escarpments that form the ridge, with average slopes between 

7º-10º locally reaching up to 20º (Figure 4.7a). The top of the CPR is a relatively flat 

area with slopes between 0.5º and 2º. In the bathymetric and slope maps we can 

distinguish a set of WNW-ESE linear features (50 km long, 100 m high) across the CPR 

that are parallel to the SFZ (Figures 4.6, 4.7a, and 4.7c). The acoustic backscatter map 

reveals low reflectivity in the area, as expected for a homogeneous sedimentary cover, 

and higher in the steep fault scarps and rocky outcrops (Figure 4.7b). 

 The northeastern part of the SAP is shallower than the HAP (4450 m depth) and is 

limited to the north by the Coral Patch Seamount and CPR and to the east by the Gulf of 

Cadiz Imbricated Wedge (GCIW) (Figures 4.6 and 4.7c). The SAP is a flat basin with 

slopes close to 0º (Figure 4.7c) and contains several NE-SW trending elongated ridges, 

hereafter referred to as the Seine Hills (SH1 to SH6). The largest hill is 55 km-long and 

the highest rises 740 m above the surrounding seafloor (Figures 4.6, 4.7a, and 4.7c). 

The Seine Hills have slopes between 4º and 20º and moderate reflectivity (Figure 4.7a, 

b). Other features include some WNW-ESE trending lineaments (55 km long, 5 km 

wide) that are sub-parallel to the SFZ, although fewer than in the CPR area (Figures 4.6 

and 4.7). In the eastern part of the SAP, circular salt diapirs (4 to 8 km diameter) are 

also observed, rising between 100 and 200 m above the seafloor (Figures 4.6 and 4.7). 

4.2.1.2. Seismostratigraphy 

 Seismostratigraphic units have been correlated with units that were previously 

defined in the area [Tortella et al., 1997; Hayward et al., 1999; Medialdea et al., 2004] 

as well as with the DSDP Site 135 [Hayes et al., 1972] (Figure 4.8), which is crossed by 

two of the PSDM seismic profiles (SW07 and SW13) (Figures 4.6 and 4.9). The 

unprecedented higher resolution of the SWIM 2006 MCS dataset enabled us to revise 

the existing units and to define new sub-units and seismic horizons in the first km below 

the seafloor (Figures 4.8 and 4.9). From top to bottom, the following six seismo-

stratigraphic units (I-VI) were defined: 
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Figure 4.8. Seismotratigraphy based on DSDP Site 135 [Hayes et al., 1972] located at the 

intersection of pre-stack depth migrated profiles SW07 and SW13 (see Figure 4.6). Units 

previously defined by Tortella et al. [1997], Hayward et al. [1999], Medialdea et al. [2004] in 

the external part of the Gulf of Cadiz have also been included for reference. mbsf: meters below 

the seafloor; CPR: Coral Patch Ridge; SAP: Seine Abyssal Plain; s-HAP: southern Horseshoe 

Abyssal Plain. I.UO-PQ: Upper Oligocene to Quaternary; Ia.PQ: Plio-Quaternary; Ib.MM-P: 

Middle Miocene-Pliocene; Ic.HGU: Horseshoe Gravitational Unit, Upper Miocene; Id.UO-

MM: Upper Oligocene-Middle Miocene; II.UC-LE: Upper Cretaceous-Lower Eocene; III.C: 

Cretaceous; IV.LC: Lower Cretaceous; V.UJ: Upper Jurassic; VI: Basement; Serp.: 

Serpentinized. 

 a) Unit I: Upper Oligocene to Quaternary. This unit (0-325 m below the seafloor) 

is composed of light gray nannoplankton chalk ooze and pelagic carbonates interbedded 

with sandy layers [Hayes et al., 1972]. Within this unit, we identified three major 

discontinuities separating four subunits (Ia, Ib, Ic and Id) with a distinctive seismic 

character: I.a. PlioQuaternary. This is characterized by parallel reflectors of low-

medium amplitude and discontinuous reflectors towards its base; I.b. Middle Miocene-

Pliocene. The seismic facies of this subunit is variable, from low-amplitude and semi-

continuous reflectors in the CPR and SAP to higher amplitude and continuous reflectors 

in the HAP; I.c. Horseshoe Gravitational Unit (HGU). This subunit corresponds to a 

large allochthonous body emplaced during the Upper Miocene (Tortonian), tapering out 

the underlying subunit [e.g. Torelli et al., 1997; Tortella et al., 1997; Hayward et al., 
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1999; Medialdea et al., 2004; Zitellini et al., 2004; Iribarren et al., 2007]. The HGU is a 

regional marker observed throughout the HAP and is characterized by high-amplitude 

chaotic facies with numerous diffractions and hyperbolic reflections. Few internal 

reflectors can be identified; I.d. Upper Oligocene - Middle Miocene. This subunit is 

observed in the CPR and SAP, but rarely in the HAP. It shows parallel, continuous 

well-stratified, high-amplitude reflectors and onlaps the underlying unit. The top and 

bottom are high-amplitude horizons corresponding to regional unconformities (Figures 

4.8 and 4.9). 

 b) Unit II: Upper Cretaceous (Maastrichtian) to Lower Eocene. This unit (325-450 

m below the seafloor) is composed of terrigenous sediments and limestones at its base 

[Hayes et al., 1972]. It presents continuous and high-amplitude reflectors that change to 

discontinuous and lower amplitude ones towards its base. The top is constituted by a 

prominent unconformity marked by a continuous high-amplitude reflector that 

corresponds to a sedimentary hiatus from the Lower Eocene to Upper Oligocene 

(Figures 4.8 and 4.9). 

 c) Unit III: Cretaceous. This unit (450-650 m below the seafloor) is composed of 

green and black shales interbedded with limestone, silt and chert layers [Hayes et al., 

1972]. It is characterized by parallel, semi-continuous, low-amplitude to transparent 

reflectors. A high-amplitude horizon at the base of the unit represents a major 

unconformity of Aptian age (Figures 4.8 and 4.9). 

 d-e) Units IV - V: Lower Cretaceous – Upper Jurassic. The oldest unit drilled at 

the DSDP Site 135 was Unit IV (Lower Aptian, 650-689 m below the seafloor), which 

is composed of olive gray and black marls and limestones [Hayes et al., 1972]. Unit V 

has been assigned an age of 155-180 million years (Upper Jurassic) [Hayes et al., 1972]. 

In the CPR and SAP both units are restricted to V-shaped basins and their seismic 

character is very variable, showing parallel reflectors onlapping the top of basement 

ridges. In the HAP, Unit IV overlies the basement (Figures 4.8 and 4.9). 
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Figure 4.9. a) Stack of profile SW13 based on a standard MCS processing. b) Velocity model of 

the profile SW13 obtained using SIRIUS software package, which includes a depth-focusing 

analysis. c) Stratigraphic interpretation of pre-stack depth migrated (PSDM) profile SW13. 

Location of seismic line in Figure 4.6. Black rectangle locates Figure 3.14. LS: Lineament 

South; NCP: North Coral Patch Ridge Fault; SCP: South Coral Patch Ridge Fault; SH2 to 

SH6: Seine Hills faults. DSDP Site 135 is located. Ages of seismostratigraphic units are in the 

caption of Figure 4.8. TWTT: Two-way travel time. Vertical exaggeration (VE) = 4. 

 f) Unit VI: Basement. This unit can be divided into two types according to their 

origin and present-day structural pattern. In the southernmost part of the HAP, the CPR 

and the SAP, the basement is interpreted to be made of Jurassic-age oceanic crust based 

on WAS, MCS and magnetic data [Contrucci et al., 2004; Rovere et al., 2004; Martínez-

Loriente et al., 2011]. In these areas, the basement is structured in half-grabens and is 

characterized by high-amplitude reflectors with poor lateral continuity that become 

weaker, chaotic and more diffracted with depth. In contrast, recent WAS data modeling 

suggests that the basement of the northern part of the HAP is made of partially 

serpentinized peridotite that was exhumed by passive mantle denudation in the Lower 

Cretaceous [Sallarès et al., 2013]. 

4.2.2. Tectonic structure of the Coral Patch Ridge and neighboring abyssal plains  

4.2.2.1. Eastern Horseshoe Abyssal Plain 

 Several MCS profiles show the sedimentary infill of the eastern part of the HAP 

(Figures 4.6, 4.9, and 4.10). Maximum thickness of the units is attained in the centre of 

the plain, decreasing towards the edges of the basin. Most of the acoustic basement 

(Unit VI) of the HAP has been interpreted to be made of serpentinized mantle [e.g. 

Sallarès et al., 2013], and displays a very irregular upper surface at a depth between 2 

km and 5.5 km below the seafloor in profile SW13. However, preliminary modeling of 

WAS data suggests that the basement at the southernmost part of the HAP and at the 

footwalls of the HF and CPR, might correspond to oceanic crust [Martinez Loriente et 

al., 2011]. Overlying, a well developed Unit V (~1 km thick) is present (Figures 4.9, 

4.10a, 4.11a, and 4.11b). Unit IV has a variable thickness, with a maximum of ~1.7 km 

in profile SW03. Mimicking the top surface of Unit IV, Units III and II deepen towards 
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the centre of the basin and have more constant thicknesses of ~400 m. The upper 

boundary of Unit II corresponds to an erosive surface generated by excavation and 

erosion during the emplacement of subunit Ic (HGU), which fills the basin (maximum 

thickness of 1.7 km in SW13) and pinches out towards the edges of the HAP (Figures 

4.9, 4.10, and 4.11). Profile SW03 shows how the reverse Horseshoe Fault (HF) and 

related splay faults uplift the entire sedimentary sequence (i.e. about 800 m of vertical 

offset in Unit IV), indicating major basement involvement in the structure (Figure 

4.10a). 

 On the basis of their activity, two main families of sub-vertical faults are observed 

in the HAP: a) those affecting the Mesozoic up to Lower Eocene sediments; and b) 

those that deform all the sedimentary sequence from the basement to the seafloor 

(Figure 4.10). In the former case, we refer to tectonic structures of little entity that 

generate folds, discontinuities and small vertical displacements within the Mesozoic 

Units, although few of the structures deform the sediments up to the top of Unit II 

(Figure 4.10). The later family is characterized by sub-vertical faults that cut, fold and 

displace the whole sedimentary sequence up to the seafloor, generating small (<16 km 

long, <160 m high), elongated hills observed in the HAP (Figure 4.7). Most of these 

structures show flower-like geometries characteristic of strike-slip faults. However, as 

some of them show a dip-slip component, transpressive behavior can also be proposed 

(Figure 4.10). Profile SW13 shows how some of these faults produce a significant 

vertical displacement (i.e. 600 m at the top of Unit IV), progressively decreasing its 

offset from the top of the basement to Unit I (e.g. SS1 in Figure 4.10c). The most 

prominent of these active faults corresponds to the Lineament South (LS), a WNW-

ENE–trending dextral strike-slip fault that extends for 180 km across the HAP and part 

of the GCIW (Figures 4.6, and 4.7) [e.g. Zitellini et al., 2009; Bartolome et al., 2012]. 

The LS corresponds to a 2-4 km-wide fault zone with transparent seismic facies that is 

bounded by sub-vertical faults that cut across the entire sedimentary sequence from at 

least 11 km deep up to the seafloor. The LS produces approximately 500 m of vertical 

displacement of the top of Unit IV and 200 m of the top of Unit II (Figure 4.10d). 
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Figure 4.10. a) Interpreted pre-stack depth migrated (PSDM) profile SW03 across the 

Horseshoe Abyssal Plain (HAP) from the Gorringe Bank to the Coral Patch Ridge (CPR), 

which intersects the Horseshoe Fault (HF), the Lineament South (LS), and the Strike-slip Fault 

1 (SS1). VE = 4. b) Interpreted section of the time-migrated profile SW11 in the northern sector 

of the HAP showing active strike-slip faulting (among them, SS1). The dashed arrow marks the 

location of Figure I: TOPAS profile showing the surface expression of a positive flower 

structure. The yellow horizon underlines the base of a thick transparent unit, corresponding to a 

regional, < 5 m thick turbidite event of Late Pleistocene age (13.3-13.5 Cal kyr BP) on the basis 

of radiocarbon dating of core MD03-2704 [Gràcia et al., 2010]. The maximum vertical offset 

(13 m) of the turbidite layer across the fault is depicted. c) Interpreted section of the PSDM 

profile SW13 across the central part of the HAP showing three active strike-slip faults (among 

them, SS1). The dashed arrow marks the location of Figure II: TOPAS profile across a positive 

flower structure showing surface rupture. The maximum vertical offset (~8m) of the turbidite is 

depicted. d) Interpreted section of the PSDM profile SW16 across the LS in the eastern part of 

the HAP. The dashed arrow marks the location of Figure III: TOPAS profile across LS showing 

a maximum vertical offset (30 m) of the turbidite layer. Location of MCS and TOPAS profiles in 

Figure 4.6. Ages of seismostratigraphic units are in the caption of Figure 4.8. Nature of the 

basement is inferred from Sallarès et al. [2013]. TWTT: Two-way travel time. MCS profiles (b, 

c, d) VE = 2; TOPAS profiles (I, II, III) VE = 20. 

 TOPAS profiles provide evidence of the surface expression of the sub-vertical 

faults and the LS across the HAP, showing 2-4 km wide anticlines bounded by fault 

surface ruptures (Figures 4.10.I, 4.10.II, and 4.10.III). These active strike-slip faults 

vertically displace a widespread, 3-5 m thick horizon of transparent facies 

corresponding to the turbidite event E13 (Figures 4.10.I, 4.10.II, and 4.10.III), whose 

age is 13350-13505 Cal yr BP based on 14C dating of cores MD03-2703 and MD03-

2704 [Gràcia et al., 2010]. This allows us to calculate a maximum cumulative vertical 

slip-rate of these sub-vertical faults since the late Pleistocene, which is 0.6-0.9 mm/yr 

for the first two and about 2.2 mm/yr for the LS (Figures 4.10.I, 4.10.II, and 4.10.III). 

4.2.2.2. Coral Patch Ridge 

 The acoustic basement of the CPR is characterized by tilted blocks of oceanic 

crust originally structured in half-grabens and generating an irregular topography 

[Martínez-Loriente et al., 2011]. The top of the basement is located between 1.2 km and 
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2.4 km depth below the seafloor (Figure 4.9). Unit V sediments infill the wedge-like 

depocenters generated during the rotation of the half-grabens, and develop 

progradational configurations on the hanging walls and aggradational packages at the 

top of footwalls (Figures 4.9 and 4.11). This gives rise to large variations in thickness, 

from 1500 m at the half-grabens to 400 m at the top of the footwalls. The overlying 

Units IV to II are characterized by a relatively constant thickness (100 to 240 m thick) 

throughout the area, although they are thinner when compared to the same units in the 

HAP (Figures 4.9 and 4.11). 

 The CPR is formed by two main NW-verging anticline thrust faults: the 65 km 

long North Coral Patch Ridge (NCP) fault and the 83 km long South Coral Patch Ridge 

(SCP) fault (Figures 4.7 and 4.11). These thrusts are characterized by backlimbs that dip 

less than the fault-ramp and forelimbs that are quite narrow in relation to their long 

backlimbs, suggesting that they were generated by shear fault-bend folding [Suppe et 

al., 2004]. The seismic images show the ramps of the fault-bend folding thrusts, 

whereas the lower flats are probably located below the window of acquisition. The grid 

of MCS profiles across CPR allowed us to characterize the lateral variation of these two 

sets of thrusts that uplifted the ridge. The westernmost profiles (e.g. SW09) show the 

NW-verging NCP fault as a blind thrust, displacing and folding the whole stratigraphic 

sequence up to the Plio-Quaternary subunit Ia (Figures 4.6 and 4.11a). The profiles 

across the central part of the CPR (e.g. SW11) show how the NCP fault reaches up to 

the seafloor (Figure 4.11b) and the easternmost profile (SW13) depicts the fault 

termination to the east. The vertical displacement generated by the NCP fault displays 

maximum offset values in the central part, 500 ms (TWTT) for the top of Unit V and 

420 ms (TWTT) for the top of Unit II (Figure 4.11b). The SCP thrust fault has a NW-

ward sense of displacement, folding and uplifting the southeastern hanging-wall fault 

block, and cutting through the whole stratigraphic sequence up to the seafloor (Figure 

4.11). The vertical slip of the SCP fault is relatively constant with an average value of 

540 ms (TWTT) for different horizons, such as the top of Units V, II and I. Both thrusts 

(NCP and SCP faults), show higher fault dips within the first km below the seafloor 

(average 40º), decreasing within the basement (average 25º) (Figure 4.11). 
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Figure 4.11. a) Interpreted section of the time migrated profile SW09 across the western part of 

the Coral Patch Ridge (CPR), from the Horseshoe Abyssal Plain (HAP) to the Seine Abyssal 

Plain (SAP). The North Coral Patch Ridge (NCP) and South Coral Patch Ridge (SCP) thrusts 

faults and the Seine Hill 1 (SH1) transpressive structure are imaged. The dashed arrow marks 

the location of Figure I: TOPAS profile showing a landslide succession laterally offset by a 

vertical fault with surface expression. b) Interpreted section of the time migrated profile SW11 

crossing the central part of the CPR, from the Horseshoe to the Seine abyssal plains. The NCP, 

SCP and SH1 thrusts are imaged. The dashed arrow marks the location of Figure II: TOPAS 

profile across SH1 showing a seafloor rupture. c) Interpreted section of the time migrated 

profile SW14 at the eastern part of the CPR crossing Lineament South (LS) and SCP. d) 

Interpreted section of the time migrated profile SW15 at the eastern end of the CPR across LS 

and SCP faults. See text for details. Location of MCS and TOPAS profiles in Figure 4.6. Ages of 

seismostratigraphic units are in the caption of Figure 4.8. TWTT: Two-way travel time. MCS 

profiles (a, b, c, d) VE = 2; TOPAS profiles (I, II) VE = 20. 

 Minor sub-vertical to normal faults locally affects the top of the anticlines. A 

secondary active thrust south of the SCP fault is observed in profiles SW14 and SW15 

(Figures 4.11c and 4.11d) with little vertical displacement. This thrust would propagate 

from a shallow depth detachment layer located at the uppermost part of the oceanic 

crust. Finally, the CPR region is also affected by active positive strike-slip flower 

structures (Figure 4.11a) and transpressive sub-vertical faults that affect the sedimentary 

sequence from the basement to subunit Id (Mid-Miocene), generating folds and small 

vertical displacements. Most of these structures would also be rooted in the shallow 

detachment layer mentioned above. Buckle folds have been identified at the front of 

NCP and SCP thrusts (Figure 4.11). 

4.2.2.3. Northern Seine Abyssal Plain 

 In this part of the SAP, the acoustic basement is also structured in half-grabens 

as imaged in the MCS profiles (Figures 4.11a, 4.11b, and 4.12). The top of the basement 

deepens towards the SE, at about 5 km depth below the seafloor in the southern Seine 

Hills area (Figure 4.12). Unit V infilled the original grabens and show large thickness 

variations, with a maximum of ~ 4 km thick in the basin located between SH4 and SH5 
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(Figure 4.12). Units IV to II are concordant with the underlying Unit V and are thin, 

with a fairly constant thickness (~ 400 m) in the whole SAP area. In contrast, the 

onlapping subunit Id, which is exceptionally thick, shows a maximum thickness south 

of SH6 (1 km thick) that progressively thins out towards the NE (150 m thick). Subunits 

Ia and Ib are parallel and are of relatively constant thickness in the Seine Hills area, 

although the thickness of subunit Ib locally increases (~ 750 m) north of SH2 and south 

of SH6 (Figure 4.12). 

 The northeastern SAP region is also characterized by two types of faults: (1) 

NE-SW trending reverse faults; and (2) WNW-ESE trending strike-slip faults. The 

former faults are referred to as the Seine Hills, which is a succession of ridges (SH2 to 

SH6) that correspond to NE-SW trending thrust-folds with NW and SE vergences 

(Figure 4.12). These thrusts may have developed by fault-bend folding (e.g. SH2 and 

SH3) [Suppe, 1983] or by fault-propagate folding (e.g. SH5) [e.g. Allmendinger, 1998]. 

At the tip of the upper flats of these thrusts, structural wedges (or triangle zones) 

[Medwedeff, 1989] were developed, having generated associated back-thrusts and kink 

folds that accommodate the shallow deformation near the seafloor (Figures 3.14 and 

4.12). In the case of the fault-propagation folds (e.g. SH5), the MCS images show 

asymmetric folding with narrow and steep forelimbs in contrast to their corresponding 

backlimbs. The SH4 and SH5 are structured as a “classic” trishear fault-propagation 

fold formed by distributed shear within a triangular zone that expands outward from a 

fault tip [Erslev, 1991]. In the case of the SH6, a trishear fault-propagation-fold 

developed at its tip on the NW side, and shows a wedge structure at depth. Furthermore, 

the SH6 may involve a basement normal fault (i.e. oceanic crust) reactivated as reverse 

(Figure 4.12). In general, the Seine Hills faults deform all the units from the oceanic 

crust to the uppermost Quaternary sediments by faulting, blind faulting or folding, and 

originate > 450 m high, ~ 50 km long reliefs as observed on the bathymetric maps 

(Figures 4.6 and 4.7).  

Part II: Results, Discussion and Conclusions

114

_________________________________________________



Chapter 4: Results

115

_________________________________________________



Figure 4.12. a) Interpreted section of the time migrated profile SW12 across the tectonic 

structures of the Seine Hills (SH2 to SH6). The dashed arrow marks the location of Figure I: 

TOPAS profile across the basin located between SH3 and SH4, where a succession of mass 

transport deposits (MTD) is located at the foot of SH4. b) Interpreted section of the PSDM 

profile SW13 across a set of strike-slip faults in the northern part of the section and across the 

Seine Hill faults (SH2 to SH6). The dashed arrow marks the location of Figure II: TOPAS 

profile across a set of narrowly spaced sub-vertical strike-slip faults showing seafloor ruptures. 

Location of MCS and TOPAS profiles in Figure 4.6. Ages of seismostratigraphic units are given 

in the caption of Figure 4.8. TWTT: Two-way travel time. MCS profiles (a, b) VE = 2; TOPAS 

profiles (I, II) VE = 20. 

 The Seine Hills faults (SH2 to SH6) show a higher dip (average 45º) decreasing 

from the sub-surface to the basement (Figure 4.12), where the fault ramps tend to flatten 

(20-30º), probably towards the base of the crust (Figure 5.2). Unfortunately, the lower 

flats of the thrusts could not be imaged by our MCS acquisition system. On the basis of 

the PSDM profile SW13, which runs across the central part of the Seine Hills, we 

calculated the vertical displacement generated by these faults. The vertical offset is 

constant for the top of the Units V to II, and corresponds to 650 m for SH2, 1350 m for 

SH3, 400 m for SH4, and 250 m for SH5 (Figure 4.12). Although the Seine Hills are 

mainly blind thrusts, the growth-strata configuration of the 

 Between the major Seine Hills thrusts, secondary blind thrusts showing kink-

folds and asymmetric folds are also imaged and likely root in a common shallow 

detachment level that continues towards the CPR area (Figures 4.11 and 4.12). The SH1 

is a 38 km long isolated hill located west of the SH2-SH6 succession (Figure 4.7). 

According to its morphological expression and internal geometry, we distinguish two 

main segments corresponding, from west to east, to an 18 km-long, W-E trending 

transpressive fault (profile SW09, Figure 4.11a), and a 20 km-long, NE-SW trending 

reverse fault (profile SW11, Figure 4.11b). The strike-slip segment is characterized by 

sub-vertical faults defining a positive flower structure, whereas the thrust segment 

shows a fault with lower dip (45º), which flattens (20º) at the basement (Figure 4.11). 

Both SH1 segments fault and fold the sedimentary sequence from the basement up to 

the seafloor (Figure 4.11a and 4.11b). TOPAS data across the eastern segment of the 

SH1 show a surface rupture and anticline generated by the thrust fault (Figure 4.11.II). 
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 The strike-slip faults are mainly located north of the Seine Hills. In the MCS 

profiles, they are imaged as sub-vertical faults developing positive flower-like structures 

and showing seafloor ruptures in the TOPAS profiles (Figures 4.11a, 4.11.I, 4.12a, and 

4.12.II). In addition, slope failures probably related to the activity of the neighboring 

faults are also identified. They show characteristic transparent seismic facies in the 

TOPAS profiles, such as the mass transport deposits located near SH1 and SH5. For 

instance, in the small basin located between the SCP and SH1 faults, a large mass 

transport deposit (7 km wide and up to 15 m thick) is offset by a vertical fault reaching 

up to the seafloor (Figure 4.11.I). Further evidence of mass wasting is located in the 

basin north of SH5, where a succession of three mass transport deposits has also been 

identified (Figure 4.12.I). 

4.3. Combined wide-angle seismic and gravity modeling to characterize 

the external part of the Gulf of Cadiz (Zone 3) 

 In this section we include the results of the wide-angle seismic (WAS) and 

gravity modeling along the NEAREST profile P1 that runs NW-SE starting in the TAP, 

crossing the GB, the HAP and the CPR and ending in the SAP. According to the 

changes in the structural characteristics and properties found along this profile, we have 

divided it into two parts, which are: 

 a) The northwestern part that extends from the TAP to the middle of the HAP across 

the GB [Sallarès et al., 2013]; and 

 b) The southeastern half that runs from the HAP to the SAP across the CPR and the SH 

[Martínez-Loriente et al., submitted] (Figure 4.13). 
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Figure 4.13. Bathymetric map of the West Iberia and North African margins. The multibeam 

bathymetry merges the SWIM compilation map [Zitellini et al., 2009] and GEBCO digital atlas 

[IOC et al., 2003].Thick black lines labeled P1 and P2 correspond to the WAS profiles acquired 

during the NEAREST-SEIS survey. Red circles displays OBS along the NW half of the profile P1 

(OBS01 to OBS18). Yellow circles display OBS along the SE segment of the profile P1 (OBS19 

to OBS30). Thin black lines correspond to other WAS profiles previously acquired in the area, 

from N to S: IAM9 [Dean et al., 2000], IAM5 [Afilhado et al., 2008], D1–D2 [Pinheiro et al., 

1992], A-AR and B-BR [Purdy, 1975], IAM3 [González et al., 1996], SIS-P16 [Gutscher et al., 

2002], SIS-P4 [Contrucci et al., 2004], SIS-P5, SIS-P8, and SIS-P10 [Jaffal et al., 2009]. Blue 

line displays location of the AR03-08 multichannel seismic profile [Zitellini et al., 2009]. Red 
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stars indicate the location of DSDP sites 120 [Ryan et al., 1973] and 135 [Hayes et al., 1972]. 

The estimated continent–ocean boundary (COB) defined in Sallarès et al. [2013] is marked as a 

dashed white line. White circles show epicentral locations of earthquakes with Mw�3.5 for the 

period 1915–2009 [IGN catalogue]. The focal mechanism solution corresponds to the Mw=7.9, 

February 28, 1969 event [Fukao, 1973]. Dashed white line displays magnetic anomaly M1 

[Srivastava et al., 2000]. Purple area indicate magnetic anomaly S’ [Sahabi et al., 2004]. Red 

line marks the proposed location of the paleo Iberia–Africa boundary (PIAB, from Rovere et al. 

[2004]). Dashed black lines indicate location of the North and South SWIM Lineaments 

[Zitellini et al., 2009; Bartolome et al., 2012]. Inset: Global map including the major tectonic 

plates and boundaries. Abbreviations: AGFZ: Azores–Gibraltar Fault Zone; AP: Abyssal plain; 

AS: Ampere Seamount; CPR: Coral Patch Ridge; CPS: Coral Patch Seamount; GB: Gorringe 

Bank; GCIW: Gulf of Cadiz Imbricated Wedge; GF: Gloria Fault; GuB: Guadalquivir Bank; 

JS: Josephine Seamount; LN: Lineament North and LS: Lineament South [e.g. Zitellini et al., 

2009; Bartolome et al., 2012]; PB: Portimao Bank; SFZ: SWIM Fault Zone [Zitellini et al., 

2009]; SH: Seine Hills [Martínez-Loriente et al., 2013]. 

4.3.1. Description of the velocity model of the NW part of the profile P1 

 In this section we describe the velocity model of the 205 km-long NW part of the 

WAS profile P1 that includes recordings at 18 OBS (Figure 4.14). A total of 3892 picks, 

including first arrivals corresponding to phases refracted within the sediments (Ps) and 

basement (Pb) and sediment–basement reflections (PsP) were manually picked (Figure 

3.18). Out from the 18 OBS recordings, one shows a wide-angle, PmP-like reflection 

arrival (SE-side wing of OBS01 in Figure 3.18a). Given that no similar arrivals were 

identified in the rest of record sections, we believe that it corresponds to a local feature 

rather to a well-defined crust–mantle boundary. A possible interpretation is provided in 

the discussion section. 
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Figure 4.14. 2-D final velocity model obtained in the NW part of the profile P1 by joint 

refraction and reflection travel-time inversion of the whole data set, constituted by arrival times 

of Ps, PsP, Pb phases (see text for definitions). Thick solid black line displays the inverted 

sediment–basement boundary, whereas the white line corresponds to the horizon interpreted to 

be the base of the Mesozoic sediments along multichannel seismic profiles AR03-08 [Zitellini et 

al., 2009]. This horizon has been converted to depth using the WAS velocities. White circles 

indicate OBS locations. Velocity units are km/s. Abbreviations: LVZ: Low-velocity zone; LVB: 

Low-velocity body/olistostrome. 

 The velocity model (Figure 4.14) displays a sediment cover of variable thickness 

that includes the Mesozoic and Cenozoic sequences identified in MCS images [Sartori 

et al., 1994; Tortella et al., 1997; Martinez-Loriente et al., 2008]. The thickest sediment 

layer is found under the abyssal plains (3–4 km in the TAP and 4–5 km in the HAP), 

whereas the top of the GB is almost sediment-starved. Sediment-like velocities of <3.0 

km/s are also obtained in the shallower levels of the NW flank of the GB, where the 

coincident MCS profiles show a thin, disrupted sedimentary cover [Tortella et al., 1997; 

Zitellini et al., 2009] and there are numerous basement outcrops [Lagabrielle and 

Auzende, 1982; Girardeau et al., 1998]. In general, there is a good correspondence 

between the depth of the WAS-derived sediment–basement boundary, and the depth-

converted base of the Mesozoic sediments in the AR03-08 MCS profiles (Figure 4.14), 

although the fit is slightly better in the HAP than in the TAP. A large, relatively low-

velocity anomaly is also detected at the foot of the NW flank (Figure 4.14). The velocity 

of this body is 4–5 km/s, 20–30% slower than the velocity in the surrounding basement. 
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 The basement below the sedimentary units shows similar velocity structure in the 

TAP and the HAP: a strong vertical velocity gradient of ~2.5 s-1 in the upper ~3 km, 

where velocity ranges between 4.0–7.2 km/s, and a 5-fold gentler gradient to ~5 km 

below (Figures 4.14 and 5.4). The lack of PmP reflections in almost all the OBS records 

suggest the absence of a sharp and continuous crust–mantle boundary along the whole 

transect. Velocity is lower than ‘‘normal’’ mantle values (8.0–8.2 km/s) up to ~20 km 

beneath the GB. The velocity field is more heterogeneous beneath the GB, where 

average velocities and velocity gradients are systematically lower than in the TAP and 

HAP for the same depth range (Figures 4.14 and 5.4). The velocity field is highly 

asymmetric with a stronger velocity gradient in the SE flank than in the NW flank. The 

most prominent feature in the GB is the presence of a 1–2 km thick, SE-dipping low-

velocity anomaly, centered at 6–7 km below the seafloor. It is clearly observed between 

~80–120 km in Figure 4.14 and in the 1D velocity profile of Figure 5.4.  

 Velocity uncertainty is <0.1 km/s in the sediments, and it is ±0.15 km/s up to 10 

km below the top of the basement in the HAP, and up to ~20 km depth at the GB, 

including the shallowest levels of the NW flank as well as the elongated low-velocity 

anomaly described above (Figure 4.15b). This uncertainty corresponds to a decrease of 

the mean deviation between the initial and final models of 70–90%, indicating that the 

final solution depend only slightly on the initial model chosen so that velocity can be 

resolved to within the uncertainty bounds. The largest velocity uncertainty is found in 

the upper 3–4 km of the basement under the TAP, reaching up to ±0.35 km/s (mean 

deviation decrease of 30%). This higher uncertainty is probably a combination of two 

effects. On one hand, the TAP and NW flank of the GB are covered by only 6 OBS, 

whereas the SE flank and the HAP are covered by 13 OBS, so that the control of 

velocity and velocity gradient should be better in the SE half. On the other hand, the 

poorer WAS control of the depth and geometry of the rougher sediment– basement 

boundary in this area, as indicated by the comparison between the WAS-derived 

sediment–basement boundary and the depth-converted MCS one (Figure 4.14). 

However, it must be noted that, even in the worst resolved areas such as the top of the 

basement in the TAP, the control on velocity and on velocity gradients is good enough 

and do not affect the interpretation (Figure 5.4). 
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Figure 4.15 a) Derivative Weight Sum for the 2D velocity model shown in Figure 4.14; b) 

Velocity uncertainty for the 2D model shown in Figure 4.14. It corresponds to the mean 

deviation of the 250 solutions obtained in the stochastic Monte Carlo analysis (see text for 

details). Velocity units are km/s. White circles indicate OBS locations. GB: Gorringe Bank; 

HAP: Horseshoe Abyssal Plain; TAP: Tagus Abyssal Plain.  

4.3.2. Gravity modeling of the NW part of the profile P1 

 The model that fits the best the satellite-derived free-air gravity anomaly data 

[Sandwell and Smith, 2009] is that obtained with Carlson and Miller’s [2003] relation 

for serpentinized peridotite. The root mean square (rms) residual is 4.5 mGal (Figure 

4.16), whereas the uncertainty of the calculated gravity anomaly is 5–10 mGal. In the 

case of Carlson and Herrick’s (1990) conversion for oceanic crustal rocks, the fit is 
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slightly worse, showing an rms misfit of 10 mGal, whereas for the continental crust the 

fit is the worst, with an rms misfit of 22 mGal. In the latter case the fit is particularly 

poor around the top of the GB (Figure 4.16).  

Figure 4.16. a) Observed free-air gravity anomaly (dotted line) and calculated gravity anomaly 

for the velocity-derived density model using the serpentinized peridotite model displayed in 

panel b (blue line, rms=4.5 mGal), an oceanic crust model using Carlson and Herrick’s [1990] 

relationship (red line, rms=10 mGal) and a continental crust model using Christensen and 

Mooney’s [1995] relationship (green line, rms=22 mGal). Error bars indicate gravity anomaly 

uncertainty inferred from the Monte Carlo analysis (Figure 4.15); b) Velocity-derived density 

model along NW part of the P1 transforming the velocity model in Figure 4.14, to density (� 

using Hamilton, [1978]) relationship for shale in the sediments (�=0.917+0.747Vp–0.08Vp
2), 

and Carlson and Miller’s [2003] relationship for serpentinite (�=0.196 Vp+1.577) in the 

basement. Density units are g/cm3. White circles indicate OBS locations. GB: Gorringe Bank; 

HAP: Horseshoe Abyssal Plain; TAP: Tagus Abyssal Plain. 
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 The basement velocity was also transformed to serpentinization degree (�) using 

Carlson and Miller’s [2003] relationship (Figures 3.27, 4.17), in order to test the 

potential range of � variation. In the HAP and TAP, the obtained � value is about 30% 

at the top of the basement diminishing to 10% at ~3 km below. The � gradient is 

smoother below this point, with � values of ~5% at 4–5 km inside the basement. In the 

GB, the largest � values of 70–80% are obtained right beneath the sediments, with a 

serpentinization of � �10% up to 12–13 km deep, possibly associated to enhanced rock 

fracturing during Neogene deformation, which may have promoted deeper fluid 

percolation than under the abyssal plains. The serpentinization of the GB reflects the 

same features as the velocity model, with a highly heterogeneous and asymmetric field, 

showing higher values for the same depth in the NW flank than in the SE flank. The 

elongated low velocity anomaly located at 6–7 km below the seafloor is also reflected as 

a SE-dipping high serpentinization band (Figure 4.17). At deeper levels, there is 

evidence for residual serpentinization degree, up to at least 20–22 km below the GB. 

The velocity-derived uncertainty of � is <5% in most of the model excluding the upper 

3–4 km of the basement in the TAP and in the top of the GB, where it is up to ~10%. In 

the top of the GB the effects of fracturing and alteration are likely to be substantial, so 

that the maximum values of 70–80% must be carefully taken. 
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Figure 4.17. Serpentinization degree (�) along the NW half of the P1 profile. The model has 

been obtained taking the basement velocity from the model in Figure 4.14, and converting it to 

� using Carlson and Miller’s [2003] linear relationship (�= -29.8 Vp + 236.4) � is in %. White 

circles indicate OBS locations. Abbreviations: HSZ: High serpentinization zone. GB: Gorringe 

Bank; HAP: Horseshoe Abyssal Plain; TAP: Tagus Abyssal Plain. 

4.3.3. Description of the velocity model of the SE part of the profile P1 

 In this section we describe the velocity model of the 160 km-long SE part of the 

WAS profile P1 (from 180 km to 340 km) that includes recordings at 11 OBS (Figure 

4.14). A total of 16130 picks were manually picked including: sedimentary (Ps), intra-

crustal (Pg) and upper-mantle (Pn) refracted phases, and reflections at the sediment-

basement interface (PsP), at the crust-mantle (PmP) boundary in the SAP, and at a 

deeper structure located in the middle of the HAP (PtP) (Figure 3.18).  

 The thickness of the sedimentary cover obtained after the first inversion step using 

Ps and PsP phases differs considerably between the HAP and the SAP. In the HAP it 

reaches a maximum thickness of ~5 km, whereas in the CPR and SH areas varies 

between a minimum of 1 km in the top of a basement high and a maximum of 2.5 km in 

a local basin (Figure 4.18). In this region the sedimentary cover is known to be 

composed by Mesozoic and Cenozoic sediments [Hayes et al., 1972] and has been 

largely studied and characterized in detail using multi-channel seismic (MCS) data [e.g. 

Sartori et al., 1994; Tortella et al., 1997; Hayward et al., 1999; Zitellini et al., 2009; 

Martínez-Loriente et al., 2013]. There is a good correspondence between the WAS-

derived sediment-crust boundary and the base of the sediment cover in the MCS profiles 

SW12 and SW13 from Martínez-Loriente et al. [2013] that intersect the southern half of 

the profile P1. The sedimentary units show velocities ranging from ~1.8 km/s just below 

the seafloor to 4.0 km/s at the bottom of the layer, although they locally reach up to ~5.0 

km/s in the deeper part of the HAP, corresponding to the consolidated Mesozoic 

sediments (Figure 4.18). Below OBS 19 (~210 km along profile) the contours of the 

velocity field reflect a negative anomaly that seems continue below the sediment-

basement boundary.  
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 The crust underlying the sedimentary cover in the southeastern half of the profile 

appears to be unusually thin and laterally heterogeneous (Figure 4.18). From km 200 to 

280 the thickness ranges from 3.5 km to 5.5 km, while in the southernmost part it is 

slightly thicker reaching 5.5-6.0 km. Crustal velocities vary from 4.0-5.0 km/s at the top 

to 7.0-7.1 km/s at the crust-mantle boundary, with a vertical velocity gradient twice 

stronger in the uppermost crust than in the lower crust (Figure 4.18). The presumed 

Moho reflector is locally disrupted as can be observed between 270 km and 285 km in 

Figure 4.18 because PmP phases have not been identified in all the corresponding 

record sections, but only in 9 OBS. A striking characteristic of the velocity model is the 

highly heterogeneous in the SAP, showing low- and high-velocity anomalies that are 

especially marked between 230 km and 285 km. The irregular character of the velocity 

contours in the sedimentary layer above these anomalies and ~3 km down to the Moho 

indicate that these features are active and probably affect the whole crust. Between 285 

km and 340 km the velocity field is more uniform, except for a small NW-dipping high-

velocity anomaly centered at 315-320 km that affects the lower part of the crust.  

 In the center of the HAP (190-200 km) there is an abrupt lateral change in the 

basement velocity field. In this place the velocity just below the sediment-basement 

boundary abruptly changes from “normal” upper crustal velocities ~5 km/s to the south 

to velocities as high as ~7.0 km/s to the north, which corresponds to the part of the 

profile presented by Sallarès et al. [2013]. The upper mantle is sampled by Pn phases up 

to � 12 km below the Moho between 200-280 km, diminishing to the SE end of the 

profile. The mantle velocity reaches values as low as �7.5 km/s in the shallowest upper 

mantle, quite low as compared with normal upper mantle velocities of 8.0-8.2 km/s.  
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 Uncertainty in the SE part of the profile within the sedimentary layer is low 

(�0.1 km/s), increasing to ~0.15 km/s near the top of the basement between 180 and 200 

km, where a sharp velocity contrast between the sediments and the basement occurs. 

Velocity uncertainty within the oceanic crust is also low (�0.1 km/s), including the 

region where the low- and high- velocity-anomalies have been identified (from 230 km 

to 285 km). Velocity uncertainty in the uppermost mantle is also �0.1 km/s, except in 

the southernmost part of the profile where it increases to ~0.2 km/s due to the poor ray 

coverage at the end of the profile. The generally low velocity uncertainty confirms that 

the velocity field obtained is remarkably well constrained by the data. The sediment-

basement boundary in this part of the profile has an average uncertainty of ±0.3 km that 

increases to ±0.8 km from ~280 km. The interpreted Moho has an average uncertainty 

of ±0.5 km, while the average uncertainty of the HAT geometry is ±0.7 km (Figure 

4.19). 

4.3.4. Gravity modeling of the SE part of the profile P1 

 The comparison between the satellite-derived free-air gravity anomaly [Sandwell 

and Smith, 2009] and the calculated gravity anomaly for each of the density models 

generated using the velocity-density relationships for the different lithologies, allows 

discerning between the different hypotheses (Figure 4.20). We have integrated both the 

northeastern and southeastern parts of the profile to construct a single model of the 

whole transect. In the northwestern half we have inserted Sallarès et al.'s [2013] model 

(Figure 4.17), which was built using Hamilton’s [1978] law for sediments, and Carson 

and Miller’s [2003] relation for low-T serpentinized peridotite for the basement. In the 

southeastern part we tested three different relationships based on the three possible 

interpretations for the nature of the basement according to the regional geology and 

previous work (i.e. continental crust, exhumed serpentinized peridotite or oceanic crust). 

In the upper mantle we have used Carlson and Miller’s [2003] relation serpentinite in all 

three cases. 
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Figure 4.20. a) Observed free-air gravity anomaly (dotted line) and calculated gravity 

anomalies for the velocity-derived density model using different empirical relationships for the 

layer beneath the sedimentary cover in the SE half of profile P1: the oceanic crust model 

displayed in panel b (blue line, rms=5.1 mGal) using Carlson and Herrick’s [1990] 

relationship; the Carlson and Miller’s [2003] relationship for serpentinized peridotite (purple 

line, rms=7.2 mGal); and the Christensen and Mooney’s [1995] relationship for continental 

crust model (brown line, rms=15.6 mGal). b) Velocity-derived density model along P1 

transforming the velocity model in Figure 4.19, to density (�) using Hamilton’s [1978] law for 

shale in the sediments (� =0.917+0.747Vp–0.08Vp
2), Carlson and Miller’s [2003] relationship 

for serpentinite (� =1.577+0.196Vp) in the basement between 0-190 km, and beneath the crust 

layer between 190-340 km, and Carlson and Herrick’s [1990] relationship for oceanic crust (� 

=3.81-6.0/Vp) in the basement between 190-340 km. Density units are g/cm3. White circles 

indicate OBS locations. GB: Gorringe Bank; CPR: Coral Patch Ridge; HAP: Horseshoe 

Abyssal Plain; SH: Seine Hills; TAP: Tagus Abyssal Plain. 

 Figure 4.20 shows the comparison between the calculated gravity anomaly for the 

three resulting density models together with and the observed gravity anomaly. The 

model obtained using Carlson and Herrick’s [1990] conversion for oceanic crust 

provides the best fit with the observed anomaly, with a root mean square (rms) misfit of 

5.1 mGal. In the case of the Carlson and Miller’s [2003] relation for low-T 

serpentinized peridotite, the fit obtained is reasonably good with an rms slightly higher 

than in the previous case (7.2 mGal). The gravity response of the density model 

obtained using Christensen and Mooney’s [1995] relation for continental crust shows 

the poorest match with the observed anomaly, giving an rms of 15.6 mGal. 
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CHAPTER 5. Discussion 

 The discussion of this PhD Thesis is structured in four parts. In the first, we 

propose the tectono-sedimentary evolution of the CPR area of the external part of the 

Gulf of Cadiz and a map synthesizing the new active faults identified in this work using 

the SWIM 2006 dataset. Then, we evaluate the seismic potential of the largest studied 

structures, analyzing the implications for the seismic and tsunami assessment models. In 

the second part, we interpret the basement affinity of the external part of the Gulf of 

Cadiz based on the velocity and density models along the NEAREST profile P1. In the 

third part, we combine our modeling results with previous models of the region 

including a re-interpretation of the NEAREST profile P2 [Sallarès et al., 2011], to 

propose a possible distribution of basement domains in the SW Iberian margin and 

discuss their most probable origin. Finally, in the fourth part, we discuss a plausible 

scenario for the geodynamic evolution of the SW Iberian margin that integrates all the 

observations. 

5.1. Tectono-sedimentary evolution and active deformation in the 

external part of the Gulf of Cadiz 

5.1.1. Tectono-sedimentary evolution of the Coral Patch Ridge region 

 The Gulf of Cadiz has undergone successive deformation phases corresponding to 

the evolution of the African, Iberian, and Eurasian Plate boundaries since the initial 

rifting of the Central and North Atlantic [e.g Schettino and Turco, 2009]. In this section 

we relate our results to the main kinematic phases and propose a geodynamic evolution 

of the CPR region. To illustrate the tectono-sedimentary evolution of the area, we 

produced a basement and isochore (i.e. equal vertical thickness) time maps (in seconds 

TWTT) of the seismostratigraphic units associated with the three main deformation 

phases (Figure 5.1). In addition, we present a regional cross-section from the Horseshoe 

to the Seine abyssal plains synthesizing the relationship between the seismostatigraphic 

units and main tectonic structures (Figure 5.2). 
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Figure 5.1. a) Map of the topography of the Unit VI (basement) in seconds (TWTT). b), c) and 

d) Isochore maps in seconds (TWTT) of Unit V (Upper Jurassic), Units IV-II (Cretaceous to 

Lower Eocene), and Unit I (Upper Oligocene to Quaternary), respectively. The Horseshoe 

Abyssal Plain (HAP), the Coral Patch Ridge (CPR), and the Seine Abyssal Plain (SAP) domains 

are identified. The SWIM 2006 profiles are depicted as thin black lines. GB: Gorringe Bank; g: 

graben; h: horst; LS: Lineament South; p.r.: peridotite ridge. 
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 According to regional geodynamic reconstructions [Schettino and Turco, 2009], 

the oceanic crust conforming the basement of the CPR and the SAP areas was probably 

generated during the early stages of seafloor spreading of the northeastern segment of 

the Central Atlantic (i.e. Jurassic), [e.g. Contrucci et al., 2004; Rovere et al., 2004; 

Martínez-Loriente et al., 2011]. The rifting process resulted in tilted, extensional blocks 

following a horst and graben architecture, as observed in the MCS profiles (Figures 

4.11, 4.12, and 5.2). On the basement map of this area, we identify a topographically 

elevated area in the CPR and a succession of ~E-W-aligned elongated highs and lows, 

likely related to the original host-and-graben structure (Figure 5.1). The exhumed 

mantle rocks, inferred to underlie the sedimentary pile of most of the HAP, appear to 

have been exhumed in the early opening of the North Atlantic during the Lower 

Cretaceous [Schettino and Turco, 2009; Sallarès et al., 2013] (Figures 4.10 and 5.2). 

The basement map of the HAP domain reflects a very irregular surface, with a large 

topographic low and locally elongated highs interpreted as peridotite ridges. Towards 

the NW, a high bounded by steep slope corresponds to the base of the GB (Figures 

4.10a and 5.1). 

 Units V to II were deposited as the Atlantic rift-drift transition continued during 

the Upper Jurassic to the Lower Eocene [Schettino and Turco, 2009]. Their terrigenous 

composition suggests deposition in an abyssal plain environment [Hayes et al., 1972]. 

Unit V, present at the CPR, SAP, and locally at the southernmost HAP, infills 

depressions between tilted basement blocks with growth-strata configuration, 

suggesting that sedimentation took place synchronously with the extension of the NE 

segment of the Central Atlantic (Figures 4.11, 4.12, and 5.2). In the isochore map of 

Unit V, the minimum thickness areas (also ~E-W aligned) coincide with the location of 

the horsts, whereas the thicker areas are found within the grabens (Figures 5.1a and 

5.1b). We refer to Unit V as the syn-extensional sedimentary sequence in the CPR and 

SAP areas. Above this unit and following a concordant configuration, the isochore map 

of Units IV-II shows fairly constant low thickness (0.2-0.4 s TWTT or 200-350 m thick) 

in agreement with a period of tectonic quiescence in the region (Figures 4.11, 4.12, 

5.1c, and 5.2). We refer to the Units IV-II as the post-extensional sedimentary sequence

in the CPR and SAP domains. In contrast, in the HAP Units IV-II are thicker (< 2 s 

TWTT) than in the southern area and show significant lateral variations in thickness 

(Figure 5.1c). These observations may indicate the generation of space to accommodate 
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sediments due to tectonic activity (i.e. the early opening of the North Atlantic). In this 

domain we refer to this succession as the syn-extensional sedimentary sequence. 

 After the Lower Oligocene plate reorganization (i.e. chron C13n), convergent 

motion between Africa and Eurasia was accommodated along the southern margin of 

Iberia. Since then, Iberia has remained fixed relative to Eurasia and the current plate 

boundary between North Africa and Iberia was established [Schettino and Turco, 2009]. 

During this phase took place the sedimentation of Unit I (Upper Oligocene to present-

day), which consists mainly of pelagic sediments. The change from terrigenous to 

pelagic sedimentation took place following a post-Early Eocene to pre-Late Oligocene 

uplift and faulting period during which the topographic hills were uplifted [Hayes et al., 

1972]. The isochore map of Unit I shows a minimum thickness in the uplifted structural 

highs of the CPR and Seine Hills, whereas the depocenters are northwest from it (Figure 

5.1d). In the SAP, growth-strata configuration of the subunits is identified (Figures 4.9, 

4.11, 4.12, and 5.2) suggesting that sedimentation of Unit I has been synchronous to the 

activity of the uplifting structures (NCP, SCP and SH). Thus, we refer to Unit I as the 

syn-compressional sedimentary sequence. 

 Between the predominantly terrigenous sedimentation of Unit II (Lower Eocene) 

and subunit Id (Upper Oligocene) dominated by pelagic sediments, there is a significant 

unconformity corresponding to a regional sedimentary hiatus (Figures 4.8, 4.9, 4.11, 

4.12, and 5.2). Subunit Id is not identified in the HAP probably because of erosion 

during the emplacement of subunit Ic (HGU) in the Upper Miocene (Tortonian) [e.g. 

Torelli et al., 1997] (Figures 4.10, 4.11, and 5.2). Within the HGU, we identified few 

sub-horizontal reflectors, suggesting mass transport deposition during several episodes 

(Figure 4.10). The lack of inter-digitations between the edges of this subunit and 

surrounding sediments could be explained either by sedimentation in a very short period 

of time or by a successive deposition in increasingly smaller areas within the HGU 

[Iribarren et al., 2007] (Figures 4.10 and 5.2). 
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 All the subunits of Unit I vary considerably in thickness, attaining maximum 

thickness in the abyssal plains and pinching out into a wedge towards the top of the 

CPR. In the isochore map of Unit I is observed that the LS separates two depocenters, 

suggesting that the activity of this fault may have influenced the sediment distribution 

of this unit. 

 As for the structural pattern of the region, flat-ramp-flat geometries of large 

thrusts dominate in the CPR and SAP areas (Figures 4.11, 4.12, and 5.2). In the shallow 

part of the Seine Hills, structural wedges developed at the tips of the upper flats with 

associated back-thrusts. In the MCS profiles, these structures appear to cut and displace 

the syn-extensional and post-extensional sedimentary sequences, and in some cases, the 

syn-compressional unit (Figure 5.2). In the CPR domain, the shallow part of the SCP 

fault is imaged displacing both sedimentary sequences up to the seafloor, whereas the 

NCP fault corresponds to a blind-thrust. The main thrusts (NCP, SCP, SH2, SH3, SH4, 

and SH6) probably root in lower flats that are outside the MCS acquisition window. 

According to the accepted fault-related folding theory [e.g. Shaw et al., 2005], these 

thrusts are interpreted as propagating from a common deep detachment layer, which 

could be located either at the base of the crust (Moho discontinuity) in agreement with 

Sartori et al. [1994] and Zitellini et al. [2009] or at the base of the serpentinized area in 

the uppermost mantle [Martínez-Loriente et al., 2011]. On the basis of the wide-angle 

seismic profile P1 crossing this region, the depth of the Moho is about 7-8 km depth 

below the seafloor and the maximum depth of the serpentinized area in the upper mantle 

is between 12-13 km depth below the seafloor [Martínez-Loriente et al., 2011] (Figure 

5.2). In the CPR and SAP domains, secondary thrusts and transpressive strike-slip faults 

cut and offset the basement, the syn-extensional and post-extensional sequences and 

fold the syn-compressional units. These structures are interpreted as rooting in a 

common shallow level located at the uppermost oceanic crust (~ 2.5-4.5 km depth 

below the seafloor). In the eastern part of the HAP, large strike-slips faults such as LS 

displace the basement and all the sedimentary sequences above. In plain view, they 

result in the elongated highs deforming the seabed of the HAP (Figure 5.2). 
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5.1.2. Synthesis of active faults in the Coral Patch Ridge area 

 The joint interpretation of the multi-scale seismic profiles and acoustic data is 

summarized on a structural map of the external part of the Gulf of Cadiz, focusing on 

the active faults (Figure 5.3). According to the regional strain ellipse, with a direction of 

maximum principal stress (�1) that follows the NW-SE trending Eurasia-Africa plate 

convergence, compressive structures trend NE–SW and right-lateral and left-lateral 

strike-slip faults trend WNW-ESE and NNE–SSW, respectively (Figure 5.3). 
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Figure 5.3. Map of the active faults identified in the study area. Focal mechanisms of recent 

earthquakes of magnitude 3.0< Mw >6.0 are also included [Stich et al., 2005, 2010; Geissler et 

al., 2010]. The SWIM Fault Zone (SFZ) [Zitellini et al., 2009] is depicted as a transparent gray 

band. The Lineament North (LN) and Lineament South (LS) are in agreement with Bartolome et 

al. [2012]. GCIW: Gulf of Cadiz Imbricated Wedge; HGU: Horseshoe Gravitational Unit; 

MTD: Mass Transport Deposit; HF: Horseshoe Fault; NCP: North Coral Patch Ridge Fault; 

SCP: South Coral Patch Ridge Fault; SH: Seine Hills faults; SS1: Strike-slip Fault 1. Inset: 

Strain ellipse with a NW-SE direction of maximum principal stress (�1) parallel to the vector of 

the Eurasia-Africa plate convergence in SW Iberia, explaining the occurrence and trend of the 

different tectonic structures recognized in the area. 

  The largest NE-SW trending compressive structures correspond to the CPR and 

Seine Hills (Figures 5.2 and 5.3). In the CPR, both active thrusts (NCP and SCP) show 

segmented fault traces and are offset by WNW-ESE trending dextral faults (Figures 

4.11 and 5.3), indicating that the activity of these structures started later than in the 

reverse faults. This is in agreement with the strain patterns and timing of deformation 

obtained from analogue modeling of fault systems from the external part of the Gulf of 

Cadiz [e.g. Rosas et al., 2009, 2012]. In the NCP fault, the vertical offset decreases 

towards the surface, whereas in the SCP fault it remains constant, suggesting that it 

corresponds to a very recent structure. In the SAP, we highlight the presence of the 

Seine Hills, a series of NE-SW trending active-blind thrusts. When the strike of these 

faults changes to ~ E-W, such as in the SH1, our data reveal transpressive behavior 

(Figure 5.3). The vertical offset in the Seine Hills faults is fairly constant over time, as 

in the SCP fault. This, together with the fact that the main activity of the Gorringe Bank 

thrust concentrated between the Late Oligocene and Middle Miocene [e.g. Jimenez-

Munt et al., 2010] suggests a possible southward migration of deformation. 

 The WNW-ESE dextral strike-slip faults are mainly concentrated in the HAP 

although a large number of them were mapped across the CPR and the northern part of 

the SAP (Figure 5.3). These newly mapped strike-slip faults have the same orientation, 

behavior and timing of deformation as the SFZ defined by Zitellini et al. [2009]. The 

strike-slip faults are concentrated in a WNW-ESE trending band that runs from the 

Gorringe Bank to the Moroccan slope. Their orientation, behavior and location suggest 

that they probably correspond to a reactivation of inherited structures from a Jurassic 
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transfer zone, a plate boundary located between Iberia and Morocco referred as the 

Gibraltar Fault [e.g. Schettino and Turco, 2009]. In contrast to what has been previously 

proposed [e.g. Sartori et al., 1994; Zitellini et al., 2009], the NE-SW trending thrusts 

located south of the SFZ are active (Figures 5.2 and 5.3). Their orientation and location 

suggest that these structures probably grew through weakened zones by fracturing due 

to the opening of the north-east segment of the Jurassic Central Atlantic rifting [e.g. 

Schettino and Turco, 2009].  

 There are few cases in the world where processes of active deformation under 

compressional stresses affect old oceanic lithosphere, as in the external Gulf of Cadiz. 

One of the best-documented examples is in the Central Indian Ocean Basin, where 

active WSW-ENE reverse faults and N-S fracture zones involving Mesozoic oceanic 

crust have been recognized [e.g. Weissel et al., 1980; Bull and Scrutton, 1990, 1992; 

Gordon et al., 1990]. These structures are interpreted as reactivated normal faults and 

fracture zones generated at a spreading centre [e.g. Bull and Scrutton, 1990, 1992], and 

are seismically active [e.g. Bergman and Solomon, 1985]. 

 The seismicity recorded in the study area is mainly concentrated along the strike-

slip faults of the HAP (Figures 4.5 and 5.3). Moment tensor inversions of these 

earthquakes, which nucleated between 45 and 55 km deep, reveal WNW-ESE trending 

nodal planes with a reverse and right-lateral slip at shallow to intermediate depths (8-55 

km) [Geissler et al., 2010]. The nucleation of earthquakes at these depths suggests that 

they occur within the upper mantle [Stich et al., 2010; Bartolome et al., 2012]. 

5.1.3. Seismic potential of the largest faults analyzed: Implications for earthquake 

and tsunami hazard assessment models 

 To evaluate the seismic potential of the largest strike-slip and thrust faults, we 

measured the segment length, dip and rake, and we estimated minimum and maximum 

potential seismogenic depths, obtaining the correspondent maximum surface ruptures 

(Table 5.1). As global-scale empirical magnitude-area and magnitude-length 

relationships, such as those proposed by Well and Coppersmith [1994], exclude 

earthquakes occurring within oceanic lithosphere, we estimated the maximum 

earthquake magnitudes (Mw) using the seismic moment (M0), where M0=�•S•D; � is the 
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shear modulus (rigidity) of faulted rocks; S is the fault surface rupture; and D is the 

average displacement along the fault. We considered an average rigidity of � � 60 GPa 

for the upper mantle and of � � 40 GPa for the oceanic crust [Stich et al., 2007]. 

Regarding the slip-to-length ratio, due to the lack of seismic information in the area of 

this study, we considered the value of 3.5 •10-5 proposed for the Gulf of Cadiz region 

[e.g. Stich et al., 2007]. The moment magnitudes (Mw) were calculated following the 

relationship between the seismic moment and the moment magnitude as Mw = 2/3 • 

log10(M0) – 6.0 [Kanamori, 1977]. 

 To calculate the Mw values for both families of faults we consider two different 

scenarios depending on the seismogenic depths assumed (Table 5.1). In the case of the 

strike-slip faults we know that nucleation of earthquakes occurred between 45 and 55 

km depth [Stich et al., 2005, 2010; Geissler et al., 2010]. Thus, assuming an average dip 

of 85º ± 5º and the measured length of each fault with an error of ± 5 km due to the 

bathymetric resolution, the Mw values obtained for the LS vary between 8.3 ± 0.1 and 

8.4 ± 0.1, for the LN range between 8.1 ± 0.1 and 8.2 ± 0.1, whereas for the SS1 is 7.8 ± 

0.1 in both scenarios (Figure 5.4a, Table 5.1). In the case of thrust faults, it is not 

possible to estimate their maximum seismogenic depths. On the basis of our structural 

interpretation, we also assume two possible scenarios: either the thrusts are rooted in the 

Moho, at about 8 km, or they root below the serpentinized area in the uppermost mantle, 

at 13 km below the seafloor (Figure 5.2). Thus, considering an average dip of 30º ± 5º 

and the length of each fault with a measurement error of ± 5 km, the estimated Mw

values calculated for the NCP vary between 7.2 ± 0.1 and 7.4 ± 0.1, for the SCP range 

between 7.4 ± 0.1 and 7.6 ± 0.1, and for the SH3 vary between 7.1 ± 0.1 and 7.2 ± 0.1 

(Figure 5.4b, Table 5.1). 
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 The relatively short period of instrumental and historical earthquake catalogues on 

which seismic hazard assessment in the Iberian Peninsula is largely based, may not be 

sufficient when considering high magnitude earthquakes with long recurrence intervals. 

For instance, on the basis of seismically triggered turbidites found in the deep basins, 

the regional recurrence interval of Great earthquakes (Mw � 8.0) in the SW Iberian 

Margin during the Holocene is approximately 1800 years [Gràcia et al., 2010]. If we 

consider the maximum earthquake magnitude obtained for the largest faults in the study 

area (Mw 7.2 to 8.4), the evaluated structures might be capable of generating large 

earthquakes, and given their oceanic location (150 km offshore Portugal), they may 

represent a geohazard for the surrounding coastal areas. The strike-slip faults probably 

cannot generate devastating tsunamis by themselves despite the possibility of a vertical 

slip component and a related seafloor displacement along the LS, LN and SS1. 

However, large magnitude earthquakes may trigger associated slope failures, such as the 

North Gorringe Avalanche [Lo Iacono et al., 2012], increasing the overall tsunami risk. 

All the structures studied in the present work should therefore be considered in future 

seismic and tsunami hazard assessment models for the southwest Iberia and north 

Africa. 
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Figure 5.4. Calculated potential earthquake magnitude (Mw) for the largest structures 

recognized in the area: a) strike-slip faults (LN, LS and SS1) and b) thrust faults (NCP, SCP 

and SH3), as a function of fault length and seismogenic depth. Rigidity (�), slip-to-length ratio 

and depth (D) were assumed as constant. The values used for strike-slip faults are � � 60 GPa, 

slip-to-length ratio of 3.5 •10-5 and a fault dip of 85º; and for thrust faults are � � 40 GPa, slip-

to-length ratio of 3.5 •10-5 and a fault dip of 30º. Bars correspond to the bounds of the Mw 

values obtained for the two scenarios and are presented for each of the structures. Stars locate 

the maximum Mw values. LN: Lineation North; LS: Lineament South; NCP: North Coral Patch 

Ridge Fault; SCP: South Coral Patch Ridge Fault; SH3: Seine Hill 3 Fault; SS1: Strike-slip 

Fault 1. See text for further explanations. 

5.2. Basement affinity of the external part of the Gulf of Cadiz 

5.2.1. Nature of the basement in the Gorringe Bank and adjacent Horseshoe and 

Tagus abyssal plains 

 The velocity structure of the HAP and TAP segments covered by our data, 

showing a strong velocity gradient in the topmost 3–4 km of the basement, a 5-fold 

smoother gradient below and with no, or at least no clear crust–mantle boundary, is 

analogous to that described in the Zone of Exhumed Continental Mantle (ZECM) off 

Western Iberia [Pinheiro et al., 1992; Dean et al., 2000]. It is also similar to that 

described on its conjugate Newfoundland margin [Van Avendonk et al., 2006] (Figure 

5.5a), whereas it clearly differs from that of ‘‘normal’’ Atlantic oceanic crust older than 

140 Myr [White et al., 1992]. Thereby, the velocity gradient of the topmost 3–4 km is 

twice stronger than that commonly found in oceanic Layer 2 (L2), whereas the velocity 

below this depth level (7.3–7.8 km/s) is higher than typical oceanic Layer 3 (L3) 

velocity or magmatically intruded continental crust (Figure 5.5b). These observations, 

combined with the excellent fit of the gravity anomaly using a density model derived 

from WAS velocities and a conversion law specific for serpentinized peridotite, 

suggests that the sectors of the HAP and TAP adjacent to the GB could well have 

basement constituted by exhumed mantle rocks similar to those described in the ZECM 

of the IAP. In this case, the strong vertical velocity gradient in the topmost TAP and 

HAP basement would represent a progressive decrease in peridotite serpentinization 

degree with depth due to a rapid reduction of rock fracturing, alteration and 
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hydrothermal circulation [Louden and Chian, 1999; Chian et al., 1999; Dean et al., 

2000]. The gentle underlying velocity gradient would reflect a less intense, more 

homogeneous serpentinization. In the two basins, velocities are lower than normal 

mantle velocity (i.e., �8.2 km/s) up to ~12 km deep (Figure 4.14), indicating that there 

is residual serpentinization. 

Figure 5.5. 1-D P-wave velocity/depth profiles representative of the three morpho-tectonic 

domains along the NW part of the P1: Tagus Abyssal Plain (TAP; 35–45 km; orange band); 

Gorringe Bank (GB; 95–105 km; yellow band) and Horseshoe Abyssal Plain (HAP; 170–180 

km; red band), compared with previous results for: a) >140 Ma Atlantic oceanic crust [White et 

al,.1992] (dark gray area), normal oceanic crust at the Seine Abyssal Plain [Contrucci et al., 

2004] (brown line), thin oceanic generated at the ultra-slow SWIR ridge axis [Muller et al., 

2000; Minshull et al., 2006] (dotted and solid black lines), over-thickened oceanic crust at the 

Josephine Seamount [Peirce and Barton, 1991] (blue line); and b) exhumed mantle at the IAP 

[Dean et al., 2000] (gray area), TAP [Pinheiro et al., 1992] (solid line), and Newfoundland 

margin [Van Avendonk et al., 2006] (dashed lines). The width of the band in the velocity 

profiles correspond to the uncertainty bounds. 
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 An alternative explanation to account for the velocity model of these TAP and 

HAP segments could be that there is a thin oceanic crust generated by ultra-slow 

oceanic spreading. This model was first proposed by Srivastava et al. [2000] for the 

West Iberia COT based on the analysis of low-amplitude, disrupted magnetic anomalies 

interpreted as part of the M-sequence in the Iberia Abyssal Plain (IAP) and 

Newfoundland conjugate COT. To test this hypothesis we have compared our results 

with those of six WAS lines acquired in the ultra-slow South-West Indian Ridge 

(SWIR): three at 57º E and three at 66º E [Muller et al., 2000; Minshull et al., 2006]. In 

these segments of the SWIR the half-spreading rate is 5–10 mm/yr, similar to that 

inferred for the early opening of the SW Iberian margin. In the different SWIR lines the 

crustal thickness varies between 3.5 km and 4.2 km. All of them show remarkably 

similar seismic structure, with a 2–3 km-thick upper layer with velocity of 4.0–6.5 km/s 

(L1 + L2) and a variable thickness lower layer (0.5–3.0 km) with velocity of 6.5–7.0 

km/s (L3). The velocity gradient in both layers is similar to that of normal oceanic crust 

[White et al., 1992; Contrucci et al., 2004], so weaker than that observed in the TAP and 

HAP. The main difference between these oceanic crustal models is the Layer 3 

thickness. The crust–mantle boundary is marked by PmP reflections in most oceanic 

crust OBS records. In our recordings, only OBS01 show a wide-angle reflection that 

could be a PmP arrival (Figure 318a). In the velocity model of Figure 4.14, this phase 

would correspond to a reflector at a depth of ~3 km below the sediment–basement 

boundary. However, the presence of a single, isolated wide-angle reflection does not 

readily mean that it should correspond to a reflection in a presumed ‘‘magmatic crust’’–

mantle boundary. We rather suggest that it corresponds to a local, sharp variation in the 

serpentinization degree in the base of the 3 km-thick, highly serpentinized layer (Figure 

4.14). 

 In the case of the GB, the absolute velocity/density and vertical velocity gradient 

is considerably lower than in the TAP and HAP, and also lower than normal oceanic 

crust and over-thickened oceanic crust in other seafloor highs near the study area, such 

as the Josephine Seamount [Peirce and Barton, 1991] (Figures 4.13 and 5.5). In this 

case, one option to be considered is a possible continental crust affinity, but the analysis 

made indicates that the velocity-derived density model is not compatible with the 

observed gravity anomaly (Figure 4.16). In the case of the GB, there is additional data 

and observations that point in the same direction: dredging campaigns have revealed 
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that the basement of the GB is composed mainly of peridotites, gabbros, and less 

abundant extrusive rocks [Auzende et al., 1984; Girardeau et al., 1998]. The 

surrounding seismic stratigraphy and shallow structure are established from several 

seismic surveys in the region in combination with in situ submersible dive observations 

and ODP Leg 120 sample analysis [Ryan et al., 1973]. The common interpretation is 

that the GB is composed of highly serpentinized peridotite enclosing a ~500 m thick 

gabbro layer, locally cut and partly covered by tholeiitic rocks [e.g. Girardeau et al., 

1998]. In summary, there is no a single geological or geophysical evidence for the 

presence of continental rocks in the GB. 

 Either of the other two options (oceanic crust or exhumed mantle rocks) can 

explain the gravity anomaly of the GB within uncertainty bounds, although in the latter 

case the fit is better. Both options have been previously proposed to explain the nature 

of the GB [e.g. Sartori et al., 1994; Girardeau et al., 1998; Galindo- Zaldívar et al., 

2003; Jiménez-Munt et al., 2010]. Although gabbro samples obtained at several sites of 

ODP Leg 173 [Whitmarsh et al., 1998] in the Southern IAP and DSDP Leg 120 in the 

GB [Ryan et al., 1973] (Figure 4.13) evidence that some melting occurred during the 

continental extension, it should be noted that only few basalts appear to be present in 

the GB [e.g. Cornen et al., 1999], whereas there are many serpentinite samples [e.g. 

Ryan et al., 1973; Lagabrielle and Auzende, 1982; Auzende et al., 1984; Girardeau et 

al., 1998]. 

 Depending on whether mantle exhumation occurs prior to or after the onset of 

melting during lithospheric extension, the melts can be either extruded at the surface 

forming a basaltic crust or trapped within the mantle in the form of isolated intrusions. 

For the West Iberian margin, dynamic melting models show that the combination of low 

spreading rates (~10 mm/yr) with a relatively cold mantle would produce limited 

amounts of melt after the exhumation of mantle peridotites [Pérez-Gussinyé et al., 

2006]. The hypothesis of a basement made of serpentinized peridotite with local 

magmatic intrusions, which was exhumed from the mantle by tectonic denudation, is 

the one that best agrees with our results and with the geological observations. In this 

case the lower velocities of the GB as compared with those of the HAP and TAP would 

reflect a higher degree of fracturing and/ or serpentinization of originally akin basement 

rocks. 
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5.2.2. Nature of the basement in the Coral Patch Ridge and Seine Abyssal Plain  

 The final velocity model (Figure 4.18) displays a 1.0-2.5 km-thick sedimentary 

layer in the CPR and SAP areas that overlays the basement. Concerning the nature of 

the basement there are three possible interpretations: continental crust, exhumed mantle 

or oceanic crust. The DSDP Site 135 located on top of the CPR (~260 km along profile) 

did not reach the basement [Hayes et al., 1972]. In the absence of direct basement 

samples or well-defined magnetic anomalies, the best available indicator of the nature 

of the crust is the velocity structure and crustal thickness obtained from combined WAS 

and gravity data modeling. 

 The differences between the velocity structure of the SAP with that corresponding 

to continental crust [Christensen and Mooney, 1995] (Figure 5.6), are clear concerning 

both absolute velocity and vertical velocity gradients. Furthermore, as indicated in the 

previous section, the velocity-derived density model obtained using a continental crust 

relationship [Christensen and Mooney, 1995] does not fit well with the observed gravity 

anomaly along the whole southeastern part of the profile (Figure 4.20). The velocity 

model fits significantly better with a reference for the exhumed mantle rock basement 

described in HAP and TAP [Sallarès et al., 2013] (Figure 5.6). However, the basement 

velocities of our model are generally slower, and the velocity gradients are slightly 

lower in comparison with these reference models (Figure 5.6). The velocity-derived 

density model obtained using the Carlson and Miller’s [2003] relation for serpentinized 

peridotite, explains reasonably well the observed gravity anomaly (Figure 4.20). 

Therefore, the combined WAS and gravity modeling do not allow to rule out the 

hypothesis of an exhumed mantle rock affinity for the basement in the CPR and SAP 

areas, as it has been previously proposed for the HAP and the TAP. However, an 

observation that is difficult to reconcile with this hypothesis is the identification of 

wide-angle reflections consistent with the presence of a well-developed crust-mantle 

boundary (PmP) in a number of OBS deployed in the CPR and SAP (Figure 3.18), 

which is not the case for the OBS deployed in the HAP, TAP and Gorringe Bank. 
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 The last option that has been analyzed is the oceanic crust hypothesis. The 

thickness of the crust identified in the CPR and the SAP areas (3.5-6.0 km-thick) is in 

good agreement with the thin oceanic crust imaged in the SISMAR WAS profile SIS-P5 

(4-6 km-thick), which was acquired just south of the SH [Jaffal et al., 2009] (Figure 

4.13). The crust identified in our model displays a 2-3 km-thick upper layer with a 

velocity of 4.0-6.5 km/s that according to its velocity and velocity gradient could well 

correspond to oceanic layers L1+L2, and a 0.5-3 km-thick lower layer with velocity of 

6.5-7.0 km/s, which could represent oceanic L3. In fact, the velocity and velocity 

gradient of these two layers are within the range of velocity corresponding to a 

“normal”, Atlantic-type, >140 Ma old oceanic crust [White et al., 1992]. The main 

difference between our model and a “normal” oceanic crust is the thickness of layer L3, 

which is substantially thinner than the 4-5 km that is commonly observed [e.g. White et 

al., 1992] (Figure 5.6). This velocity structure with a normal thickness L1+L2 but a 

thinner-than-normal oceanic L3 is comparable to that described in oceanic crust 

Figure 5.6. 1-D P-wave velocity/depth profiles 

representative of the various segments along the 

thin crust of profile P1: thin oceanic crust (240 

km and 290 km, green lines), across high-

velocity anomalies (280 km and 317km, red 

lines), across low-velocity anomaly (258 km, 

blue line), compared with previous results for: 

>140 Ma Atlantic oceanic crust [White et al., 

1992] (blue area); thin oceanic generated at the 

ridge axis of the ultra-slow SWIR [Muller et al., 

2000; and Minshull et al., 2006] (black lines); 

exhumed mantle at the HAP (170-180 km along 

profile P1; red band) and at the TAP (35-45 km 

along profile P1; orange band) [Sallarès et al., 

2013]; and non-extended continental crust 

[Christensen and Mooney, 1995] (brown area).

The width of the band in the velocity profiles 

correspond to the uncertainty bounds. HVZ: 

high-velocity zone; LVZ: Low-velocity zone. 
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generated at slow- and/or ultra-slow-spreading centers. Well-known examples are the 

WAS profiles acquired in the ultra-slow South-West Indian Ridge (SWIR) [Muller et 

al., 2000; Minshull et al., 2006] (Figure 5.6) and at the ultra-slow Arctic mid-ocean 

ridges [Dick et al., 2003]. In the studied segment of the SWIR, the half-spreading rate is 

6-12 mm/yr [e.g. Muller et al., 2000; Minshull el al., 2006]. Minshull et al. [2006] 

suggests that the “crustal” material in these areas would consist at least partly of 

serpentinized mantle rocks. Because the P-wave velocities of these rocks can be typical 

of L3 (i.e. 6.5-7.0 km/s) or as low as 4-5 km/s if the rocks are highly serpentinized and 

strongly altered [e.g. Miller and Christensen, 1997], it is difficult to distinguish 

seismically from basaltic and gabbroic rocks. In addition, the excellent fit of the 

velocity-derived density model obtained with a conversion law specific for oceanic 

crust [Carlson and Herrick, 1990], which gives the lowest rms also supports this 

argument (Figure 4.20). Nevertheless, the velocity structure is highly heterogeneous, 

with low- and high-velocity anomalies, and the Moho is not continuous but appears to 

be severely disrupted. The local presence of serpentinized peridotite could explain the 

high-velocity anomalies identified between 270-280 km and 310-320 km along the 

profile. It is noteworthy that these two segments coincide with the places where PmP 

reflections have not been identified in the record sections (Figures 3.18, 4.18). 

 The SE-dipping low-velocity anomalies identified in the crust are reflected in the 

1-D P-wave velocity/depth profiles shown in Figure 5.6. These anomalies may be the 

tomographic expression of fault-related rock fracturing that could have promoted rock 

alteration by fluid percolation. The uppermost mantle velocity below the crust shows an 

average velocity of �7.5 km/s, >10% slower than normal, unaltered pyrolitic mantle 

(8.1-8.2 km/s) (Figure 4.18). This low velocity may be indicative of mantle 

serpentinization at upper mantle levels, which would in turn indicate that the faults 

identified might cross the Moho and penetrate at least 3-4 km inside the upper mantle. 

Additionally, the location of the low-velocity anomalies coincide reasonably well with 

the active structures recently described in that area with MCS profiles [Martínez-

Loriente et al., 2013] (Figures 4.11, 4.12, 5.2). 
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5.2.3. Boundary between the serpentinized peridotite basement in the northern 

part of the HAP to the oceanic crust in the CPR 

 As mentioned above, there is a sharp lateral velocity change at the top of the 

basement in the center of the HAP (190-200 km along profile P1), where the uppermost 

basement velocity increases by >25% (Figure 4.18). According to our interpretation, 

this velocity change represents a limit between two different geological domains: 1) the 

oceanic crust discussed and described in the CPR and SAP areas [Martínez-Loriente et 

al., submitted]; and 2) the basement made of exhumed mantle rocks identified in the 

northern part of the HAP, the GB and the southernmost TAP by Sallarès et al. [2013]. 

The presence of a different basement affinity north and south of the CPR is also 

consistent with the bathymetric data, showing that the seafloor is ~400 m deeper in the 

HAP than in the SAP (Figure 4.13). If we strip the sediments of the model the 

difference is even larger, with the top of the basement located ~2 km deeper in the 

central HAP and TAP than in the SH of the SAP [Martínez-Loriente et al., 2013] 

(Figure 5.1a). As indicated by the gravity analysis, these differences are also in 

agreement with the presence of a denser, less buoyant basement in the HAP (exhumed 

mantle rocks) than in the SAP (igneous crust). Therefore, a question remains concerning 

the type of transition between these two domains. An observation that may help to 

better understand this transition is the presence of faint, deep reflections in several 

record sections that were identified in the record sections of 6 OBS located in the CPR 

and SAP (PtP in Figure 5.7).The PtP traveltime inversion shows that these reflections 

should correspond to a deep, SE-dipping feature located in the middle of the HAP, just 

beneath the HAP-CPR transition area (Figure 4.18), with a dipping angle of ~30º. This 

feature, which is interpreted to separate the two above-mentioned domains, will be 

hereafter referred to as the Horseshoe Abyssal plain Thrust (HAT). To estimate the dip 

uncertainty of the HAT we randomly perturbed the dip of the initial reflector used in the 

inversion by ± 20º so that the initial dip was 10º-50º, whereas the velocity model was 

that shown in Figure 4.18. The average geometry of the HAT obtained from all 

inversions with the corresponding error bar, which corresponds to the mean deviation 

respect the average dip and is less than 5º in average, are all shown in Figure 5.7. 
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Figure 5.7. a) Zoom of the recorded seismic sections corresponding to the vertical component 

of OBS22, OBS23, OBS27, OBS28 deployed along P1, illustrating the PtP phase. b) Sketch of 

the initial configuration of the 500 reflectors used in the stochastic Monte Carlo analysis 

performed to analyze the uncertainty of the HAT geometry. c) Corresponds to the mean of the 

500 solutions obtained in the stochastic Monte Carlo analysis with the corresponding error bar 

(see text for details). CPR: Coral Patch Ridge; HAP: Horseshoe Abyssal Plain. 

5.3. Definition of the geological provinces in the SW Iberian margin 

and their plausible origin 

 In this section we combine the models and structural interpretations of the 

basement affinity along the WAS NEAREST profile P1 made in the framework of this 

PhD Thesis with a re-interpretation of profile P2 previously done by Sallarès et al. 

[2011] to construct two new geological cross-sections integrating tectonic and 

stratigraphic information (Figures 5.10, 5.11). Then, we combine our WAS results with 

complementary information provided by previous WAS models [González et al., 1996, 

1998; Gutscher et al., 2002; Contrucci et al., 2004; Jaffal et al., 2009; Palomeras et al., 

2009], potential field data [e.g. Gràcia et al., 2003b; Fullea et al., 2010], available MCS 
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data [e.g. Sartori et al., 1994; Banda et al., 1995; Torelli et al., 1997; Tortella et al., 

1997; Maldonado et al., 1999; Hayward et al., 1999; Gràcia et al., 2003a,b; Medialdea 

et al., 2004; Zitellini et al., 2004; Iribarren et al., 2007; Terrinha et al., 2009; Bartolome 

et al., 2012; Martínez-Loriente et al., 2013], geological information from scientific and 

commercial wells [e.g. Hayes et al., 1972; Ryan et al., 1973; Lanaja et al., 1987] and 

seafloor rock dredges [e.g. Baldy et al., 1977; Malod and Mougenot, 1979; Hinz et al., 

1984] to construct the first map of the basement domains offshore the SW Iberian 

margin (Figures 5.8, 5.12). 

Figure 5.8. Map of free-air anomaly at 100 mGal interval [Sandwell and Smith, 1997] 

of the SW Iberian margin with the location of available MCS data [e.g. Sartori et al., 

1994; Banda et al., 1995; Torelli et al., 1997; Tortella et al., 1997; Maldonado et al., 

1999; Hayward et al., 1999; Gràcia et al., 2003a,b; Medialdea et al., 2004; Zitellini et 

al., 2004; Iribarren et al., 2007; Terrinha et al., 2009; Bartolome et al., 2012; 

Martínez-Loriente et al., 2013], WAS data [Gutscher et al., 2002; Contrucci et al., 

2004, Jaffal et al., 2009], scientific and commercial wells [e.g. Hayes et al., 1972; Ryan 

et al., 1973; Lanaja et al., 1987] and rock dredges [e.g. Baldy et al., 1977; Malod and 

Mougenot, 1979; Hinz et al., 1984]. The S’ magnetic anomaly is also located. 
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5.3.1. Geological cross-section along profile P1 

5.3.1.1. Mantle exhumation during the Mesozoic extension 

 As stated in the previous section, it has been previously suggested the presence of 

oceanic crust in the abyssal plains surrounding the GB [Souriau, 1984; Sartori et al., 

1994; Le Gall et al., 1997; Tortella et al., 1997; Girardeau et al., 1998; Hayward et al., 

1999; Galindo-Zaldívar et al., 2003; Jiménez-Munt et al., 2010]. This interpretation is 

mainly based on Purdy’s [1975] models based on wide-angle recordings along lines A-

AR in the TAP and B-BR in the HAP (Figure 4.13). However, it was already noted at 

that time that velocity was ‘‘anomalously low for upper mantle, and that there were no 

Moho reflections identified in the record sections. The velocity–depth structure in both 

A-AR and B-BR models is in fact closer to that of serpentinized peridotite than to 

oceanic crust. Modelling of air-gun shots recorded at land stations located along the 

onshore projection of the IAM-3 profile indicated significant crustal thinning offshore 

the southwestern tip of the Iberian Peninsula [González et al., 1996] (Figure 4.13) but 

the models hardly constrain velocity and velocity gradients and the nature of the crust. 

At the northern TAP, Afilhado et al. [2008] found 40–50 km-wide segment of a highly 

magnetised and dense ‘‘transitional crust’’ between 10º and 10.5º along the IAM-5 

profile, and suggested that it could also correspond to the ZECM. From this point up to 

11.5º, PmP phases indicate the presence of oceanic crust that appear to thin towards the 

west. Further west, between 11.5º and 12.0º, Pinheiro et al. [1992] found also evidence 

of high velocity gradient basement consistent with the presence of serpentinized 

peridotite, while west of M11 (~12º), they identified magnetic anomalies likely to be 

related to oceanic seafloor spreading. 

 In summary, the existing WAS seismic data claimed to justify the presence of 

oceanic crust in the TAP and HAP can be also explained by the tectonic mantle 

denudation hypothesis. According to this and taking into account the evidences 

provided by our models and by the available geological observations we propose that 

(1) the GB was originally part of a band of exhumed mantle rocks that included the 

southeastern TAP and the northwestern HAP segments; and (2) this band, which would 

have been exhumed during the earliest phase of the North-Atlantic opening, may 

constitute the southernmost and oldest section of the West Iberian margin COT. 
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 40Ar/39Ar dating of hornblende crystallisation indicates that the age of the GB 

basement is 143 Myr [Féraud et al., 1986], whereas the basement rock samples at Site 

900 of ODP Leg 149 in the Southern IAP are136Myr old, and in the Galicia Margin are 

122 Myr old [Féraud et al., 1996].These dates indicate an overall northward progression 

of the continental rifting and continental mantle denudation along the West Iberian 

margin during the Early Cretaceous. However, the southern end of the West Iberia 

COT, and the location of the paleo-Iberia–Africa boundary (PIAB) are a matter of 

debate. Based on the analysis of seismic and magnetic data, Rovere et al. [2004] 

interpreted that the ‘‘anomalous’’ Western Iberia COT zone could extend up to the 

central HAP, north of the PIAB (Figure 4.13). Alternatively, it has been proposed that 

the GB and its neighbouring basins formed in a transtensional phase along the plate 

boundary that separated Iberia–Newfoundland from Africa during the opening of the 

Central Atlantic in the Late Jurassic, so earlier than the North Atlantic opening 

[Jiménez-Munt et al., 2010]. However, this transtensional phase is somewhat older than 

basement ages from GB. The interpretation of a ZECM extending into the HAP agrees 

better with plate tectonic reconstructions, which show that the earliest opening of the 

North-Atlantic initiated at ~147 Ma (Late Jurassic), after the end of the Iberia–Africa 

transtension [e.g. Schettino and Turco, 2009], whereas the onset of true oceanic 

spreading in the northern TAP appears to have occurred not earlier than ~133 Ma (M11) 

[Pinheiro et al., 1992; Afilhado et al., 2008], and later in the IAP. 

 According to this interpretation, the exhumation of the band including the GB and 

the adjoining sectors of the HAP and TAP would have occurred during the extensional 

phase between Iberia and Newfoundland between ~147 Ma and ~133 Ma. The moderate 

peridotite serpentinization in the TAP and HAP sectors adjacent to the GB may have 

taken place during the extensional phase. It has been shown that in extensional 

environments related to bending of an oceanic plate into a subduction trench, vigorous 

fluid circulation may occur down to 10–15 km into the mantle [Ranero et al., 2003, 

Ranero and Sallares, 2004]. 
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5.3.1.2. Uplift of the Gorringe Bank during the Miocene convergence 

 The ZECM/COT, which we propose that included the TAP–GB–HAP remained 

tectonically stable after its formation, from the Early Cretaceous to late Oligocene 

times. At that time, deformation due to convergence between Eurasia and Africa, which 

initially focused in the north along the Pyrenees, jumped to the southern margin of the 

Iberian Peninsula, where plate configuration was similar to present day [Roest and 

Srivastava, 1991]. MCS seismic stratigraphy [Sartori et al., 1994; Tortella et al., 1997; 

Zitellini et al., 2009] calibrated with ages from DSDP Leg 120 [Ryan et al., 1973] 

suggest that the GB was uplifted after a Late Oligocene unconformity. Uplift probably 

occurred from Early to Middle Miocene [Torelli et al., 1997; Tortella et al., 1997], 

coetaneous with the emplacement of the Horseshoe Gravitational Unit, a large Upper 

Miocene gravitational unit infilling the HAP deposited after the period of maximum 

deformation [e.g. Gràcia et al., 2003; Iribarren et al., 2007]. Regarding the uplift 

mechanism, the MCS data also revealed that the GB ridge is a compressive structure 

raised by large-scale thrust of the northwestern segment of the original HAP on top of 

the southeastern TAP (Figure 5.9) [Tortella et al., 1997; Zitellini et al., 2009]. Uplift 

peaked during the Middle Miocene, and then it slowed down progressively until the end 

of Miocene [Tortella et al., 1997]. However, there is no direct evidence for the presence 

of a reflection associated to a large-scale thrust fault in any of the MCS profiles or in 

our WAS data. Possible explanations for this lack of evidence could be a low acoustic 

impedance contrast across the fault or a high attenuation related to rock fracturing and 

alteration around the fault. An interesting feature that could be related with the presence 

of such a fault is the SE-dipping low velocity/high serpentinization zone described in 

Section 5.2.1 (Figures 4.14, 4.17 and 5.4). Motion along the fault would have caused 

rock fracturing around the fault plane, intensifying fluid percolation and, eventually, 

increasing the local serpentinization degree. 
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Figure 5.9. Schematic interpretation of the present-day structure of the Gorringe Bank region 

including the neighbouring Horseshoe and Tagus abyssal plains. The limit between the 

sediment and basement is taken from the velocity model in Figure 4.14. The thin lines represent 

isocontours of serpentinization degree. The disaggregated rock area encompasses regions of 

the basement with velocity lower than 4.3 km/s. The internal structure of the sedimentary layers 

is taken according to Tortella et al. [1997]. 

 Most of the basement alteration and serpentinization of the GB probably 

concentrated in this phase of convergence, uplift and deformation. According to these 

results, there should be a residual degree of serpentinization up to at least 20–22 km 

depth. However, it appears unlikely, and unnecessary to explain the gravity data, that 

serpentinization reaches 40 km as previously proposed by Jiménez-Munt et al. [2010]. 

An important difference of our geodynamic interpretation with respect to previous ones 

[e.g. Purdy, 1975; Sartori et al., 1994; Tortella et al., 1997; Hayward et al., 1999; 

Galindo-Zaldívar et al., 2003; Jiménez-Munt et al., 2010] is that in our model thrusting 

occurred within a band of exhumed continental mantle that was dissected in two blocks, 

rather than between oceanic crustal fragments. It has been speculated that the thrust 

initiated as a response to NW–SE Africa–Eurasia convergence by reactivation of a pre-

existing tectonic structure or weak zone [Le Gall et al., 1997], although the nature and 

origin of this structure remains unknown. Considering the present-day plate 

convergence rate (4–5 mm/yr), assuming that thrusting concentrated during a period of 

10–15 Myr, and including estimations of shortening between 20 km [Jiménez-Munt et 

al., 2010; Galindo-Zaldívar et al., 2003] and 50km [Hayward et al., 1999], the original 

width of the TAP–GB–HAP band would have been of 150–180 km, of similar 

dimensions as the ZECM in the IAP [Whitmarsh et al., 2001; Srivastava et al., 2000]. 
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5.3.1.3. Thin oceanic crust generated during the early-slow stage of seafloor spreading 

of the Central Atlantic 

 The boundary between the exhumed mantle rocks flooring the TAP, GB and NW 

HAP, and the oceanic crust of the CPR and SAP occurs towards the center of the HAP. 

We suggest that the transition between the two domains is abrupt and the HAT appears 

to be a likely candidate to accommodate the boundary between the two domains 

(Figures 5.7, 5.10, 5.12). The oceanic crust basement of the CPR and SAP is intensely 

fractured and highly heterogeneous, displaying local anomalies that may represent 

intrusions of serpentinized peridotite (Figures 5.10, 5.12). Although the basement was 

not reached by drilling of DSDP Site 135, on the basis of sediment rates the deduced 

age of the sediments lying directly above the basement would be of 180-155 Ma (Early 

to Late Jurassic) [Hayes et al., 1972]. Kinematic reconstructions differ in the age of the 

onset of seafloor spreading in the Central Atlantic Ocean (CAO). Some works propose a 

late Early Jurassic to early Middle Jurassic (185 Ma to 175 Ma), in particular for the 

northern part of the CAO [Withjack et al., 1998; Roeser et al., 2002; Schettino and 

Turco, 2009], whereas other authors proposed an age as late as Early Jurassic (195 Ma 

to 185 Ma) [Laville et al., 1995; Olsen, 1997; Le Roy and Piqué, 2001; Sahabi et al., 

2004; Labails et al., 2010]. On the basis of the end of salt deposition off the Moroccan 

and Scotian margins, Sahabi et al. [2004] proposed an age of Late Sinemurian (190 Ma) 

for the first oceanic crust in the CAO. This age is in agreement with that of the volcanic 

activity on both sides of the Atlantic ocean of the Central Atlantic Magmatic Province 

(CAMP) (200 Ma, before the end of salt deposits) [Jourdan et al., 2009]. Labails et al. 

[2010] proposed that during the initial breakup and the first 20 Ma of seafloor spreading 

(190-170 Ma) ocean accretion was extremely slow (8 mm/yr). This spreading rate is 

within the range of ultra-slow spreading, and under these conditions the generation of 

thin oceanic crust with local presence of exhumed mantle rock intrusions, as suggested 

for the CPR and SH areas, would become possible. In addition, Labails et al. [2010] 

proposed that a marked change in the relative plate motion direction (from NNW-SSE 

to NW-SE) and in the spreading rate (increasing to 17 mm/yr) took place in the early 

Bajocian (170 Ma). Martínez-Loriente et al. [2013] show in a basement-time map the 

~NE-SW present-day alienation of the tilted blocks of the oceanic crust in the CPR and 

SH areas (Figure 5.1). Given the counterclockwise rotation of Africa and Iberia relative 

to Eurasia since Early Cretaceous time, the spreading center which would have 
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generated this oceanic crust initially would have to be oriented ~ENE-WSW or E-W 

(i.e. the relative plate motion direction would be ~NNW-SSE) (Figure 5.1). Considering 

all these elements, we suggest that the oceanic crust present in the southeastern half of 

profile P1 would have been generated during the early, slow-to-ultra-slow phase of 

seafloor spreading of the northeastern segment of the Central-Atlantic ridge (starting 

between 190 and 180 Ma, i.e. Lower Jurassic). 

5.3.1.4. Tomographic expression of large-scale faults resulting from the Miocene 

convergence stage 

 The location of the crustal-scale, SE-dipping low-velocity anomalies identified in 

the CPR and SAP affecting from the sedimentary cover to the first kilometers below the 

Moho, coincide reasonably well with the large, active faults recently identified in the 

CPR and SH areas [Martínez-Loriente et al 2013] (Figures 4.11, 4.12, 4.18, 5.10). These 

major thrust faults affect old, cold and brittle oceanic lithosphere and probably root in a 

common detachment layer located either at the Moho (~7-8 km below the seafloor) or 

below the serpentinized area in the uppermost mantle (~12-13 km below the seafloor) 

[Martínez-Loriente et al., 2013] (Figure 5.10). This last hypothesis is the one that best 

agrees with the low velocity of the uppermost mantle, which might be indicative of 

serpentinization, possibly enhanced by fluid percolation along the thrust faults. 

Secondary structures have also been interpreted propagating from a shallower 

detachment level in the upper part of the oceanic crust [Martínez-Loriente et al., 2013] 

(Figure 5.10). 
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 MCS seismic stratigraphy suggests that most of the regional uplift occurred 

between the Early and Late Miocene [e.g. Hayes et al., 1972; Sartori et al., 1994; 

Tortella et al., 1997], consistent with the emplacement of the Horseshoe Gravitational 

Unit (HGU), a large allochthonous body that fills the HAP and acts as a regional marker 

[e.g. Sartori et al., 1994; Torelli et al., 1997; Iribarren et al., 2007; Martínez-Loriente et 

al., 2013] (Figure 5.10). MCS data also reveal active deformation in the sedimentary 

sequence infilling the HAP mainly due to WNW-ESE dextral strike-slip faults, which 

correspond to the westward continuation of the SWIM Lineaments [e.g. Zitellini et al., 

2009; Bartolome et al., 2012; Martínez-Loriente et al., 2013] (Figure 5.10). The low-

velocity anomaly identified in the sedimentary sequence beneath OBS 19 (~212 km) 

(Figure 4.18) spatially coincides with the location of the Lineament South (LS) (Figures 

4.3, 4.10d, 5.3), the most prominent of these strike-slip faults [e.g. Zitellini et al., 2009; 

Bartolome et al., 2012; Martínez-Loriente et al., 2013]. 

5.3.2. Geological cross-section along profile P2 

 The NEAREST profile P2, which runs from the Portuguese continental shelf to 

the SAP across the central Gulf of Cadiz, reveals the presence of three main crustal 

domains [Sallarès et al., 2011]. In the north, we observe the section corresponding to the 

~30 km-thick Variscan continental crust, then a ~60 km-wide transition zone where 

most of the crustal thinning concentrates, and finally a 150 km-wide segment with a ~7 

km-thick of oceanic crust. 

 According with the new information provided by the profile P1, integrated with 

previous WAS data results [Gutscher et al., 2002; Contrucci et al., 2004; Jaffal et al., 

2009] and taking into account recent kinematic reconstructions [e.g. Stamplfi et al., 

2002; Sahabi et al., 2004; Schettino and Turco, 2009; Labails et al., 2010], we suggest 

that the 150 km-long southern part of profile P2 may be composed by two oceanic 

crusts generated at different spreading centers (Figure 5.11). The northern part (~80 km-

wide, from km 110 to 190) would correspond to the remnant of the western Alpine-

Tethys crust, generated by oblique seafloor spreading trough a transform fault boundary 

between Iberia and Africa during the Jurassic (180-145 Ma) [Sallarès et al., 2011]. The 

southern part (~110 km-wide, from km 0 to 110) would correspond to a crust generated 

during the first stages of seafloor spreading of the northeastern segment of the Central-

Part II: Results, Discussion and Conclusions

162

_________________________________________________



Atlantic, in Early Jurassic. This is the same spreading center that formed the oceanic 

crust of the CPR and SAP, as interpreted in profile P1 (Figures 5.11, 5.12).  

 The velocity model of profile P2 shows a number of south-dipping low-velocity 

anomalies that have been proposed to represent crustal-scale faults [Sallarès et al., 

2011], as previously identified in the area from MCS profiles [e.g. Gràcia et al., 2003b; 

Iribarren et al., 2007; Terrinha et al., 2009; Zitellini et al., 2009; Bartolome et al., 2012]. 

Some of them may correspond to a reactivation of inherited structures from the Jurassic 

transfer zone [Zitellini et al., 2009; Sallarès et al., 2011 Martínez-Loriente et al., 2013]. 

Based on its location, regional relevance and geometry, we suggest that the largest and 

bathymetrically most prominent of these crustal-scale faults, LS, is a likely candidate to 

represent the boundary between both oceanic crustal domains (i.e. the Alpine-Tethys 

and the Central Atlantic). In this case, LS could be interpreted as the present-day 

expression of the Gibraltar Fault (GiF), a paleo-plate boundary located between Iberia 

and Morocco at ~150 Ma [e.g. Schettino and Turco, 2009] (Figures 5.11, 5.12). 

 Regarding the sedimentary sequence, according to MCS interpretations [e.g. 

Tortella et al., 1997; Maldonado et al., 1999; Iribarren et al., 2007], the lower layer 

corresponds to the well-consolidated Mesozoic sequence, whereas the upper ones 

corresponds to the Gulf of Cadiz Imbricated Wedge (GCIW) and the Plio-Quaternary 

sediments (Figure 5.11). Towards the north, the Portimao Bank sequence consists of 

Mesozoic to Plio-Quaternary folded and faulted sediments. In between these two 

domains, the Portimao Fault (PF) may correspond to the Continental-Ocean Boundary 

(COB) The northernmost 100 km of profile P2, the continental crust is overlaid by a 

thin sedimentary layer of Plio-Quaternary age (Figures 5.11, 5.12).  
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5.3.3. Classification of the geological domains off the SW Iberian margin 

 The basement distribution map of SW Iberia includes 7 different geological 

domains, four of continental affinity: the Iberia, the Atlas, the Gibraltar Arc, and the 

Slope, and three oceanic: the Gulf of Cadiz, the Seine Abyssal Plain and the Gorringe 

Bank (Figure 5.12). 

 The Iberia and Atlas domains are formed by Variscan continental crust [e.g. Saadi 

et al., 1985; Frizon de Lamotte et al., 2009; Rodríguez-Fernández, 2004]. Both 

continental domains are bounded by the Slope domain, a band made of thinned 

continental crust. This transition between the Continental and Slope domains is clearly 

displayed in the northern part of profile P2, which agrees with the structure observed 

along the onshore IBERSEIS WAS transect [Palomeras et al., 2009]. It is also 

consistent with that of González et al. [1996], which is based on land recordings of the 

IAM data (Figure 4.13). The adjoining Gibraltar Arc domain is constituted by the Betics 

and Rif cordilleras and the Alboran Basin [Rodríguez-Fernandez, 2004] (Figure 5.12). 

 In the Moroccan Margin, the Slope domain leads to a salt basin to the west 

[Labails et al., 2010], clearly identifiable in the free-air gravity data (Figure 5.12). The 

S' magnetic anomaly (Figure 4.13) marks the location of the COB in this area. The 

Seine Abyssal Plain domain includes the Jurassic oceanic crust generated during the 

Central Atlantic opening, and extends through the western HAP, the CPR, the SAP and 

the southern part of the central Gulf of Cadiz. Seismic velocities in this basement 

domain are rather heterogeneous and oceanic crust is remarkably thin. It has been 

imaged in a number of WAS profiles acquired during different cruises, for instance in 

the western part of SISMAR profile SIS-P16 [Gutscher et al., 2002] and in the southern 

part of NEAREST profile P2 (Figure 4.13) [Sallarès et al., 2011]. Further south, oceanic 

crust was interpreted in two other SISMAR profiles (Figure 4.13) although the crustal 

thickness is rather variable ranging from ~7 km in Profile SIS-P4, [Contrucci et al., 

2004], 4-6 km in profile SIS-P5 [Jaffal et al., 2009] and 3.5-6 km along NEAREST 

profile P1 in the CPR and SH areas (Figure 5.12). The S’ magnetic anomaly, which is 

the northernmost segment of the West Africa Coast Magnetic Anomaly, the African 

conjugate of the East Coast Magnetic Anomaly [Sahabi et al., 2004], coincides with the 

continental-ocean crust transition proposed by Contrucci et al. [2004] and Jaffal et al. 
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[2009]. We used the position of the S’ magnetic anomaly to determine the location of 

the COB in the southern part of the study area (Figure 5.12). 

Figure 5.12. Basement distribution map of the SW Iberian margin overlaid on the free-air 

anomaly map, contours each 100 mGal [Sandwell and Smith, 1997]. Seven geological domains, 

defined on the basis of nature of the basement and age, have been proposed. See text for 

explanation. 

 In the map of geological domains, the major structure LS acts as a boundary 

between Seine Abyssal Plain domain and the two domains to the north: the Gulf of 

Cadiz and the Gorringe Bank (Figure 5.12). The Gulf of Cadiz domain is composed by 

the westernmost part -and the only remnant- of the Jurassic oceanic crust generated 

during the Alpine-Tethys opening [Sallarès et al., 2011]. The eastern segment of this 

band has been interpreted as subducted underneath the Gibraltar Domain during 

Miocene times [e.g. Lonergan and White, 1997], although some authors consider this 

subduction still active [Gutscher et al., 2002]. The ~7 km-thick oceanic crust of this 
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domain is clearly imaged in profile P2 (Figure 5.11). The Gorringe Bank domain 

extends from the northern HAP, the Gorringe Bank and the southern TAP. It is 

underlain by Cretaceous exhumed mantle rocks as evidenced along the WAS profile P1 

(Figure 5.10) as well available rock sample from the drilling Site DSDP 120 [Ryan et 

al., 1973]. The HAT is the limit between the Gulf of Cadiz and Gorringe domains 

(Figure 5.12). 

5.4. Geodynamic evolution of the SW Iberian margin 

 Finally, in this section we suggest a framework for the geodynamic evolution of 

the study area since the break-up of Pangaea until the present-day, integrating our new 

data and observations. Thus, Figure 5.13 includes the five most representative stages of 

the geodynamic evolution of the SW Iberian margin as well as neighboring areas. To 

accomplish this goal we have considered previous kinematic reconstructions proposed 

by different authors [e.g. Stamplfi et al., 2002; Sahabi et al., 2004; Labails et al., 2010; 

Schettino and Turco, 2011] that we have modified introducing the new findings and 

elements proposed in this work. In the kinematic reconstruction we focus on the 

processes that explain the evolution of the Atlantic, obviating the related processes that 

have taken place in the Mediterranean area because they are out of the scope of this 

work. 

 In the Late Triassic the rift systems that cut Pangaea from the Caribbean to the 

Tethys were established. These systems included rift structures in the eastern North 

America [e.g. Schlische et al., 2002], south Iberia [e.g. Martin-Rojas et al., 2009], 

northwest Africa [e.g. Le Roy and Piqué, 2001], western Morocco [e.g. Pigué and 

Laville, 1995], and the Atlas [Schettino and Turco, 2009 and references therein]. As 

stated before, seafloor spreading in the CAO started around 190 Ma with a spreading 

rate of ~8 mm/yr during the first 20 Ma [e.g. Olsen, 1997; Le Roy and Piqué, 2001; 

Sahabi et al., 2004; Schettino and Turco, 2009; Labails et al., 2010].  The rifting in the 

Atlas region continued during this interval, but structures at the northern boundary of 

Morocco became more important, separating this plate from Iberia and Newfoundland. 

Figure 5.13a summarized the situation at ~183 Ma, when the first oceanic crust was 

generated in the CAO and in the Ligurian Basin (LB), and the activity of the rift 

structures in the Atlas region was close to finish [Schettino and Turco, 2009].  

Chapter 5: Discussion

167

_________________________________________________



Part II: Results, Discussion and Conclusions

168

_________________________________________________



Figure 5.13. Sketch of the kinematic evolution of the African, Iberian, Eurasian and American 

plates at stages: 180 Ma (a), 155 Ma (b), 140 Ma (d), 83.5 Ma (d), and 20 Ma (e). The 

kinematic evolution is based primarily on Schettino et al. [2011], although other works [e.g. 

Stamplfi et al., 2002; Sahabi et al., 2004; Schettino and Turco, 209; Labails et al., 2010] have 

also been used to constrain all the observations. Abbreviations: E: Eurasia; GiF: Gibraltar 

Fault; Ib: Iberia; LB: Ligurian Basin; M: Morocco; NPF: North Pyrenean Fault Zone; NA: 

North America; NWA: northwest Africa; (1) areas affected by active rifting and thinning; (2) 

areas with thinned crust; (3) exhumed mantle rock. White lines are spreading centers 

 Once the extension in the Atlas region finished, the Atlantic kinematics was 

transferred to the Tethyan domain through the Gibraltar Fault (GiF), a preexisting plate 

boundary between Iberia and Morocco. This transform margin later evolved into a 

oblique seafloor spreading system that opened a narrow oceanic basin separating 

southern Iberia from NW Africa [Stampfli et al., 2002; Schettino and Turco, 2009; 

Sallarès et al., 2011] (Figure 5.13b). At this time the SW Iberian margin was underlain 

by the oceanic crusts that now conform the Seine Abyssal Plain and the Gulf of Cadiz 

domains, which were generated by two different oceanic spreading systems that 

functioned simultaneously: the Central Atlantic and the Alpine-Tethys systems (Figure 

5.13b). From that moment on, the Moroccan plate remained fixed to NW Africa 

[Schettino and Turco, 2009]. 

 Between chrons M22 (~150 Ma) and M21 (147.7 Ma) took place the northward 

jump of the Atlantic-Tethys transfer zone to the North Pyrenean Fault Zone (NPF), 

through where will be transferred the Atlantic plate kinematics to the east [Schettino 

and Turco, 2009]. As a result of this event, the spreading center of Ligurian basin 

stopped and the rifting began between North American and Iberia [Tucholke et al., 

2007]. During this earliest phase of the North-Atlantic opening (147-133 Ma) the 

southernmost and older part of the ZECM that conforms the Gorringe Bank domain was 

generated. According with the rock samples ages [Féraud et al., 1986, 1996], the 

continental mantle denudation progressed northwards along the West Iberian margin 

during the Early Cretaceous (until ~122 Ma) generating the zone of exhumed 

continental mantle of the Iberia Abyssal Plain (Figure 5.13c). 

 At ~120 Ma took place an important change of relative plate motions between 

Eurasia, North America, and Africa. The North Atlantic rift was just starting and took 

place a counterclockwise rotation of Iberia with respect Eurasia and Africa, triggering 

Chapter 5: Discussion

169

_________________________________________________



the Bay of Biscay rift [Sibuet et al., 2004 and references therein]. Then, the Ligurian 

oceanic lithosphere began to subduct through a convergent boundary formed at the 

eastern margin of Iberia [e.g., Schmid et al., 1996; Schettino and Turco, 2009 and 

references therein]. The high spreading rates in the CAO during the Cretaceous 

superchron were transformed to high subduction rates of western Tethys beneath the 

Eurasian margin [Schettino and Turco, 2009]. At 83.5 Ma a convergent boundary 

between Eurasia and Iberia was formed, beginning the early Pyrenean orogeny [Sibuet 

et al., 2004], the disappearance of the Bay of Biscay spreading center, and the inactivity 

of the transform boundary between Iberia and Morocco [Schettino and Turco, 2009] 

(Figure 5.13d). At ~68 Ma the convergence between Africa and Eurasia was 

interrupted, stopping the subduction zones associated. The reactivation of the Alpine 

[e.g., Schmid et al., 1996] and Pyrenean orogeneses [e.g., Vergés et al., 2002] took 

place at ~56 Ma, but with a slow associated convergence rates [Schettino and Turco, 

2009].  

 The rift-drift transition in the Atlantic and the slow convergence at Pyrenean 

continued until chron C13n (33.1 Ma), when several new plate boundaries were 

activated. The convergence between Africa and Eurasia was accommodated along the 

southern and eastern margins of Iberia. Then, the Pyrenean belt ceased to be a major 

plate boundary and Iberia remained fixed to Eurasia onward [Schettino and Turco, 

2006]. At the southern margin of Iberia was formed a subduction zone that began to 

consume Ligurian oceanic lithosphere [Schettino and Turco, 2006]. In the Atlantic 

Ocean was formed a ridge-ridge-transform triple junction causing higher spreading rates 

of the ridge segment facing Morocco. As a result, Morocco escaped eastward with 

respect northwest Africa [Schettino and Turco, 2009] and the Triassic-Jurassic rift 

structures of the Atlas were reactivated as reverse faults, uplifting the mountain range 

[Beauchamp et al., 1996; Frizon de Lamotte et al., 2000; Piqué et al., 2002] (Figure 

5.13e). At ~19 Ma (chron C6n, Early Burdigalian) the Atlas uplift and the western 

Mediterranean extension finished, forming a new plate boundary in North Africa. From 

this moment took place the formation of the Alboran backarc basin [e.g. Lonergan and 

White, 1997]. In the SW Iberian margin the NW-SE trending plate convergence 

produced the reactivation of the WNW-ESE structures generated by the Jurassic transfer 

zone and the series of NE-SW thrust structures described in Figure 5.10 developed 

during that time. 
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CHAPTER 6. Conclusions 

 In this chapter we summarize the main conclusions that have been attained from 

the integration of a number of geophysical data and models in the SW Iberian margin in 

the framework of this PhD Thesis. These data and models have been used to 

characterize the structure and properties of the sediments and basement up to the 

uppermost mantle in the different domains that constitute: 

1. Combined WAS and gravity modeling provides compelling geophysical evidence 

indicating the basement affinity of the different structural domains in the external part 

of the Gulf of Cadiz. Integrating all the observations we propose the first map of the 

basement affinity of the SW Iberian margin together with a plausible geodynamic 

evolution: 

a) The basement in the GB and the adjacent segments of the HAP and TAP are mainly 

made of serpentinized peridotite. The basement is characterized by a strong vertical 

velocity gradient in the upper ~4–5 km, by a higher velocity in the underlying 5 km, and 

the absence of crust–mantle boundary reflections in most record sections. We propose 

that the GB and adjoining sectors of the TAP and HAP were originated by exhumation 

of a single, 150–180 km-wide mantle band similar to the ZECM of the IAP. According 

to plate tectonic reconstructions and rock dating, the basement was exhumed by tectonic 

mantle denudation during the initial phase of the North Atlantic opening in the Earliest 

Cretaceous (147–133 Ma). 

b) The basement in the CPR and the SAP is constituted by a thin oceanic crust. The 

velocity structure is characterized by the presence of a thinner-than-normal oceanic 

layer L3 (0.5-3 km-thick), a high lateral variability with high- velocity anomalies and a 

discontinuous Moho that we relate with the presence of localized serpentinized 

peridotite bodies. We propose that the oceanic crust present in the CPR and SAP areas 

was generated during the early-slow (~8 mm/yr) stages of seafloor spreading of the 

northeastern segment of the Central Atlantic (i.e. 190 Ma – 180 Ma). 

c) There is evidence in the WAS data of the presence of an abrupt boundary in the 

middle of the HAP between the oceanic crust of the CPR and SAP, and the basement 

made of exhumed mantle rocks of the northern part of the HAP, at the GB and at the 
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southern TAP. The sharp limit between the two domains appears to occur at the HAT, a 

deep SE-dipping reflector with a dip angle of ~30º. 

d) The SE-dipping low-velocity anomalies identified in the velocity structure of the GB 

and in the thin oceanic crust of the CPR and SAP, may be the tomographic expression 

of crustal-scale faults and fault-related rock fracturing, which may have favored rock 

alteration by fluid percolation along the fault planes. In the case of the GB, this may be 

the first evidence of the large-scale thrusting developed within the exhumed mantle rock 

band as a response to the NW–SE-directed Miocene convergence between Eurasian and 

African plates that uplifted the GB. In the case of the CPR and SAP, the low-velocity 

anomalies spatially coincide with the major thrust faults identified in the MCS data (i.e., 

the NCP, SCP, and SH thrust faults). The uppermost mantle shows low velocities that 

may indicate serpentinization at upper mantle levels, suggesting that these thrust faults 

cross the Moho and reach the upper mantle. 

e) After a reassessment of the NEAREST profile P2, which runs from the south 

Portuguese Margin to the SAP, and considering kinematic reconstructions, we propose 

that the 150 km-wide segment of oceanic crust is actually composed of two different 

segments generated by different rift systems. The northern part (~80 km-wide) would 

correspond to the only remnant western Alpine-Tethys, generated by oblique seafloor 

spreading through a transform system that developed between Iberia and Africa at 

Early-Late Jurassic (180-145 Ma). The southern segment would have been generated 

during the first stages of seafloor spreading of the Central-Atlantic, as described in the 

CPR and SAP. These two domains are separated by the LS strike-slip system, the major 

of the inherited structures of the Jurassic transform zone that were reactivated during the 

Neogene convergence. 

f) According to the new basement affinities interpreted on the NEAREST profiles and 

integrating previous results from other WAS and MCS data, rock basement samples, 

and location of magnetic anomalies, we propose that the basement offshore the SW 

Iberian margin is composed of three main oceanic domains: (1) the Seine Abyssal plain, 

made of oceanic crust generated in the NE Central Atlantic during Early Jurassic; (2) 

the Gulf of Cadiz domain, composed of oceanic crust generated in the Alpine-Tethys 

system and coeval with the formation of the Seine Abyssal Plain domain; and (3) the 

Gorringe Bank domain, made of exhumed mantle rocks and generated during the first 

Part II: Results, Discussion and Conclusions

172

_________________________________________________



stages of North Atlantic opening, just after the end of spreading between Iberia and 

Africa.  

2. The combined interpretation of high-resolution SWIM 2006 multichannel seismic 

reflection profiles together with swath-bathymetry, sub-bottom profiles and sediment 

cores yield new insights into the tectonic architecture and crustal structure of the CPR 

area and surrounding abyssal plains: 

a) The geometry of the seismostratigraphic units allowed us to characterize successive 

deformation phases in the outer part of the Gulf of Cadiz and to distinguish the syn-

extensional, post-extensional and syn-compressional sedimentary sequences in each 

domain. 

b) NE-SW trending thrusts (NCP, SCP and SH1-SH6) and WNW-ESE trending sub-

vertical dextral strike-slip faults (e.g. LS, and SS1) occur in the old oceanic lithosphere 

of the HAP, CPR, and SAP, and are consistent with the NW–SE regional shortening 

axis between Eurasia and Africa. These structures cut, fold or show growth-strata 

configuration in the most recent sedimentary units of Holocene age, indicating that they 

are active. 

c) The major thrust faults in the CPR and SAP probably propagated from the same 

detachment level located either at the Moho (~7-8 km depth below the seafloor), or at 

greater depths below the serpentinized area in the uppermost mantle, at ~12-13 km 

below the seafloor. Secondary structures probably also propagated from a shallower 

detachment level in the upper part of the oceanic crust (between 2.5 km and 4.5 km 

depth below the seafloor). 

d) The NE-SW trending thrusts located south of the SFZ probably grew through 

weakened zones by fracturing due to the opening of the NE segment of the Jurassic 

Central Atlantic rifting. The WNW-ESE trending strike-slip faults concentrated in the 

HAP may correspond to a reactivation of inherited structures from a Jurassic transfer 

zone located across the Strait of Gibraltar. 

3. As for the earthquake and tsunami hazard assessment, the strike-slip faults represent 

one of the largest clusters of seismicity in the Gulf of Cadiz (nucleating in the upper 

mantle, > 50 km), whereas a maximum earthquake of Mw > 8 could be generated by the 

LS and LN. Despite the low seismic activity recorded south of the SFZ, our data suggest 
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that the thrusts are active and potential sources of large magnitude (Mw > 7) seismic 

events and associated tsunamis. Furthermore, the complex and large diversity of types 

of basement that floors the SW Iberian Margin gives new light into the characterization 

of the seismogenic and tsunamigenic sources in the region, which from now on will 

need to take into account the geological variability between domains (i.e. age, lithology, 

rheology) revealed by our new findings. 
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CHAPTER 7. Forward look  

 As stated above, this PhD Thesis provides new insights into the nature of the 

basement at the SW Iberian margin, proposing a new map of geologic domains together 

with their possible boundaries (i.e. major structures). Moreover, this work also provides 

new insights concerning the tectonic architecture and crustal structure of the CPR area 

and surrounding abyssal plains. However, these new findings raise new questions. To 

solve the remaining open questions, I suggest the following: 

 1) The basement distribution map of the SW Iberian margin provided in the 

framework of this Thesis is based only on two modern WAS profiles, and with a limited 

number of modern deep-MCS data and rock samples. In order to confirm the 

composition, distribution, and the boundaries between the suggested domains, a new 

WAS and deep-MCS dataset should be acquired, and new well sites should be drilled in 

the area (Figure 6.1). The proposal includes: 

a) To confirm the composition of the basement in the three oceanic domains proposed 

in this work, it is necessary to drill on each area. In Figure 6.1, I suggested the locations 

of three potential perforations in the frame of the scientific program IODP (Integrated 

Ocean Drilling Program) using the deep-sea drilling vessel D/V Chikyu. Site D-1 would 

be located on top of a hill in the Seine Abyssal Plain domain (Figure 6.2a), to 

corroborate the presence of the Early Jurassic (i.e., 190 – 180 Ma) oceanic crust from 

the Central Atlantic opening. Site D-2 would be placed in the Horseshoe Valley to 

verify the Jurassic oceanic crust (180-145 Ma) of the Gulf of Cadiz domain from the 

Western-Tethys system. And to confirm the presence of the Cretaceous serpentinized 

peridotite in the northern part of the HAP, we propose Site D-3 that is located on the top 

of an interpreted peridotite ridge (Figure 6.2b). In addition, we propose a new drill next 

to the DSDP Site 135, in order to recover deep samples from the lower part of the 

sedimentary cover (Unit V, interpreted as Jurassic) and from the basement below 

(Figure 6.2c). 
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Figure 6.1. Basement distribution map of the SW Iberian margin overlaid on the SWIM 

bathymetric compilation [Zitellini et al., 2009]. The proposed WAS and deep-MCS profiles (A-1 

to A-6) are depicted in red. The NEAREST WAS profiles P1 and P2 are depicted in black, while 

the TOPOMED deep-MCS profiles are depicted in green. The DSDP Sites 120 and 135 are 

located (gray and yellow stars, respectively). The proposed IODP Sites D-1, D-2, and D-3 are 

labeled as white stars.  
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Figure 6.2. a) Section of the profile SW11 crossing the Seine Hill 1 with the location of the 

proposed Site D-1. b) Section of the PSDM profile 03 in the northern part of the Horseshoe 

Abyssal Plain with the location of the proposed Site D-3. c) Section of PSDM profile SW13 

across the Coral Patch Ridge with the location of the DSDP 135.  

b) To confirm the extension and the proposed boundaries between domains (i.e., the 

HAT and the LS), I have designed a WAS and deep-MCS experiment (Figure 6.1). 

Profiles A-1 and A-3 are parallel to the NEAREST profile P1, and would help solving 

the geometry and lateral continuity of the HAT, the sharp transition between two 

domains identified for the first time in the velocity structure of the NEAREST profile 

P1. These profiles also would give valuable information about the role of the LS and the 

lateral continuity of the velocity field observed along profile P1. Coincident with the 

WAS profile P1, the deep-MCS profile A-2 would be acquired until the Moroccan slope 

together with profile A-3, in order to image the continental-ocean transition. The 

NEAREST profile P2 and the TOPOMED deep-MCS profile T-32 would be extended 

to the SW (profile A-4) in order to cut the transects A-2 and A-3, providing control 

points and a better resolution of the continental-oceanic transition. Profile A-5 would be 

a key transect showing the rifted continental margins of the Iberia and Atlas domains, 

and the characteristics of the transition to the oceanic domains. Finally, profile A6, 

coincident with the TOPOMED deep-MCS profile T-31, could provide a unique image 

of the geometry of the subducted slab, as well as better constrain at the intersection with 

profiles A-4 and A-5.  
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 2) This work shows active deformation of the structures in the CPR region and 

adjacent abyssal plains, contrary to what had been previously proposed. However, the 

sources of the 1755 Lisbon and 1969 Horseshoe earthquakes have not yet been 

identified, although the seafloor trace of the HAT falls within this area (Eastern HAP). 

In order to obtain seismic parameters, identify seafloor ruptures and assign recent 

earthquakes to specific faults, it is necessary to use techniques that allow us to perform 

centimetrical resolution mapping of the seafloor (to obtain geomorphological evidences) 

and depth profiles (to improve the vertical stratigraphic resolution). My proposal to 

achieve these objectives includes: 

a) A survey of 15 days using a Remotely Operated Vehicle (ROV) such as Victor 6000 

from IFREMER (Figure 6.3). During this survey the micro-bathymetric mapping and 

photographic mosaicing of the fault scarps would be carried out, as well as a visual 

inspection of the habitats associated to fluid venting and leakage. The ROV should be 

operated in two modes: 

 - Geophysical surveys with the Module Route that includes micro-bathymetry and 

 sub-bottom profiler at ~50 m above the seafloor, and the OTUS vertical camera 

 for specific objectives at ~10 m from the seafloor; and 

 - Direct in situ geological observation of the fault scarps (HDR video cameras) 

 and sediment / rock / water / benthos sampling in selected sites with the Module 

 Prélévement. Given that in about 1 day of work it is possible to make a mosaic of 

 ~2 km2, I propose to study three seafloor ruptures or sites (A, B, and C) in 15 

 days, covering ~28 km2 in total. The location of Site A coincides with the inferred 

 epicenter of the 1969 Horseshoe Earthquake, while Sited B and C are proposed to 

 investigate prominent seafloor ruptures along the SS1 and LS faults, respectively. 
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Figure 6.3. Bathymetric map of the eastern Horseshoe Abyssal Plain. The locations of the three 

proposed sites for the ROV surveys (A, B, and C) are depicted as red boxes. The epicenter of the 

1969 Horseshoe earthquake [Fukao, 1973] is located with a black star. HAT: Horseshoe 

Abyssal plain Thrust; HF: Horseshoe Fault; HV: Horseshoe Valley, LS: lineament South; SS1: 

Strike-Slip fault 1. 

 3) The complex and large diversity of types of basement that floors the SW 

Iberian margin gives new light into the characterization of the seismogenic and 

tsunamigenic sources in this region. The geological variability (i.e. age, lithology, 

rheology) associated with the diversity of basement types, needs to be taken into 

account in the study of the earthquake location. Consequently, we suggest that it is 

necessary to relocate the epicenters of the seismic events in the SW Iberian margin in 

order to assign instrumental earthquake to specific structures and re-assess its associated 

seismic and tsunami hazard taking into account the new information regarding the 

basement types in the rupture zone of the largest active faults identified and 

earthquakes. 
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List of acronyms 
A1: Algarve 1  

A2: Algarve 2 

ACM: Alvarez Cabral Moat 

AFR: African Plate 

AGFZ: Azores Gibraltar Fault Zone 

AGL: Azores-Gibraltar Line or Fracture Zone  

AP: Abyssal Plain 

AS: Ampere Seamount 

C: Corvina 

CAMP: Central Atlantic Magmatic Province 

CAO: Central Atlantic Ocean 

CD: Continental domain  

CMP: Common Mid-point  

COB: Continent–Ocean Boundary 

COT: Continental-Ocean Transition 

CPR: Coral Patch Ridge 

CPS: Coral Patch Seamount 

DSDP: Deep Sea Drilling Program 

DWS: Derivative Weight Sum 

E: Eurasia 

EUR: Eurasian Plate 

FCD: Continental drag force 
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FCR: Colliding resistence force 

FDF: Drag force 

FRP: Ridge push force 

FSP: Slab-pull force 

FSR: Slab resistance force 

FSU: Suction force 

FTF: Transform fault resistance force 

GB: Gorringe Bank 

GC: Gulf of Cadiz 

GCIW: Gulf of Cadiz Imbricated Wedge 

GeS: Gettysburg Seamount 

GF: Gloria Fault 

GiF: Gibraltar Fault 

GR: Gorringe Ridge 

GuB: Guadalquivir Bank 

GuF: Guadalquivir Fault 

HAP: Horseshoe Abyssal Plain 

HAT: Horseshoe Abyssal plain Thrust 

HF: Horseshoe Fault  

HGU: Horseshoe Gravitational Unit  

HP: Horseshoe Plain 

HS: Hirondelle Seamount 

HSZ: High Serpentinization Zone 
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HV: Horseshoe Valley 

HVZ: High-Velocity Zone 

I: Imperador 

IAP: Iberian Abyssal Plain 

Ib: Iberia 

IHB: Infante Don Henrique Basin 

IODP: Integrated Ocean Drilling Program 

JS: Josephine Seamount 

L1: Layer 1 

L2: Layer 2 

L3: Layer 3  

LB: Ligurian Basin 

LC: Lagos Canyon 

LCC: Lower continental crust 

LN: Lineament North 

LOC: Lower oceanic crust 

LS: Lineament South 

LVB: Low-Velocity Body 

LVZ: Low-Velocity Zone 

M0: Seismic moment 

M: Morocco 

MAR: Mid-Atlantic Ridge 

MCC: Middle continental crust 
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MCS: Multichannel seismic  

MPB: Marquês de Pombal Block 

MPF: Marquês de Pombal Fault 

MTD: Mass Transport Deposits 

Mw: Moment Magnitude  

NA: North America 

NCP: North Coral Patch Ridge Fault 

NMO: normal moveout 

NPF: North Pyrenean Fault Zone 

NWA: northwest Africa 

OBS: Ocean Bottom Seismometers 

OCT: Ocean–Continent Transition 

OrS: Ormonde Seamount 

PAS: Principes de Avis Seamount 

PB: Portimão Bank 

Pb: Basement refracted phase 

PC: Portimão Canyon  

PF: Portimão Fault 

Pg: Intra-crustal refracted phase  

PIAB:�Paleo-Iberia–Africa boundary 

PmP: crust-mantle boundary reflected phase  

Pn: Upper-mantle refracted phase 

Ps: Sedimentary refracted phase 
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PSDM: Pre-stack depth migration 

PSF: Pereira de Souza Fault  

PsP: sediment-basement interface reflected phase 

PSTM: Post-stack Kirchoff time migration 

PtP: HAT reflected phase 

R: Ruivo 

SAP: Seine Abyssal Plain 

SC: Sagres Canyon 

SCP: South Coral Patch Ridge Fault 

SFZ: SWIM Fault Zone 

SH: Seine Hills faults 

ShMAX: maximum shortening 

SP: Seine Plain 

SS1: Strike-slip Fault 1 

SVC: São Vicente Canyon 

SVF: São Vicente Fault 

SWIR: South West Indian Ridge 

TAP: Tagus Abyssal Plain 

TD: Transitional Domain 

ThD: Thinned Domain 

TOPAS: Topographic Parametric Sounder 

TP: Tagus Plain 

TR: Terceira Ridge 
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TWTT: Two-way travel time 

UCC: Upper Continental Crust 

UOC: Upper Oceanic Crust 

VE: Vertical exaggeration 

WAS: Wide-angle seismic 

ZECM: Zone of Exhumed Continental Mantle 
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[1] Recently acquired high-resolution multichannel seismic profiles together with bathymetric and sub-
bottom profiler data from the external part of the Gulf of Cadiz (Iberia-Africa plate boundary) reveal
active deformation involving old (Mesozoic) oceanic lithosphere. This area is located 180 km offshore
the SW Iberian Peninsula and embraces the prominent NE-SW trending Coral Patch Ridge, and part of
the surrounding deep Horseshoe and Seine abyssal plains. E-W trending dextral strike-slip faults showing
surface deformation of flower-like structures predominate in the Horseshoe Abyssal Plain, whereas NE-
SW trending compressive structures prevail in the Coral Patch Ridge and Seine Hills. Although the Coral
Patch Ridge region is characterized by subdued seismic activity, the area is not free from seismic hazard.
Most of the newly mapped faults correspond to active blind thrusts and strike-slip faults that are able to
generate large magnitude earthquakes (Mw 7.2–8.4). This may represent a significant earthquake and
tsunami hazard that has been overlooked so far.

Components: 13,212 words, 1 tables, 10 figures.

Keywords: multichannel seismics; fault-bend folds; blind thrusts; strike-slip faults; seismic hazard assessment; Iberia-
Africa boundary.
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1. Introduction

[2] Active deformation involving old (Mesozoic)
oceanic lithosphere is relatively uncommon [e.g.,
Weissel et al., 1980; Bull and Scrutton, 1990,
1992] and one of the few examples corresponds to
the external part of the Gulf of Cadiz, offshore SW
Iberia [e.g., Sartori et al., 1994; Rovere et al.,
2004]. This area, which is interpreted to be under-
lain by Jurassic-Cretaceous age oceanic litho-
sphere on the basis of refraction and wide-angle
reflection seismics (WAS), magnetic data, and ki-
nematic reconstructions [e.g., Ryan et al., 1973;
Purdy, 1975; Contrucci et al., 2004; Rovere
et al., 2004; Schettino and Turco, 2009;
Mart�ınez-Loriente et al., 2011; Sallarès et al.,
2011, 2013], undergoes quaternary deformation
consequence of the NW-SE trending Eurasia-
Africa plate convergence (3.8–5.6 mm/yr) [Noc-
quet and Calais, 2004; DeMets et al., 2010].
Seismic activity is mainly of moderate magnitude
(Mw< 6.0), although large magnitude destructive
earthquakes, such as the 1755 Lisbon Earthquake
and Tsunami nucleated in the external part of the
Gulf of Cadiz (Figure 1).

[3] During the last two decades, numerous geolog-
ical and geophysical surveys have been carried out
in the region seeking faults that may be potential
sources of large magnitude earthquakes [e.g., Sar-
tori et al., 1994; Tortella et al., 1997; Hayward
et al., 1999; Gutscher et al., 2002; Gr�acia et al.,
2003a, 2003b; Terrinha et al., 2003, 2009; Zitel-
lini et al., 2001, 2004, 2009; Bartolome et al.,
2012]. One of the outstanding results has been the
recognition of the SWIM Fault Zone (SFZ), a 600
km long dextral strike-slip deformation zone con-
necting the Gorringe Bank with the Moroccan
shelf [Zitellini et al., 2009] (Figure 1). The present
work focuses on the area of the external part of the
Gulf of Cadiz located south of the SFZ, which
comprises the Coral Patch Ridge and part of the
neighboring Horseshoe and Seine abyssal plains.
The tectonic structures of this area have been con-
sidered as inactive mainly due to (1) the lack of

instrumental seismicity associated with them
[Zitellini et al., 2009], and (2) the low resolution
of pre-existing multichannel seismic (MCS) pro-
files, where deformation of Quaternary units could
not be recognized [e.g., Sartori et al., 1994; Tor-
tella et al., 1997] (Figures 1 and 2).

[4] The aim of this study is to characterize the pat-
tern and timing of the deformation of the tectonic
structures located in the Coral Patch Ridge region
as well as Horseshoe and Seine abyssal plains,
floored by Mesozoic oceanic lithosphere (Fig-
ure 2). Using acoustic and multiscale seismic data,
we demonstrate that although there is little seis-
micity associated with these tectonic structures,
they accommodate part of the present-day Eura-
sian-African plate convergence, and are therefore
active. Finally, we evaluate the seismic potential
of the most relevant active structures on the basis
of their fault parameters (i.e., geometry, kinemat-
ics, maximum magnitude). Our findings demon-
strate that the newly mapped structures represent a
significant earthquake and tsunami hazard for the
South Iberian and North African coasts that has
not been accounted for to date.

2. Geological Setting of the External
Part of the Gulf of Cadiz

[5] The morphology and tectonic structure of the
external part of the Gulf of Cadiz results from
the complex geodynamic history undergone by
the region since the opening of the Western Te-
thyan, Central- and North-Atlantic oceans during
the Mesozoic [e.g., Tucholke et al., 2007; Schet-
tino and Turco, 2009], combined with the
changes in location and kinematics of the
Eurasian-African plate boundary [Srivastava
et al., 1990]. Consequently, the nature of the
basement in this area has been the subject of an
enduring debate [e.g., Purdy, 1975; Sartori et al.,
1994; Tortella et al., 1997; Hayward et al.,
1999; Jim�enez-Munt et al., 2010]. Recently
acquired WAS profiles suggest the presence of
oceanic crust of Jurassic age in the central Gulf
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of Cadiz [Sallarès et al., 2011], Coral Patch
Ridge [Mart�ınez-Loriente et al., 2011] and Seine
Abyssal Plain [Contrucci et al., 2004; Mart�ınez-
Loriente et al., 2011], and of serpentinized mantle

of Early Cretaceous age in the Gorringe Bank and
under the sedimentary sequence infilling the
southeastern Tagus and northern Horseshoe
abyssal plains [Sallarès et al., 2013].

Figure 1. Regional topographic and bathymetric map of the southwest Iberian margin constructed from dig-
ital grids (�90 m grid size) released by SRTM-3 and the ESF EuroMargins SWIM multibeam compilation
[Zitellini et al, 2009]. Seismicity from the Instituto Geogr�afico Nacional catalogue for the period between
1965 and 2012 is depicted [I.G.N., 2012]. Small gray dots are epicenters of earthquakes for 2.5<Mw< 3.5,
and large gray dots for earthquakes of Mw> 3.5. Black stars correspond to epicenters of historical and instru-
mental earthquakes of Mw� 6.0 that occurred in the SW Iberian margin, whose fault plane solutions are
depicted. 1: Tavira Earthquake, 27 December 1722, estimated Mw 6.5 [Baptista and Miranda, 2009]; 2: Pro-
posed epicenter location for the Lisbon Earthquake (see text for details), 1 November 1755, estimated Mw 8.5
[Buforn et al., 2004]; 3: Setubal Earthquake, 11 November 1858, estimated Mw 7.1 [Mart�ınez-Solares,
2003]; 4: 1883, estimated Mw 6.1, 5: Benavente Earthquake, 23 April 1909, Mw 6.0 [Mezcua et al., 2004]; 6:
Horseshoe Earthquake, 7 November 1915, Mw 6.2 [IGN Catalogue]; 7: 5 December 1960, Mw 6.2 [Buforn et
al., 2004]; 8: Guadalquivir Bank Earthquake, 15 March 1964, Mw 6.6 [Stich et al., 2005]; 9: Horseshoe
Earthquake, 28 February 1969, Mw 7.9–8.0 [Fukao, 1973]; 10: HF Earthquake, 12 February 2007, Mw 6.0
[Stich et al., 2007]. Red arrows show the direction of convergence between the Eurasian and African
plates from the NUVEL1 model [Argus et al., 1989]. The box outlined in white depicts the study area pre-
sented in Figure 2. HF: Horseshoe Fault [e.g., Gr�acia et al., 2003a]; LN: Lineament North and LS: Linea-
ment South [e.g., Bartolome et al., 2012]; MPF: Marquês de Pombal Fault [e.g., Gr�acia et al., 2003a;
Terrinha et al., 2003]; SVF: S~ao Vicente Canyon Fault [e.g., Gr�acia et al., 2003a]; SFZ gray band:
SWIM Fault Zone [Zitellini et al., 2009]. Inset: Plate tectonic setting of the southwest Iberian margin at
the boundary between the Eurasian and African Plates. The blue rectangle corresponds to the area depicted in
Figure 1.
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[6] The external part of the Gulf of Cadiz is char-
acterized by a moderate magnitude seismicity
mainly located between the Gorringe and Guadal-
quivir banks, and north of the SFZ [e.g., Stich
et al., 2005]. This structure, interpreted as the
present-day plate boundary between Africa and
Eurasia, would act as a limit between the seismic

and aseismic zones of the SW Iberian margin
[e.g., Zitellini et al., 2009] (Figure 1). This region
is also the source of large historical and instrumen-
tal earthquakes, such as the historical 1755 Lisbon
Earthquake and Tsunami (estimated Mw� 8.5),
the instrumental 1969 Horseshoe Earthquake (Mw
7.0–8.0) or, more recently, the 2007 Horseshoe

Figure 2. Color shaded-relief bathymetric map of the external part of the Gulf of Cadiz surveyed during the
SWIM 2006 cruise. Contour interval is 50 m. Main morphostructural features are identified. The multichannel
seismic reflection (MCS) profiles from the SWIM 2006 cruise presented in this study are depicted as thick or-
ange lines, whereas TOPAS profiles are indicated by black thick lines. Deep MCS reflection (RIFANO 1992
and IAM 1993) [Sartori et al., 1994; Tortella et al., 1997] and wide-angle seismic (WAS) profiles (P1 and P2
from NEAREST-SEIS 2008) [Mart�ınez-Loriente et al., 2011; Sallarès et al., 2011, 2013] used for this study
are located. The portion of the WAS profile P1 presented in Sallarès et al. [2013] is depicted by a black
dashed line. DSDP Sites 120 and 135 and sediment cores MD03-2703, MD03-2704, and JC27-20 are also
located.
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Fault (HF) Earthquake (Mw¼ 6.0) [Fukao, 1973;
Johnston, 1996; Baptista et al., 1998; Buforn
et al., 2004; Stich et al., 2007] (Figure 1). Differ-
ent source candidates have been proposed for the
great Lisbon Earthquake [e.g., Gutscher et al.,
2002; Baptista et al., 2003; Gr�acia et al., 2003a;
Terrinha et al., 2003; Zitellini et al., 2004, 2009;
Stich et al., 2007], although none of these models
satisfactorily accounts for the estimated magnitude
of the earthquake and tsunami arrival times
onshore.

[7] A local network of 24 broadband ocean bottom
seismometers deployed in the area during a year
recorded numerous small-to-moderate magnitude
earthquakes (ML¼ 2.2–4.8) that concentrate at a
depth of 40–60 km, with only few events nucleat-
ing shallower than 30 km [Geissler et al., 2010].
Moment tensor solutions show predominantly
reverse to strike-slip fault mechanisms with NW-
SE oriented P axes [e.g., Buforn et al., 2004, Stich
et al., 2005, 2007, 2010; Geissler et al., 2010] par-
allel to the maximum shortening (ShMAX) between
the Eurasian and African plates (Figure 1). In this
region, two main types of active faults have been
recognized: (1) NE-SW trending thrusts, such as
the Marquês de Pombal, S~ao Vicente, and HFs
[Gr�acia et al., 2003a; Terrinha et al., 2003; Zitel-
lini et al., 2004]; and (2) large WNW-ESE trend-
ing dextral strike-slip faults, such as the SFZ,
which comprises a group of faults including the
Lineament South (LS) [Rosas et al., 2009, 2012;
Terrinha et al., 2009; Zitellini et al., 2009; Barto-
lome et al., 2012] (Figure 1).

3. Data and Methods

[8] This work results from the integration of
acoustic and multiscale seismic data obtained in
the study area and dating of scientific wells and
sediment cores. Most of the data presented were
acquired during the SWIM 2006 cruise, carried
out onboard the Spanish RV Hesperides in the
frame of the ESF EuroMargins SWIM project.

[9] Bathymetric data was obtained with a Simrad
EM12S-120� multibeam system (Figure 2). Digital
terrain models (50 m grid size) and slope maps
were processed using the Caraibes-TD software
(IFREMER, France) (Figures 2, 3a, and 3c). This
dataset was merged with the EuroMargins SWIM
bathymetric compilation [Zitellini et al., 2009]
(Figure 1) and provides detailed morphostructural
information. Acoustic backscatter data from the
Simrad EM-120 echosounder was also acquired

and processed to construct a reflectivity mosaic. In
the study area, high-reflective areas (dark gray)
correspond to coarse sediments (turbidites), steep
slopes and/or rock outcrops whereas low-
reflectivity areas (pale gray) correspond to hemi-
pelagic sediments (Figure 3b). Furthermore, with
the aid of high-resolution (1–5.5 kHz) Simrad
TOPAS PS18 parametric sounder, we obtained
stratigraphic and tectonic information from the
uppermost tens of meters (50–80 m) below the
seafloor.

[10] A grid of 11 MCS profiles (spaced �7 nm)
from the SWIM 2006 dataset (Figure 2) was used
to characterize the geometry and kinematics of the
newly identified structures and to constrain the
timing of deformation. The SWIM 2006 MCS pro-
files were acquired using a 1050 c.i.-array consti-
tuted by eight airguns towed at 6 m depth and an
analogical Teledyne streamer with 2.4 km of
active section consisting of 96 channels (25 m sep-
aration) towed at 7 m depth. Data were recorded at
a sampling rate of 2 ms and record length was 11 s
two-way travel time (TWTT) with a shot interval
of 37.5 m. Ten additional MCS profiles acquired
during the RIFANO 1992 [Sartori et al., 1994]
and IAM 1993 [Tortella et al., 1997] surveys have
also been used to complete the regional tectonic
interpretation (Figure 2).

[11] Lithostratigraphic information from the
Deep Sea Drilling Program (DSDP) Site 135
[Hayes et al., 1972], located on top of the Coral
Patch Ridge and drilled down to 689 mbsf
(meters below the seafloor), was used to date
specific seismic horizons and to assign litholo-
gies to the seismic units identified in the MCS
profiles (Figures 4 and 5). In addition, age con-
trol of key horizons in the TOPAS profiles was
established on the basis of sediment cores
located in the Horseshoe (MD03–2703 and
MD03–2704) and Seine abyssal plains (JC27-20)
(Figure 2). Sediments consisted in an alternance
between hemipelagic intervals and turbidite
events [e.g., Lebreiro et al., 1997; Gr�acia et al.,
2010]. Calibrated 14C dates reveal Holocene age
sediments at the seafloor of the abyssal plains,
with values of 615–725 Cal yr B.P. at 50–52 cm
below the seafloor in the Horseshoe Abyssal
Plain and 2355–2476 Cal yr B.P. at 3–5 cm
below the seafloor in the Seine Abyssal Plain.
This information is not only valuable for inter-
pretation of TOPAS profiles but also for ascer-
taining the age of faults that rupture up to the
seafloor.
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3.1. Seismic Processing and Interpretation

[12] Standard MCS processing was accomplished
using PROMAX software, including data
resampled from 2 to 4 ms, channel and shot edit-
ing, top mutes picked in the shot gather domain,
true amplitude recovering, FX-decon, ensemble
predictive deconvolution, and geometry common
depth point reflection gather (Figure 5a). Because
this work focuses on the characterization of active

structures and their seismic potential, it is essential
to obtain the real geometry of the structures, and
this is only possible using depth-converted seismic
sections. To this end, we performed a Prestack
Kirchoff Depth Migration (PSDM) in four selected
MCS profiles (SW03, SW07, SW13, and SW16)
(Figures 2 and 5). Velocity models (Figure 5b)
were constructed based on depth-focusing error
analysis of the MCS data using a finite-difference
ray-tracer of the SIRIUS software package (GX

Figure 3. (a) Slope map of the external part of the Gulf of Cadiz where main features are located. The
SWIM Fault Zone (SFZ) [Zitellini et al., 2009] is depicted as a transparent gray band. (b) Acoustic backscatter
map of the Coral Patch region. High reflectivity is depicted in dark gray and low reflectivity in pale gray.
White rectangle locates Figure 3b. (c) 3-D bathymetric map of the study area, view from the west. Main fea-
tures are labeled. HF: Horseshoe Fault ; NCP: North Coral Patch Ridge Fault ; SCP: South Coral Patch Ridge
Fault ; SH1 to SH6: Seine Hills faults.
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Technology) [McBarnet, 2000]. An example of
the resulting PSDM profile (SW13) is shown in
Figure 5c. The velocity models obtained for the
profiles SW03, SW07, SW13, and SW16 were
used to perform the poststack Kirchoff time migra-
tion of all the profiles. This was possible because
the profiles were close to each other. Finally, we
used the SMT Kingdom Suite software to repre-
sent the stratigraphic and structural interpretation
for the whole MCS dataset.

[13] Seismic acquisition in areas with prominent
bathymetry, like our study area, can result in poor
imaging, which may be aggravated depending on
the sense of data gathering (toward foreland or hin-
terland). Folds can be distorted or partially imaged
in seismic sections and poor imaging of steeply
dipping fold limbs is not uncommon (Figure 6).
Faults were identified in our MCS profiles by: (1)
fault cutoffs: terminations of reflections or abrupt
changes in reflection attributes at fault surfaces;
(2) terminations of folds limbs or kink bands; and
(3) direct fault plane reflections produced by
changes in velocity and density across or within

fault zones. Cutoffs and fault plane reflections
directly constrain fault positions [e.g., Shaw et al.,
2005] (Figure 6). At the tip of the upper flats of
some thrusts faults structural wedges were identi-
fied, which contain two connected fault segments
that bound a triangular, or wedge shaped, fault
block. The two fault segments merge at the tip of
the wedge. Slip on both faults accommodates prop-
agation of the wedge tip and causes folding [Med-
wedeff, 1989]. Structural wedges are characterized
by: (1) presence of coeval fore and back thrusts;
(2) folding localized along an active axial surface
pinned to the wedge tip; and (3) folds in the foot-
wall of the backthrust that produce structural relief
[Shaw et al., 2005] (Figure 6).

[14] We define active structures as the ones
deforming the Quaternary units. In this case, our
criterion is based on (a) surface ruptures generated
by dip-slip and strike-slip faults, and (b) develop-
ment of young folding and growth-strata configu-
ration generated by blind-thrust faults. The ages of
growth-strata define the timing of deformation. In
contractional fault-related folds, growth-strata thin

Figure 4. Seismotratigraphy based on DSDP Site 135 [Hayes et al., 1972] located at the intersection of pre-
stack depth migrated profiles SW07 and SW13 (see Figure 2). Units previously defined by Tortella et al.
[1997], Hayward et al. [1999], Medialdea et al. [2004] in the external part of the Gulf of Cadiz have also
been included for reference. mbsf: meters below the seafloor; CPR: Coral Patch Ridge; SAP: Seine Abyssal
Plain; s-HAP: southern Horseshoe Abyssal Plain. I.UO-PQ: Upper Oligocene to Quaternary; Ia.PQ: Plio-
Quaternary; Ib.MM-P: Middle Miocene-Pliocene; Ic.HGU: Horseshoe Gravitational Unit, Upper Miocene;
Id.UO-MM: Upper Oligocene-Middle Miocene; II.UC-LE: Upper Cretaceous-Lower Eocene; III.C: Creta-
ceous; IV.LC: Lower Cretaceous; V.UJ: Upper Jurassic; VI and Bs: Basement; Serp.: Serpentinized.
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out across fold limbs and toward structural highs
(Figures 5 and 6). Growth fold patterns imaged in
seismic data often yield insights into the folding
mechanism and sediment-to-uplift ratio positions
[Shaw et al., 2005].

4. Morphology and Stratigraphy of the
Coral Patch Ridge and Neighboring
Abyssal Plains

4.1. Seafloor Morphology

[15] We characterized the three main morphostruc-
tural domains of the external part of Gulf of Cadiz

(Horseshoe Abyssal Plain, Coral Patch Ridge and
Seine Abyssal Plain) on the basis of high-
resolution bathymetric maps (Figures 2 and 3c),
slope map (Figure 3a) and backscatter data
(Figure 3b). The eastern Horseshoe Abyssal Plain
is a NE-SW trending 4850 m deep basin bounded
to the north by the Gorringe Bank and to the south
by the Horseshoe and Coral Patch Ridge faults
(Figures 2 and 3c). The slope map illustrates the
flat character of the Horseshoe Abyssal Plain with
slopes lower than 0.1� (Figure 3a). The high/
medium reflectivity in the acoustic backscatter
map (Figure 3b) suggests the presence of turbidite
and hemipelagic sediments in the Horseshoe
Abyssal Plain, as confirmed by sediment cores

Figure 6. Prestack depth migrated (PSDM) section of MCS profile SW13 across tectonic structure SH3 (see
location in Figure 5). (a) Uninterpreted section depicting the criteria followed in this study for stratigraphic
and structural interpretation. Orange dots depict the hanging wall cutoffs and green dots the footwall cutoffs.
Red vertical lines show the progressively thinning of the growth strata toward the structural high. (b) Tectonic
and seismostratigraphic interpretation of the section. See text for details. No vertical exaggeration.
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[e.g., Lebreiro et al., 1997; Gr�acia et al., 2010].
In addition, groups of aligned E-W trending elon-
gated highs, 7–16 km long, 4 km wide, and 20–
165 m high are also identified (Figures 2 and 3).
These ridges are visible in the slope map with gra-
dients between 3� and 5� and can be distinguished
by their lower reflectivity (Figure 3). They corre-
spond to the westward continuation of the SWIM
Faults [e.g., Zitellini et al., 2009; Bartolome et al.,
2012].

[16] The Coral Patch Ridge is a rhomboidal-
shaped ridge with a long E-W axis of 160 km that
separates the Horseshoe Abyssal Plain from the
Seine Abyssal Plain (Figures 2 and 3c). Morpho-
logically, the Coral Patch Ridge includes two
main levels: the northern and deepest (4250 m)
part of the ridge, limited by the North Coral Patch
Ridge (NCP) fault, and the southern and higher
part (3080 m depth), bounded by the South Coral
Patch Ridge (SCP) fault (Figure 3). The slope map
illustrates the steep escarpments that form the
ridge, with average slopes between 7� and 10�

locally reaching up to 20� (Figure 3a). The top of
the Coral Patch Ridge is a relatively flat area with
slopes between 0.5� and 2�. In the bathymetric and
slope maps we can distinguish a set of WNW-ESE
linear features (50 km long, 100 m high) across
the Coral Patch Ridge that are parallel to the SFZ
(Figures 2, 3a, and 3c). The acoustic backscatter
map reveals low reflectivity in the area, as
expected for a homogeneous sedimentary cover,
and higher in the steep fault scarps and rocky out-
crops (Figure 3b).

[17] The northeastern part of the Seine Abyssal
Plain is shallower than the Horseshoe Abyssal
Plain (4450 m depth) and is limited to the north
by the Coral Patch Seamount and Coral Patch
Ridge and to the east by the Gulf of Cadiz Imbri-
cated Wedge (GCIW) (Figures 1, 2, and 3c). The
Seine Abyssal Plain is a flat basin with slopes
close to 0� (Figure 3c) and contains several NE-
SW trending elongated ridges, hereafter referred
to as the Seine Hills (SH1 to SH6). The largest
hill is 55 km long and the highest rises 740 m
above the surrounding seafloor (Figures 2, 3a, and
3c). The Seine Hills have slopes between 4� and
20� and moderate reflectivity (Figure 3a and 3b).
Other features include some WNW-ESE trending
lineaments (55 km long, 5 km wide) that are sub-
parallel to the SFZ, although fewer than in the
Coral Patch Ridge area (Figures 2 and 3). In the
eastern part of the Seine Abyssal Plain, circular
salt diapirs (4–8 km diameter) are also observed,

rising between 100 and 200 m above the seafloor
(Figures 2 and 3).

4.2. Seismostratigraphy

[18] Seismostratigraphic units have been corre-
lated with units that were previously defined in
the area [Tortella et al., 1997; Hayward et al.,
1999; Medialdea et al., 2004] as well as with the
DSDP Site 135 [Hayes et al., 1972] (Figure 4),
which is crossed by two of the PSDM seismic
profiles (SW07 and SW13) (Figures 2 and 5).
The unprecedented higher resolution of the
SWIM 2006 MCS dataset enabled us to revise
the existing units and to define new subunits and
seismic horizons in the first km below the sea-
floor (Figures 4 and 5). From top to bottom, the
following six seismostratigraphic units (I–VI)
were defined.

4.2.1. Unit I: Upper Oligocene to Quaternary
[19] This unit (0–325 m below the seafloor) is
composed of light gray nannoplankton chalk ooze
and pelagic carbonates interbedded with sandy
layers [Hayes et al., 1972]. Within this unit, we
identified three major discontinuities separating
four subunits (Ia, Ib, Ic, and Id) with a distinctive
seismic character: Ia—PlioQuaternary. This is
characterized by parallel reflectors of low-
medium amplitude and discontinuous reflectors
toward its base; Ib—Middle Miocene-Pliocene.
The seismic facies of this subunit is variable,
from low-amplitude and semicontinuous reflectors
in the Coral Patch Ridge and Seine Abyssal Plain
to higher amplitude and continuous reflectors in
the Horseshoe Abyssal Plain; Ic—Horseshoe
Gravitational Unit (HGU). This subunit corre-
sponds to a large allochthonous body emplaced
during the Upper Miocene (Tortonian), tapering
out the underlying subunit [e.g., Torelli et al.,
1997; Tortella et al., 1997; Hayward et al.,
1999; Medialdea et al., 2004; Zitellini et al.,
2004; Iribarren et al., 2007]. The HGU is a re-
gional marker observed throughout the Horseshoe
Abyssal Plain and is characterized by high-
amplitude chaotic facies with numerous diffrac-
tions and hyperbolic reflections. Few internal
reflectors can be identified; Id—Upper Oligo-
cene—Middle Miocene. This subunit is observed
in the Coral Patch Ridge and Seine Abyssal Plain,
but rarely in the Horseshoe Abyssal Plain. It
shows parallel, continuous well-stratified, high-
amplitude reflectors and onlaps the underlying
unit. The top and bottom are high-amplitude hori-
zons corresponding to regional unconformities
(Figures 4 and 5).
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4.2.2. Unit II: Upper Cretaceous (Maastrichtian)
to Lower Eocene
[20] This unit (325–450 m below the seafloor) is
composed of terrigenous sediments and lime-
stones at its base [Hayes et al., 1972]. It presents
continuous and high-amplitude reflectors that
change to discontinuous and lower amplitude ones
toward its base. The top is constituted by a promi-
nent unconformity marked by a continuous high-
amplitude reflector that corresponds to a sedimen-
tary hiatus from the Lower Eocene to Upper Oli-
gocene (Figures 4 and 5).

4.2.3. Unit III: Cretaceous
[21] This unit (450–650 m below the seafloor) is
composed of green and black shales interbedded
with limestone, silt and chert layers [Hayes et al.,
1972]. It is characterized by parallel, semicontinu-
ous, low-amplitude to transparent reflectors. A high-
amplitude horizon at the base of the unit represents a
major unconformity of Aptian age (Figures 4 and 5).

4.2.4. Units IV and V: Lower Cretaceous–Upper
Jurassic
[22] The oldest unit drilled at the DSDP Site 135
was Unit IV (Lower Aptian, 650–689 m below the
seafloor), which is composed of olive gray and
black marls and limestones [Hayes et al., 1972].
Unit V has been assigned an age of 155–180 mil-
lion years (Upper Jurassic) [Hayes et al., 1972]. In
the Coral Patch Ridge and Seine Abyssal Plain
both units are restricted to V-shaped basins and
their seismic character is very variable, showing
parallel reflectors onlapping the top of basement
ridges. In the Horseshoe Abyssal Plain, Unit IV
overlies the basement (Figures 4 and 5).

4.2.5. Unit VI: Basement
[23] This unit can be divided into two types
according to their origin and present-day struc-
tural pattern. In the southernmost part of the
Horseshoe Abyssal Plain, the Coral Patch Ridge
and the Seine Abyssal Plain, the basement is
interpreted to be made of Jurassic-age oceanic
crust based on WAS, MCS, and magnetic data
[Contrucci et al., 2004; Rovere et al., 2004;
Mart�ınez-Loriente et al., 2011]. In these areas, the
basement is structured in half-grabens and is char-
acterized by high-amplitude reflectors with poor
lateral continuity that become weaker, chaotic and
more diffracted with depth. In contrast, recent
WAS data modeling suggests that the basement of
the northern part of the Horseshoe Abyssal Plain
is made of partially serpentinized peridotite that
was exhumed by passive mantle denudation in the
Lower Cretaceous [Sallarès et al., 2013].

5. Tectonic Structure of the Coral
Patch Ridge and Neighboring Abyssal
Plains

5.1. Eastern Horseshoe Abyssal Plain

[24] Several MCS profiles show the sedimentary
infill of the eastern part of the Horseshoe Abyssal
Plain (Figures 2, 5, and 7). Maximum thickness of
the units is attained in the centre of the plain,
decreasing toward the edges of the basin. Most of
the acoustic basement (Unit VI) of the Horseshoe
Abyssal Plain has been interpreted to be made of
serpentinized mantle [e.g., Sallarès et al., 2013],
and displays a very irregular upper surface at a
depth between 2 and 5.5 km below the seafloor in
profile SW13. However, preliminary modeling of
WAS data suggests that the basement at the south-
ernmost part of the Horseshoe Abyssal Plain and at
the footwalls of the HF and Coral Patch Ridge,
might correspond to oceanic crust [Mart�ınez-Lo-
riente et al., 2011]. Overlying, a well-developed
Unit V (�1 km thick) is present (Figures 5, 7a, 8a,
and 8b). Unit IV has a variable thickness, with a
maximum of �1.7 km in profile SW03. Mimicking
the top surface of Units IV, III, and II deepen to-
ward the centre of the basin and have more constant
thicknesses of �400 m. The upper boundary of
Unit II corresponds to an erosive surface generated
by excavation and erosion during the emplacement
of subunit Ic (HGU), which fills the basin (maxi-
mum thickness of 1.7 km in SW13) and pinches
out toward the edges of the Horseshoe Abyssal
Plain (Figures 5, 7, and 8). Profile SW03 shows
how the reverse HF and related splay faults uplift
the entire sedimentary sequence (i.e., about 800 m
of vertical offset in Unit IV), indicating major base-
ment involvement in the structure (Figure 7a).

[25] On the basis of their activity, two main fami-
lies of subvertical faults are observed in the Horse-
shoe Abyssal Plain: (a) those affecting the
Mesozoic up to Lower Eocene sediments; and (b)
those that deform all the sedimentary sequence
from the basement to the seafloor (Figure 7). In
the former case, we refer to tectonic structures of
little entity that generate folds, discontinuities and
small vertical displacements within the Mesozoic
Units, although few of the structures deform the
sediments up to the top of Unit II (Figure 7). The
later family is characterized by subvertical faults
that cut, fold and displace the whole sedimentary
sequence up to the seafloor, generating small (<16
km long, <160 m high), elongated hills observed
in the Horseshoe Abyssal Plain (Figure 3). Most of
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these structures show flower-like geometries char-
acteristic of strike-slip faults. However, as some of
them show a dip-slip component, transpressive
behavior can also be proposed (Figure 7). Profile
SW13 shows how some of these faults produce a
significant vertical displacement (i.e., 600 m at the
top of Unit IV), progressively decreasing its offset
from the top of the basement to Unit I (e.g., SS1 in
Figure 7c). The most prominent of these active
faults corresponds to the LS, a WNW-ENE trend-
ing dextral strike-slip fault that extends for 180 km
across the Horseshoe Abyssal Plain and part of the
GCIW (Figures 1–3) [e.g., Zitellini et al., 2009;
Bartolome et al., 2012]. The LS corresponds to a
2–4 km wide fault zone with transparent seismic
facies that is bounded by subvertical faults that cut
across the entire sedimentary sequence from at
least 11 km deep up to the seafloor. The LS pro-
duces approximately 500 m of vertical displace-
ment of the top of Unit IV and 200 m of the top of
Unit II (Figure 7d).

[26] TOPAS profiles provide evidence of the sur-
face expression of the subvertical faults and the LS
across the Horseshoe Abyssal Plain, showing 2–4
km wide anticlines bounded by fault surface rup-
tures (Figure 7, Sections I–III). These active strike-
slip faults vertically displace a widespread, 3–5 m
thick horizon of transparent facies corresponding to
the turbidite event E13 (Figure 7, Sections I–III),
whose age is 13,350–13,505 Cal yr B.P. based on
14C dating of cores MD03–2703 and MD03–2704
[Gr�acia et al., 2010]. This allows us to calculate a
maximum cumulative vertical slip-rate of these
subvertical faults since the late Pleistocene, which
is 0.6–0.9 mm/yr for the first two and about 2.2
mm/yr for the LS (Figure 7, Sections I–III).

5.2. Coral Patch Ridge

[27] The acoustic basement of the Coral Patch
Ridge is characterized by tilted blocks of oceanic
crust originally structured in half-grabens and gen-
erating an irregular topography [Mart�ınez-Loriente
et al., 2011]. The top of the basement is located
between 1.2 km and 2.4 km depth below the sea-
floor (Figure 5). Unit V sediments infill the
wedge-like depocenters generated during the rota-
tion of the half-grabens, and develop prograda-
tional configurations on the hanging walls and
aggradational packages at the top of footwalls
(Figures 5 and 8). This gives rise to large varia-
tions in thickness, from 1500 m at the half-grabens
to 400 m at the top of the footwalls. The overlying
Units IV to II are characterized by a relatively con-
stant thickness (100–240 m thick) throughout the

area, although they are thinner when compared to
the same units in the Horseshoe Abyssal Plain
(Figures 5 and 8).

[28] The Coral Patch Ridge is formed by two main
NW-verging anticline thrust faults : the 65 km
long NCP fault and the 83 km long SCP fault (Fig-
ures 3 and 8). These thrusts are characterized by
backlimbs that dip less than the fault-ramp and
forelimbs that are quite narrow in relation to their
long backlimbs, suggesting that they were gener-
ated by shear fault-bend folding [Suppe et al.,
2004]. The seismic images show the ramps of the
fault-bend folding thrusts, whereas the lower flats
are probably located below the window of acquisi-
tion. The grid of MCS profiles across Coral Patch
Ridge allowed us to characterize the lateral varia-
tion of these two sets of thrusts that uplifted the
ridge. The westernmost profiles (e.g., SW09) show
the NW-verging NCP fault as a blind thrust, dis-
placing and folding the whole stratigraphic
sequence up to the Plio-Quaternary subunit Ia
(Figures 2 and 8a). The profiles across the central
part of the Coral Patch Ridge (e.g., SW11) show
how the NCP fault reaches up to the seafloor
(Figure 8b) and the easternmost profile (SW13)
depicts the fault termination to the east. The verti-
cal displacement generated by the NCP fault dis-
plays maximum offset values in the central part,
500 ms (TWTT) for the top of Unit V and 420 ms
(TWTT) for the top of Unit II (Figure 8b). The
SCP thrust fault has a NW-ward sense of displace-
ment, folding and uplifting the southeastern
hanging-wall fault block, and cutting through the
whole stratigraphic sequence up to the seafloor
(Figure 8). The vertical slip of the SCP fault is rel-
atively constant with an average value of 540 ms
(TWTT) for different horizons, such as the top of
Units V, II, and I. Both thrusts (NCP and SCP
faults) show higher fault dips within the first km
below the seafloor (average 40�), decreasing
within the basement (average 25�) (Figure 8).

[29] Minor subvertical to normal faults locally
affects the top of the anticlines. A secondary
active thrust south of the SCP fault is observed in
profiles SW14 and SW15 (Figures 8c and 8d) with
little vertical displacement. This thrust would
propagate from a shallow depth detachment layer
located at the uppermost part of the oceanic crust.
Finally, the Coral Patch Ridge region is also
affected by active positive strike-slip flower struc-
tures (Figure 8a) and transpressive subvertical
faults that affect the sedimentary sequence from
the basement to subunit Id (Mid-Miocene),
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generating folds and small vertical displacements.
Most of these structures would also be rooted in
the shallow detachment layer mentioned above.
Buckle folds have been identified at the front of
NCP and SCP thrusts (Figure 8).

5.3. Northern Seine Abyssal Plain

[30] In this part of the Seine Abyssal Plain, the
acoustic basement is also structured in half-
grabens as imaged in the MCS profiles (Figures
8a, 8b, and 9). The top of the basement deepens to-
ward the SE, at about 5 km depth below the sea-
floor in the southern Seine Hills area (Figure 9).
Unit V infilled the original grabens and show large
thickness variations, with a maximum of �4 km
thick in the basin located between SH4 and SH5
(Figure 9). Units IV to II are concordant with the
underlying Unit V and are thin, with a fairly con-
stant thickness (�400 m) in the whole Seine
Abyssal Plain area. In contrast, the onlapping sub-
unit Id, which is exceptionally thick, shows a max-
imum thickness south of SH6 (1 km thick) that
progressively thins out toward the NE (150 m
thick). Subunits Ia and Ib are parallel and are of
relatively constant thickness in the Seine Hills
area, although the thickness of subunit Ib locally
increases (�750 m) north of SH2 and south of
SH6 (Figure 9).

[31] The northeastern Seine Abyssal Plain region
is also characterized by two types of faults: (1)
NE-SW trending reverse faults; and (2) WNW-
ESE trending strike-slip faults. The former faults
are referred to as the Seine Hills, which is a suc-
cession of ridges (SH2 to SH6) that correspond to
NE-SW trending thrust-folds with NW and SE ver-
gences (Figure 9). These thrusts may have devel-
oped by fault-bend folding (e.g., SH2 and SH3)
[Suppe, 1983] or by fault-propagate folding (e.g.,
SH5) [e.g., Allmendinger, 1998]. At the tip of the
upper flats of these thrusts, structural wedges (or
triangle zones) [Medwedeff, 1989] were developed,
having generated associated back-thrusts and kink
folds that accommodate the shallow deformation
near the seafloor (Figures 6 and 9). In the case of
the fault-propagation folds (e.g., SH5), the MCS
images show asymmetric folding with narrow and
steep forelimbs in contrast to their corresponding
backlimbs. The SH4 and SH5 are structured as a
‘‘classic’’ trishear fault-propagation fold formed by
distributed shear within a triangular zone that
expands outward from a fault tip [Erslev, 1991]. In
the case of the SH6, a trishear fault-propagation-
fold developed at its tip on the NW side, and

shows a wedge structure at depth. Furthermore, the
SH6 may involve a basement normal fault (i.e.,
oceanic crust) reactivated as reverse (Figure 9). In
general, the Seine Hills faults deform all the units
from the oceanic crust to the uppermost Quater-
nary sediments by faulting, blind faulting or fold-
ing, and originate >450 m high, �50 km long
reliefs as observed on the bathymetric maps (Fig-
ures 2 and 3). The Seine Hills faults (SH2 to SH6)
show a higher dip (average 45�) decreasing from
the subsurface to the basement (Figure 9), where
the fault ramps tend to flatten (20–30�), probably
toward the base of the crust (Figure 10). Unfortu-
nately, the lower flats of the thrusts could not be
imaged by our MCS acquisition system. On the ba-
sis of the PSDM profile SW13, which runs across
the central part of the Seine Hills, we calculated
the vertical displacement generated by these faults.
The vertical offset is constant for the top of the
Units V to II, and corresponds to 650 m for SH2,
1350 m for SH3, 400 m for SH4, and 250 m for
SH5 (Figure 9). Although the Seine Hills are
mainly blind thrusts, the growth-strata configura-
tion of the youngest sediments confirms the
present-day activity of these faults (Figure 6).

[32] Between the major Seine Hills thrusts, sec-
ondary blind thrusts showing kink-folds and asym-
metric folds are also imaged and likely root in a
common shallow detachment level that continues
toward the Coral Patch Ridge area (Figures 8 and
9). The SH1 is a 38 km long isolated hill located
west of the SH2-SH6 succession (Figure 3).
According to its morphological expression and in-
ternal geometry, we distinguish two main seg-
ments corresponding, from west to east, to an 18
km long, W-E trending transpressive fault (profile
SW09, Figure 8a), and a 20 km long, NE-SW
trending reverse fault (profile SW11, Figure 8b).
The strike-slip segment is characterized by sub-
vertical faults defining a positive flower structure,
whereas the thrust segment shows a fault with
lower dip (45�), which flattens (20�) at the base-
ment (Figure 8). Both SH1 segments fault and fold
the sedimentary sequence from the basement up to
the seafloor (Figures 8a and 8b). TOPAS data
across the eastern segment of the SH1 show a sur-
face rupture and anticline generated by the thrust
fault (Figure 8, Section II).

[33] The strike-slip faults are mainly located north
of the Seine Hills. In the MCS profiles, they are
imaged as subvertical faults developing positive
flower-like structures and showing seafloor rup-
tures in the TOPAS profiles (Figure 8a, Section I
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and Figure 9a, Section II). In addition, slope fail-
ures probably related to the activity of the neigh-
boring faults are also identified. They show
characteristic transparent seismic facies in the
TOPAS profiles, such as the mass transport depos-

its located near SH1 and SH5. For instance, in the
small basin located between the SCP and SH1
faults, a large mass transport deposit (7 km wide
and up to 15 m thick) is offset by a vertical fault
reaching up to the seafloor (Figure 8, Section I).

Figure 10. (a) Map of the topography of Unit VI (basement) in seconds (TWTT). (b–d) Isochore maps in
seconds (TWTT) of Unit V (Upper Jurassic), Units IV-II (Cretaceous to Lower Eocene), and Unit I (Upper
Oligocene to Quaternary), respectively. The Horseshoe Abyssal Plain (HAP), the Coral Patch Ridge (CPR),
and the Seine Abyssal Plain (SAP) domains are identified. The SWIM 2006 profiles are depicted as thin black
lines. GB: Gorringe Bank; g: graben; h: horst; LS: Lineament South; p.r. : peridotite ridge.
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Further evidence of mass wasting is located in the
basin north of SH5, where a succession of three
mass transport deposits has also been identified
(Figure 9, Section I).

6. Discussion

6.1. Geodynamic Evolution of the Coral
Patch Ridge Region

[34] The Gulf of Cadiz has undergone successive
deformation phases corresponding to the evolu-
tion of the African, Iberian, and Eurasian Plate
boundaries since the initial rifting of the Central
and North Atlantic [e.g., Schettino and Turco,
2009]. We relate our results to the main kinematic
phases and propose a geodynamic evolution of the
Coral Patch Ridge region. To illustrate the tecto-
nosedimentary evolution of the area, we produced
a basement and isochore (i.e., equal vertical thick-
ness) time maps (in seconds TWTT) of the seis-
mostratigraphic units associated with the three
main deformation phases (Figure 10). In addition,
we present a regional cross section from the
Horseshoe to the Seine abyssal plains synthesizing
the relationship between the seismostatigraphic
units and main tectonic structures (Figure 11).

[35] According to regional geodynamic recon-
structions [Schettino and Turco, 2009], the oce-
anic crust conforming the basement of the Coral
Patch Ridge and the Seine Abyssal Plain areas
was probably generated during the early stages of
seafloor spreading of the northeastern segment of
the Central Atlantic (i.e., Jurassic), [e.g., Con-
trucci et al., 2004; Rovere et al., 2004; Mart�ınez-
Loriente et al., 2011]. The rifting process resulted
in tilted, extensional blocks following a horst and
graben architecture, as observed in the MCS pro-
files (Figures 8, 9, and 11). On the basement map
of this area, we identify a topographically ele-
vated area in the Coral Patch Ridge and a succes-
sion of �E-W-aligned elongated highs and lows,
likely related to the original host-and-graben
structure (Figure 10a). The exhumed mantle
rocks, inferred to underlie the sedimentary pile of
most of the Horseshoe Abyssal Plain, appear to
have been exhumed in the early opening of the
North Atlantic during the Lower Cretaceous
[Schettino and Turco, 2009; Sallarès et al., 2013]
(Figures 7 and 11). The basement map of the
Horseshoe Abyssal Plain domain reflects a very
irregular surface, with a large topographic low
and locally elongated highs interpreted as
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peridotite ridges. Toward the NW, a high bounded
by steep slope corresponds to the base of the Gor-
ringe Bank (Figures 7a and 10a).

[36] Units V to II were deposited as the Atlantic
rift-drift transition continued during the Upper Ju-
rassic to the Lower Eocene [Schettino and Turco,
2009]. Their terrigenous composition suggests
deposition in an abyssal plain environment [Hayes
et al., 1972]. Unit V, present at the Coral Patch
Ridge, Seine Abyssal Plain, and locally at the
southernmost Horseshoe Abyssal Plain, infills
depressions between tilted basement blocks with
growth-strata configuration, suggesting that sedi-
mentation took place synchronously with the exten-
sion of the NE segment of the Central Atlantic
(Figures 8, 9, and 11). In the isochore map of Unit V,
the minimum thickness areas (also �E-W aligned)
coincide with the location of the horsts, whereas the
thicker areas are found within the grabens (Figures
10a and 10b). We refer to Unit V as the synexten-
sional sedimentary sequence in the Coral Patch
Ridge and Seine Abyssal Plain areas. Above this
unit and following a concordant configuration, the
isochore map of Units IV-II shows fairly constant
low thickness (0.2–0.4 s TWTT or 200–350 m thick)
in agreement with a period of tectonic quiescence in
the region (Figures 8, 9, 10c, and 11).We refer to the
Units IV-II as the postextensional sedimentary
sequence in the Coral Patch Ridge and Seine
Abyssal Plain domains. In contrast, in the Horseshoe
Abyssal Plain Units IV-II are thicker (<2 s TWTT)
than in the southern area and show significant lateral
variations in thickness (Figure 10c). These observa-
tions may indicate the generation of space to accom-
modate sediments due to tectonic activity (i.e., the
early opening of the North Atlantic). In this domain
we refer to this succession as the synextensional sed-
imentary sequence.

[37] After the Lower Oligocene plate reorganiza-
tion (i.e., chron C13n), convergent motion between
Africa and Eurasia was accommodated along the
southern margin of Iberia. Since then, Iberia has
remained fixed relative to Eurasia and the current
plate boundary between North Africa and Iberia
was established [Schettino and Turco, 2009]. Dur-
ing this phase took place the sedimentation of Unit
I (Upper Oligocene to present day), which consists
mainly of pelagic sediments. The change from ter-
rigenous to pelagic sedimentation took place fol-
lowing a post-Early Eocene to pre-Late Oligocene
uplift and faulting period during which the topo-
graphic hills were uplifted [Hayes et al., 1972]. The
isochore map of Unit I shows a minimum thickness

in the uplifted structural highs of the Coral Patch
Ridge and Seine Hills, whereas the depocenters are
northwest from it (Figure 10d). In the Seine
Abyssal Plain, growth-strata configuration of the
subunits is identified (Figures 5, 8, 9, and 11) sug-
gesting that sedimentation of Unit I has been syn-
chronous to the activity of the uplifting structures
(NCP, SCP, and SH). Thus, we refer to Unit I as
the syncompressional sedimentary sequence.

[38] Between the predominantly terrigenous sedi-
mentation of Unit II (Lower Eocene) and subunit
Id (Upper Oligocene) dominated by pelagic sedi-
ments, there is a significant unconformity corre-
sponding to a regional sedimentary hiatus (Figures
4, 5, 8, 9, and 11). Subunit Id is not identified in
the Horseshoe Abyssal Plain probably because of
erosion during the emplacement of subunit Ic
(HGU) in the Upper Miocene (Tortonian) [e.g.,
Torelli et al., 1997] (Figures 7, 8, and 11). Within
the HGU, we identified few subhorizontal reflec-
tors, suggesting mass transport deposition during
several episodes (Figure 7). The lack of interdigi-
tations between the edges of this subunit and sur-
rounding sediments could be explained either by
sedimentation in a very short period of time or by
a successive deposition in increasingly smaller
areas within the HGU [Iribarren et al., 2007] (Fig-
ures 7 and 11). All the subunits of Unit I vary con-
siderably in thickness, attaining maximum
thickness in the abyssal plains and pinching out
into a wedge toward the top of the Coral Patch
Ridge. In the isochore map of Unit I is observed
that the LS separates two depocenters, suggesting
that the activity of this fault may have influenced
the sediment distribution of this unit.

[39] As for the structural pattern of the region, flat-
ramp-flat geometries of large thrusts dominate in
the Coral Patch Ridge and Seine Abyssal Plain
areas (Figures 8, 9, and 11). In the shallow part of
the Seine Hills, structural wedges developed at the
tips of the upper flats with associated back-thrusts.
In the MCS profiles, these structures appear to cut
and displace the synextensional and postexten-
sional sedimentary sequences, and in some cases,
the syncompressional unit (Figure 11). In the
Coral Patch Ridge domain, the shallow part of the
SCP fault is imaged displacing both sedimentary
sequences up to the seafloor, whereas the NCP
fault corresponds to a blind-thrust. The main
thrusts (NCP, SCP, SH2, SH3, SH4, and SH6)
probably root in lower flats that are outside the
MCS acquisition window. According to the
accepted fault-related folding theory [e.g., Shaw
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et al., 2005], these thrusts are interpreted as propa-
gating from a common deep detachment layer,
which could be located either at the base of the
crust (Moho discontinuity) in agreement with Sar-
tori et al. [1994] and Zitellini et al. [2009] or at
the base of the serpentinized area in the uppermost
mantle [Mart�ınez-Loriente et al., 2011]. On the ba-
sis of the wide-angle seismic profile P1 crossing
this region, the depth of the Moho is about 7–8 km
depth below the seafloor and the maximum depth
of the serpentinized area in the upper mantle is
between 12 and 13 km depth below the seafloor
[Mart�ınez-Loriente et al., 2011] (Figure 11). In the
Coral Patch Ridge and Seine Abyssal Plain
domains, secondary thrusts and transpressive strike-
slip faults cut and offset the basement, the synex-
tensional and postextensional sequences and fold
the syncompressional units. These structures are
interpreted as rooting in a common shallow level
located at the uppermost oceanic crust (�2.5–4.5
km depth below the seafloor). In the eastern part of
the Horseshoe Abyssal Plain, large strike-slips
faults such as LS displace the basement and all the
sedimentary sequences above. In plain view, they
result in the elongated highs deforming the seabed
of the Horseshoe Abyssal Plain (Figure 11).

6.2. Synthesis of Active Faults in the Coral
Patch Ridge Area

[40] The joint interpretation of the multiscale seis-
mic profiles and acoustic data is summarized on a
structural map of the external part of the Gulf of
Cadiz, focusing on the active faults (Figure 12).
According to the regional strain ellipse, with a
direction of maximum principal stress (�1) that
follows the NW-SE trending Eurasia-Africa plate
convergence, compressive structures trend NE-
SW and right-lateral and left-lateral strike-slip
faults trend WNW-ESE and NNE-SSW, respec-
tively (Figure 12).

[41] The largest NE-SW trending compressive
structures correspond to the Coral Patch Ridge and
Seine Hills (Figures 11 and 12). In the Coral Patch
Ridge, both active thrusts (NCP and SCP) show
segmented fault traces and are offset by WNW-
ESE trending dextral faults (Figures 8 and 12),
indicating that the activity of these structures
started later than in the reverse faults. This is in
agreement with the strain patterns and timing of
deformation obtained from analogue modeling
of fault systems from the external part of the Gulf
of Cadiz [e.g., Rosas et al., 2009, 2012]. In the
NCP fault, the vertical offset decreases toward the

surface, whereas in the SCP fault it remains con-
stant, suggesting that it corresponds to a very
recent structure. In the Seine Abyssal Plain, we
highlight the presence of the Seine Hills, a series
of NE-SW trending active-blind thrusts. When the
strike of these faults changes to �E-W, such as in
the SH1, our data reveal transpressive behavior
(Figure 12). The vertical offset in the Seine Hills
faults is fairly constant over time, as in the SCP
fault. This, together with the fact that the main ac-
tivity of the Gorringe Bank thrust concentrated
between the Late Oligocene and Middle Miocene
[e.g., Jim�enez-Munt et al., 2010] suggests a possi-
ble southward migration of deformation.

[42] The WNW-ESE dextral strike-slip faults are
mainly concentrated in the Horseshoe Abyssal
Plain although a large number of them were
mapped across the Coral Patch Ridge and the
northern part of the Seine Abyssal Plain (Fig-
ure 12). These newly mapped strike-slip faults
have the same orientation, behavior and timing of
deformation as the SFZ defined by Zitellini et al.
[2009]. The strike-slip faults are concentrated in a
WNW-ESE trending band that runs from the Gor-
ringe Bank to the Moroccan slope. Their orienta-
tion, behavior and location suggest that they
probably correspond to a reactivation of inherited
structures from a Jurassic transfer zone, a plate
boundary located between Iberia and Morocco
referred as the Gibraltar Fault [e.g., Schettino and
Turco, 2009]. In contrast to what has been previ-
ously proposed [e.g., Sartori et al., 1994; Zitellini
et al., 2009], the NE-SW trending thrusts located
south of the SFZ are active (Figures 11 and 12).
Their orientation and location suggest that these
structures probably grew through weakened zones
by fracturing due to the opening of the north-east
segment of the Jurassic Central Atlantic rifting
[e.g., Schettino and Turco, 2009].

[43] There are few cases in the world where proc-
esses of active deformation under compressional
stresses affect old oceanic lithosphere, as in the
external Gulf of Cadiz. One of the best-
documented examples is in the Central Indian
Ocean Basin, where active WSW-ENE reverse
faults and N-S fracture zones involving Mesozoic
oceanic crust have been recognized [e.g., Weissel
et al., 1980; Bull and Scrutton, 1990, 1992; Gor-
don et al., 1990]. These structures are interpreted
as reactivated normal faults and fracture zones
generated at a spreading centre [e.g., Bull and
Scrutton, 1990, 1992], and are seismically active
[e.g., Bergman and Solomon, 1985].
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[44] The seismicity recorded in the study area is
mainly concentrated along the strike-slip faults
of the Horseshoe Abyssal Plain (Figures 1 and
12). Moment tensor inversions of these earth-

quakes, which nucleated between 45 and 55 km
deep, reveal WNW-ESE trending nodal planes
with a reverse and right-lateral slip at shallow to
intermediate depths (8–55 km) [Geissler et al.,

Figure 12. Map of the active faults identified in the study area. Focal mechanisms of recent earthquakes of
magnitude 3.0<Mw> 6.0 are also included [Stich et al., 2005, 2010; Geissler et al., 2010]. The SWIM Fault
Zone (SFZ) [Zitellini et al., 2009] is depicted as a transparent gray band. The Lineament North (LN) and Line-
ament South (LS) are in agreement with Bartolome et al. [2012]. GCIW: Gulf of Cadiz Imbricated Wedge;
HGU: Horseshoe Gravitational Unit; MTD: Mass Transport Deposit ; HF: Horseshoe Fault ; NCP: North
Coral Patch Ridge Fault ; SCP: South Coral Patch Ridge Fault ; SH: Seine Hills faults ; SS1: Strike-slip Fault
1. Inset: Strain ellipse with a NW-SE direction of maximum principal stress (�1) parallel to the vector of the
Eurasia-Africa plate convergence in SW Iberia, explaining the occurrence and trend of the different tectonic
structures recognized in the area.
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2010]. The nucleation of earthquakes at these
depths suggests that they occur within the upper
mantle [Stich et al., 2010; Bartolome et al.,
2012].

6.3. Seismic Potential of the Largest
Faults: Implications for Earthquake and
Tsunami Hazard Assessment Models

[45] To evaluate the seismic potential of the larg-
est strike-slip and thrust faults, we measured the
segment length, dip and rake, and we estimated
minimum and maximum potential seismogenic
depths, obtaining the correspondent maximum sur-
face ruptures (Table 1). As global-scale empirical
magnitude-area and magnitude-length relation-
ships, such as those proposed by Wells and Cop-
persmith [1994], exclude earthquakes occurring
within oceanic lithosphere, we estimated the maxi-
mum earthquake magnitudes (Mw) using the seis-
mic moment (M0), where M0¼��S�D ; � is the
shear modulus (rigidity) of faulted rocks; S is the
fault surface rupture; and D is the average dis-
placement along the fault. We considered an aver-
age rigidity of � � 60 GPa for the upper mantle
and of � � 40 GPa for the oceanic crust [Stich
et al., 2007]. Regarding the slip-to-length ratio,
due to the lack of seismic information in the area
of this study, we considered the value of 3.5 � 10�5
proposed for the Gulf of Cadiz region [e.g., Stich
et al., 2007]. The moment magnitudes (Mw) were
calculated following the relationship between the
seismic moment and the moment magnitude as
Mw¼ 2/3 � log10(M0)�6.0 [Kanamori, 1977].

[46] To calculate the Mw values for both families
of faults we consider two different scenarios
depending on the seismogenic depths assumed
(Table 1). In the case of the strike-slip faults we
know that nucleation of earthquakes occurred
between 45 and 55 km depth [Stich et al., 2005,
2010; Geissler et al., 2010]. Thus, assuming an
average dip of 85�6 5� and the measured length
of each fault with an error of 65 km due to the
bathymetric resolution, the Mw values obtained for
the LS vary between 8.36 0.1 and 8.46 0.1,
whereas for the SS1 is 7.86 0.1 in both scenarios
(Figure 13a, Table 1). In the case of thrust faults,
it is not possible to estimate their maximum seis-
mogenic depths. On the basis of our structural
interpretation, we also assume two possible sce-
narios: either the thrusts are rooted in the Moho,
at about 8 km, or they root below the serpentinized
area in the uppermost mantle, at 13 km below the
seafloor (Figure 11). Thus, considering an averageT
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dip of 30�6 5� and the length of each fault with a
measurement error of 65 km, the estimated Mw
values calculated for the NCP vary between
7.26 0.1 and 7.46 0.1, for the SCP range between
7.46 0.1 and 7.66 0.1, and for the SH3 vary
between 7.16 0.1 and 7.26 0.1 (Figure 13b and
Table 1).

[47] The relatively short period of instrumental
and historical earthquake catalogues on which
seismic hazard assessment in the Iberian Peninsula
is largely based, may not be sufficient when con-
sidering high magnitude earthquakes with long re-
currence intervals. For instance, on the basis of
seismically triggered turbidites found in the deep
basins, the regional recurrence interval of Great
earthquakes (Mw� 8.0) in the SW Iberian Margin
during the Holocene is approximately 1800 years
[Gr�acia et al., 2010]. If we consider the maximum
earthquake magnitude obtained for the largest
faults in the study area (Mw 7.2–8.4), the evaluated
structures might be capable of generating large

earthquakes, and given their oceanic location (150
km offshore Portugal), they may represent a geo-
hazard for the surrounding coastal areas. The
strike-slip faults probably cannot generate devas-
tating tsunamis by themselves despite the possibil-
ity of a vertical slip component and a related
seafloor displacement along the LS and SS1. How-
ever, large magnitude earthquakes may trigger
associated slope failures, such as the North Gor-
ringe Avalanche [Lo Iacono et al., 2012], increas-
ing the overall tsunami risk. All the structures
studied in the present work should therefore be
considered in future seismic and tsunami hazard
assessment models for the southwest Iberia and
north Africa.

7. Conclusions

[48] The combined interpretation of high-
resolution SWIM 2006 MCS reflection profiles

Figure 13. Calculated potential earthquake magnitude (Mw) for the largest structures recognized in the
area: (a) strike-slip faults (LS and SS1) and (b) thrust faults (NCP, SCP and SH3), as a function of fault length
and seismogenic depth. Rigidity (�), slip-to-length ratio and depth (D) were assumed as constant. The values
used for strike-slip faults are � � 60 GPa, slip-to-length ratio of 3.5�10�5 and a fault dip of 85� ; and for thrust
faults are � � 40 GPa, slip-to-length ratio of 3.5�10�5 and a fault dip of 30�. Bars correspond to the bounds of
the Mw values obtained for the two scenarios and are presented for each of the structures. Stars locate the
maximum Mw values. LS: Lineament South; NCP: North Coral Patch Ridge Fault ; SCP: South Coral Patch
Ridge Fault ; SH3: Seine Hill 3 Fault ; SS1: Strike-slip Fault 1. See text for further explanations.
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together with swath-bathymetry, subbottom pro-
files and sediment cores yield new insights into the
tectonic architecture and crustal structure of the
Coral Patch Ridge area and surrounding abyssal
plains. The geometry of the seismostratigraphic
units allowed us to characterize successive defor-
mation phases in the outer part of the Gulf of Ca-
diz and to distinguish the synextensional,
postextensional, and syncompressional sedimen-
tary sequences in each domain.

[49] NE-SW trending thrusts (NCP, SCP, and SH1-
SH6) and WNW-ESE trending subvertical dextral
strike-slip faults (e.g., LS and SS1) occur in the old
oceanic lithosphere of the Horseshoe Abyssal Plain,
Coral Patch Ridge and Seine Abyssal Plain, and are
consistent with the NW-SE regional shortening
axis between Eurasia and Africa. These structures
cut, fold or show growth-strata configuration in the
most recent sedimentary units of Holocene age,
indicating that they are active. The major thrust
faults in the Coral Patch Ridge and Seine Abyssal
Plain probably propagated from the same detach-
ment level located at the Moho (�7–8 km depth
below the seafloor), although they could eventually
root at greater depths below the serpentinized area
in the uppermost mantle at �12–13 km below the
seafloor (Figure 11). Secondary structures probably
also propagated from a shallower detachment level
in the upper part of the oceanic crust (between 2.5
and 4.5 km depth below the seafloor). Furthermore,
the NE-SW trending thrusts located south of the
SFZ probably grew through weakened zones by
fracturing due to the opening of the NE segment of
the Jurassic Central Atlantic rifting, whereas the
WNW-ESE trending strike-slip faults concentrated
in the Horseshoe Abyssal Plain may correspond to
a reactivation of inherited structures from a Jurassic
transfer zone located across the Straits of Gibraltar.
The strike-slip faults are seismogenically active
with earthquakes nucleating in the upper mantle
(>50 km). The SW Iberian Margin may be consid-
ered an analogous of the Central Indian Ocean Ba-
sin, as in both regions similar active deformation
structures involving Mesozoic oceanic lithosphere
have been recognized.

[50] As for the earthquake and tsunami hazard
assessment, the strike-slip faults represent one of
the largest clusters of seismicity in the Gulf of Ca-
diz, whereas a maximum earthquake of Mw> 8
could be generated by the LS. South of the SFZ,
despite the low seismic activity recorded in the
area, our data suggest that the thrusts are active
and potential sources of large magnitude (Mw> 7)

seismic events and associated tsunamis. Seismic
and tsunami hazard in the South Iberian and North
African coasts would significantly increase if off-
shore active structures such as those identified in
the Coral Patch Ridge region were considered.
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INTRODUCTION
The southwestern margin of the Iberian Penin-

sula is the site of the present-day northwest-south-
east convergence, at a rate of 3.8–5.6 mm/yr, of 
the Eurasian and African plates that was initiated 
during the Middle Miocene (Nocquet and Calais, 

2004; DeMets et al., 2010). Present-day geodetic 
measurements, together with marine geophysical 
investigations in the Gulf of Cadiz, have revealed 
a wide active deformation zone that is character-
ized by low to moderate seismicity (e.g., Nocquet 
and Calais, 2004; Stich et al., 2005) (Fig. 1). 

However, large and destructive earthquakes, such 
as the Mw 8.5–8.7 1755 Lisbon earthquake and 
tsunami, and the Mw 8.0 1969 Horseshoe earth-
quake, have also occurred in the region (e.g., 
Fukao, 1973; Buforn et al., 1995) (Fig. 1).

Quaternary scarps on the margin of the Gulf 
of Cadiz correspond to active northeast-south-
west–trending west-verging folds and thrusts, 
such as the Marquês de Pombal, São Vicente, 
and Horseshoe faults (e.g., Gràcia et al., 2003). 
In addition, recently acquired multibeam data 
have revealed subparallel WNW-ENE–trend-
ing bathymetric lineations, the SWIM lineations 
(Zitellini et al., 2009), which extend discontinu-
ously from the Gorringe Bank (11.5°W) almost 
as far as the Straits of Gibraltar (5°W). These 
bathymetric lineaments form a narrow band of 
deformation, known as the SWIM fault zone 
(SFZ, Fig. 1), which Zitellini et al. (2009) inter-
preted as the present-day boundary between the 
Eurasian and African plates.

Geology, June 2012; v. 40; no. 6; p. 495–498; doi:10.1130/G33107.1; 4 fi gures; Data Repository item 2012145.
© 2012 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Evidence for active strike-slip faulting along the Eurasia-Africa 
convergence zone: Implications for seismic hazard in the southwest 
Iberian margin
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ABSTRACT
New seismic imaging and seismotectonic data from the southwest Iberian margin, the site of 

the present-day boundary between the European and African plates, reveal that active strike 
slip is occurring along two prominent lineaments that have recently been mapped using mul-
tibeam bathymetry. Multichannel seismic and subbottom profi ler images acquired across the 
lineaments show seafl oor displacements and active faulting to depths of at least 10 km and of a 
minimum length of 150 km. Seismic moment tensors show predominantly WNW–ESE right-
lateral strike-slip motion, i.e., oblique to the direction of plate convergence. Estimates of earth-
quake source depths close to the fault planes indicate upper mantle (i.e., depths of 40–60 km) 
seismogenesis, implying the presence of old, thick, and brittle lithosphere. The estimated fault 
seismic parameters indicate that the faults are capable of generating great magnitude (Mw ≥≥
8.0) earthquakes. Such large events raise the concomitant possibility of slope failures that have 
the potential to trigger tsunamis. Consequently, our fi ndings identify an unreported earth-
quake and tsunami hazard for the Iberian and north African coastal areas.

Figure 1. Color-shaded bathymetric map of 
southwest Iberian margin and tectonic inter-
pretation (modifi ed from Zitellini et al., 2009). 
Bathymetry is from SWIM  compilation (avail-
able in Zitellini et al., 2009, at 250 m grid cell) 
and GEBCO (General Bathymetric Chart of 
the Oceans; http://www.gebco.net/)  data set. 
White lines depict multichannel seismic re-
fl ection and TOPAS (topographic parametric 
sounder) profi les presented in this paper. 
Yellow circles correspond to epicenter loca-
tions for period 1915–2009 (Instituto Geográ-
fi co Nacional [IGN] catalogue; http://www.
ign.es/ign/layout/sismo.do). Red stars repre-
sent epicenters of large events. 1: 12 Sep-
tember 1320, intensity I = X; 2: 11 January 
1755, estimated Mw 8.5 (Buforn et al., 1995); 
3: 07 November 1915, Mw 6.2 (IGN catalogue); 
4: 15 March 1964, Mw 6.6 (Stich et al., 2005); 
5: 28 February 1969, Mw 8.0 (Fukao, 1973); 
6: 9 June 1969, Mw 5.9 (Stich et al., 2005); 7: 
2 December 2007, Mw 6.0 (Stich et al., 2010). 
White arrows show direction of Eurasian 
(EUR) and African (AFR) plate convergence 
(DeMets et al., 2010). GF—Gloria fault; SFZ—
SWIM fault zone; LN—lineament north; LS—
lineament south; SVF—São Vicente fault; 
MPF—Marquês de Pombal fault; HF—Horse-
shoe fault. White rectangle shows location 
of Figure 4.
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This paper aims to determine the shallow 
and crustal structure of the two most prominent 
SWIM lineaments, the north (LN) and south (LS) 
(Fig. 1), from a comprehensive and multiscale 
seismic imaging data set. In addition, we have 
incorporated seismotectonic data to character-
ize both the fault kinematics and the relation-
ship between the lineaments and recent seismic 
events. We evaluate the seismic potential of the 
SWIM lineaments, which may represent a signifi -
cant earthquake risk and potential tsunami hazard 
for the coasts of Spain, Portugal, and Morocco.

ACTIVE SEISMIC AND EARTHQUAKE 
DATA

During the SWIM 2006 cruise onboard the 
Spanish R/V Hesperides, we simultaneously 
acquired subseafl oor data at two different reso-
lutions: multichannel seismic refl ection (MCS) 
and parametric echo sounder (TOPAS [topo-
graphic parametric sounder] PS 18; http://
www.km.kongsberg.com/) data. The MCS sur-
vey was shot every 37.5 m using a 17.2 L airgun 
source array, and was recorded by a 2.4-km-
long streamer. Aside from the standard MCS 
data processing, seismic profi le SW01 was also 
pre-stack depth migrated to obtain the corrected 

geometry of faults and seismic horizons. TOPAS 
data provide complementary high-resolution 
information on the near-surface seafl oor sedi-
ments (i.e., 80–100 m depth). Three seismic sec-
tions across the LS (SW10, SW12, and SW13) 
and one profi le across the LN (SW01) are pre-
sented here (Figs. 2 and 3). These four lines are 
part of a set of 16 seismic profi les that cover the 
southwest Iberian margin, improving the spatial 
control regarding the length and importance of 
the LS and LN (for a location map, see the GSA 
Data Repository1).

Seismotectonic data are used to investigate the 
kinematics and depth of the structures that gener-
ated the imaged lineaments. The large number of 
land stations in the broadband seismic network 
allowed us to accurately estimate the source 
parameters of recent offshore earthquakes of 
Mw > 4.5 (e.g., Stich et al., 2010) in the Gulf of 
Cadiz. In addition, a dense local broadband ocean 

bottom seismometer (OBS) network, which was 
deployed for 11 months (2007–2008), provided 
well-constrained source depth information and 
focal mechanisms of numerous small-magnitude 
earthquakes (ML 2.2–4.8; Geissler et al., 2010).

MULTISCALE SEISMIC IMAGING OF 
THE SWIM LINEAMENTS

The LS is a WNW-ENE–trending (average 
strike 105° ± 2°) linear morphological feature 
that extends for 150 km across the Horseshoe 
Abyssal Plain and the Gulf of Cadiz imbricated 
wedge (GCIW) (Fig. 1). In the MCS profi les, the 
LS corresponds to a 2–3-km-wide fault zone. It 
is associated with a transparent seismic facies 
bounded by subvertical faults (Fig. 2) and cuts 
across the entire sedimentary sequence, which 
ranges from Mesozoic to Quaternary age. The 
LS is a deep-seated subvertical fault that roots in 
the basement to at least 9.5 s two-way traveltime 
(equivalent to a depth of ~10 km), which is the 
maximum penetration of the MCS data (Fig. 2).

Swath-bathymetry and TOPAS profi les across 
the LS show variations in structural geometry 
along certain segments of the fault (Fig. 2). Ridges 
and basins appear where the fault undergoes 
changes in strike and dip, defi ning restraining 

Figure 2. TOPAS (topographic parametric sounder) and interpreted time-migrated multichannel seismic refl ection sections from seismic 
profi les SW10, SW12, and SW13 across Lineament South. TWTT—two-way traveltime; VE—vertical exaggeration; CMP—common mid-point; 
Q-LM—Late Miocene–Quaternary; HGU—Horseshoe gravitational unit.

1GSA Data Repository item 2012145, Figure DR1 
(regional bathymetric map of the southwest Iberian 
margin showing the seismic lines acquired during 
the SWIM-2006 experiment), is available online at 
www.geosociety.org/pubs/ft2012.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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and releasing bends analogous to those observed 
in strike-slip faults exposed on land (Sylvester, 
1988). The TOPAS images also reveal seafl oor 
surface ruptures along the LS, showing posi-
tive and negative fl ower-like structures (Fig. 2). 
Toward the western end of the LS (profi le SW10, 
located in the Horseshoe Abyssal Plain), no sur-
face ruptures were observed in the MCS data. 
However, the highest resolution of the TOPAS 
image compared to the bathymetric data revealed 
a small Holocene anticline, breaching out to the 
seafl oor, that indicates present-day activity (Grà-
cia et al., 2010) (Fig. 2). Our study extends the 
western limit of the studied LS 30 km farther 
west, indicating a minimum length of 180   ± 5 km.

The LN is a WNW-ENE–trending structure 
(average strike of 100° ± 2°) that is 130 ± 5 km 
long and crosses the northern part of the GCIW 
(Figs. 1 and 3). The pre-stack depth-migrated 
section of SW01 shows a lack of continuity in the 
top of an Early Eocene refl ector across the LN 
around common mid-point 4500 (Fig. 3), and a 
4.8-km-wide blanked transference zone extends 
below the Mesozoic units to a depth of 9 km. A 
vertical displacement of 1.7 km, also detected 
from gravity modeling and wide-angle seismic 
data (Sallarès et al., 2011), is apparent at the base 

of the Late Miocene GCIW unit (Fig. 3). Tak-
ing into account the coast to basin wedge geom-
etry of the imbricated wedge allochthonous unit 
(Gutscher et al., 2002), and northward thinning 
observed in profi le SW01, the abrupt difference 
in the wedge thickness across the LN may pro-
vide stratigraphic evidence for eastward displace-
ment of the northern fault block, demonstrating 
right-lateral slip along the LN (Fig. 3). Although 
most of the difference in thickness may be 
explained by dextral strike-slip motion along the 
fault, some vertical component along the LN can-
not be excluded. For example, the SW01 TOPAS 
profi le revealed a positive fl ower-like structure, 
with the seafl oor rising up to a height of 120 m 
(Fig. 3). Surface deformation of Quaternary sedi-
ments confi rms that present-day tectonic activity 
is occurring along this structure. Fault activity is 
further confi rmed by the presence of mud volca-
noes and fl uid-escape features along the SWIM 
lineaments (Hensen et al., 2007), suggesting that 
they may act as conduits for fl uid fl ow.

ASSIGNING RECENT EARTHQUAKES 
TO THE SWIM LINEAMENTS

The orientation of the moment tensor follow-
ing an earthquake indicates the sense of motion 

along a specifi c fault. Regional waveform inver-
sion and local broadband OBS monitoring indi-
cate that numerous moderate-magnitude earth-
quakes (Mw 3–5) have occurred near the SWIM 
lineaments. The moment tensor inversions of 
these earthquakes show WNW-ENE–trending 
nodal planes, with right-lateral slip at shallow to 
intermediate depths (8–55 km) (Fig. 4). Some of 
the scatter within the epicenter data can be attribu-
ted to location errors associated with the land-
based station networks, which can be ~20 km 
(Geissler et al., 2010). Moment tensors are con-
sistent with the average strike and overall geome-
try of the LN and LS, as identifi ed from bathym-
etry and seismic data, and with the relative 
westward motion of the African plate inferred 
from GPS measurements (Nocquet and Calais, 
2004). This indicates that present-day right-
lateral motion is ongoing along these structures. 
Analogue modeling experiments, which repro-
duced the surface morphologies of the SWIM 
lineaments (i.e., Rosas et al., 2009), are also in 
agreement with dextral strike-slip motion. The 
occurrence of earthquakes at depths of 40–60 km 
(Stich et al., 2010) suggests that displacement 
along the lineaments involves old (Late Jurassic), 
thick, and brittle lithospheric plates. This fi nd-
ing is consistent with the expected thickness of 
the seismogenic layer in old oceanic lithosphere 
(e.g., McKenzie et al., 2005).

SEISMIC POTENTIAL OF THE SWIM 
LINEAMENTS: EARTHQUAKE AND 
TSUNAMI HAZARDS ASSESSMENT

To evaluate the seismic potential of the LS 
and LN, we measured their length, strike, dip, 
and rake, estimated minimum and maximum 
seismogenic depths, and calculated their width 
and surface area based on swath-bathymetry, 
TOPAS, MCS, and seismotectonic data. Given 
maximum segment lengths of 180 ± 5 km and 
130 ± 5 km for the LS and LN, a subvertical 
fault dipping at 90° ± 10°, and a maximum seis-
mogenic depth of 50 ± 5 km, we obtained maxi-
mum surface ruptures of 9000 ± 250 km2 and 
6500 ± 250 km2 for the LS and LN, respectively.

Global-scale empirical magnitude-area and 
magnitude-length relationships, such as those 
proposed by Wells and Coppersmith (1994), are 
not appropriate for the LS and LN because of 
the particularly high rigidity upper mantle in the 
Gulf of Cadiz, whereas most of the earthquakes 
included in these global studies occurred in the 
crust. Consequently, we estimated the maxi-
mum earthquake magnitudes using the seismic 
moment (M0), where M0 = µ × S × D; µ is the 
shear modulus (rigidity) of faulted rocks, S is 
the fault surface rupture, and D is the average 
displacement along the fault. Assuming a slip-
to-length ratio of 3.5 × 10−5 for the Gulf of Cadiz 
area (e.g., Stich et al., 2007), and using the mea-
sured fault length, the corresponding slips (S) 

Figure 3. TOPAS (topographic parametric sounder) and interpreted depth-migrated multi-
channel seismic refl ection section from seismic profi le SW01 across Lineament North. 
TWTT—two-way traveltime; VE—vertical exaggeration; CMP—common mid-point; Plio-Q—
Pliocene–Quaternary; GCIW—Gulf of Cadiz imbricated wedge.
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along the LS and LN are 6.3 ± 0.2 m and 4.5 
± 0.3 m, respectively. Taking an average oceanic 
lithosphere rigidity of µ ≈ 60 GPa for the south-
west Iberian margin (Stich et al., 2007), M0 = 
(3.4 ± 0.2025) × 1021 Nm for the LS, and M0 = 
(1.76 ± 0.18) × 1021 Nm for the LN. Moment 
magnitudes (Mw) were calculated using the 
relationship Mw = 2⁄3log10(M0) – 6.0 (Kanamori, 
1977; in SI), obtaining maximum values of Mw

8.3 ± 0.1 for the LS and Mw 8.1 ± 0.1 for the LN.
Seismic hazard assessment in the Iberian 

Peninsula is largely based on the relatively short 
period of instrumental and historical earthquake 
records available, but this may not be suffi cient 
when considering high-magnitude earthquakes 
with long recurrence intervals. For instance, the 
regional recurrence period of great earthquakes 
on the southwest Iberian margin is ~1800 yr 
(Gràcia et al., 2010). Taking into account our 
estimates of maximum earthquake magnitudes 
obtained for the LS and LN (Mw > 8.0), and 
given their oceanic location (~100–150 km 
offshore), these lineaments may represent a 
geohazard for the surrounding coastal areas. 
Although some vertical slip component and 
related seafl oor displacement may occur along 
the LS and LN, they are probably not capable of 
generating disastrous tsunamis in this manner. 
However, large-magnitude earthquakes may 
trigger submarine landslides, as happened in the 
2010 Haiti earthquake (Hornbach et al., 2010). 
Consequently, these structures should be incor-
porated into future seismic and tsunami haz-
ard models for southwest Iberia and northwest 
Africa, a risk that is underestimated at present.
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a b s t r a c t

The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains

offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates.

Although the region has been the focus of numerous investigations since the early 1970s, the lack of

appropriate geophysical data makes the nature of the basement, and thus the origin of the structures,

still debated. In this work, we present combined P-wave seismic velocity and gravity models along a

transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave

velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5–3.0 km-

thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an

underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe

Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved

northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp

crust–mantle boundary in any of the record sections. The modelling results indicate that the sediment

overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization

decreasing from a maximum of 70–80% under the top of Gorringe Bank to less than 5% at a depth of

�20 km. We propose that the three domains were originally part of a single serpentine rock band, of

nature and possibly origin similar to the Iberia Abyssal Plain ocean–continent transition, which was

probably generated during the earliest phase of the North Atlantic opening that followed continental

crust breakup (Early Cretaceous). During the Miocene, the NW–SE trending Eurasia–Africa convergence

resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the

northwestern one, forming the Gorringe Bank. The local deformation associated to plate convergence

and uplift could have promoted pervasive rock fracturing of the overriding plate, leading eventually to

rock disaggregation in the northern flank of the GB, which could be now a potential source of rock

avalanches and tsunamis.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The seabed morphology offshore the SW Iberian margin shows
conspicuous highs and lows that reflect the deformation that have
taken place in the region as a product of the Neogene, NW–SE-
trending convergence between the Eurasian and African plates
(Fig. 1), that currently ranges between 3.8 and 5.6 mm/yr
(Nocquet and Calais, 2004; DeMets et al., 2010). The region is

deforming across a wide active zone, characterised by a moderate
seismicity (e.g. Grimison and Chen, 1986) that also includes several
large historical earthquakes, such as theMw¼8.5–8.6 that destroyed
Lisbon in 1755 (e.g. Martinez-Solares et al., 1979), or the Mw¼7.9
1969 Horseshoe earthquake (Fukao, 1973). West of 141W, the
earthquake distribution mainly concentrates along the Gloria Fault
but it shows a scattered pattern with larger and deeper events east
from this longitude (e.g. Buforn et al., 1995, 2004), coinciding with
the location of the Gorringe Bank (GB) (Fig. 1).

The GB is a �180 km-long and �70 km-wide ridge that has a
relief of �5000 m above the neighbouring oceanic basins of the
Tagus Abyssal Plain (TAP), to the northwest, and Horseshoe
Abyssal Plain (HAP), to the southeast. It strikes NE–SW, roughly
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perpendicular to the maximum horizontal shortening direction
(Shmax), and displays a free air gravity anomaly of �300 mGal,
one of the world’s largest ones. The rock composition at surface,
and age of shallow basement and sediment cover of the GB are
relatively well known based on observations made during Deep
Sea Drilling Project (DSDP) drilling at Site 120 (Fig. 1) (Ryan et al.,
1973), in situ submersible dives, and rock sample analyses and
dating (e.g. Auzende et al., 1984; Girardeau et al., 1998). These
data indicate that the GB is mainly composed of serpentinized
peridotites with gabbroic intrusions, and fewer tholeiitic extru-
sives. Ar39/Ar40 dates yields an age of 14371 Myr for the GB
hornblende/gabbro crystallisation (Féraud et al., 1986).

Several models have been proposed to explain the structure,
origin and evolution of the GB and its neighbouring HAP and TAP
basins. DSDP Leg 120 data (Ryan et al., 1973), samples and

observations made during submersible dives (Auzende et al.,
1984; Girardeau et al., 1998) and MCS data (Sartori et al., 1994;
Tortella et al., 1997; Torelli et al., 1997) allowed to reconstruct the
main formation phase of the GB that followed the initiation of plate
convergence between Africa and Iberia in the Early Miocene.
Altogether, these observations indicate that the GB uplift concen-
trated in a period of 10–15Ma during the Miocene, being less active
or inactive at the present-day (e.g. Tortella et al., 1997).While it was
initially postulated that thrusting was related with a subduction of
the African plate beneath the Eurasian plate, so that the TAP and GB
would overthrust the HAP (Le Pichon et al., 1970; Purdy, 1975),
more recent multichannel seismic data (Sartori et al., 1994; Tortella
et al., 1997) and submersible dive observations (Girardeau et al.,
1998) indicate that thrusting occurs in the opposite direction,
so that the HAP and GB overthrusts the TAP.

Fig. 1. Bathymetric map of the SW Iberian margin. The multi-beam bathymetry is a combination of the SWIM compilation (Zitellini et al., 2009) and GEBCO digital atlas

(IOC et al., 2003). Thick black lines labelled P1 and P2 correspond to the WAS profiles acquired during the Nearest-Seis survey. Yellow circles display OBS along the NW

segment of the P1 profile presented in this paper (OBS01 to OBS18). Thinner black lines correspond to other WAS profiles previously acquired in the area and referred to in

the text, from S to N: A-AR and B-BR (Purdy, 1975), D1–D2 (Pinheiro et al., 1992), IAM5 (Afilhado et al., 2008), and IAM9 (Dean et al., 2000). Blue line displays location of

the AR03-08 MCS profile. Red line marks the proposed location of the paleo Iberia–Africa boundary (PIAB, from Rovere et al., 2004). Red stars indicate the location of DSDP

sites 120 and 135. The estimated continent–ocean boundary is marked as a dashed white line. White circles show epicentral locations of earthquakes with MwZ3.5 for the

period 1915–2009 (IGN catalogue). Focal mechanism solution correspond to the Mw¼7.9, February 28, 1969 event (Fukao, 1973). Dashed white line displays magnetic

anomaly M11 (Srivastava et al., 2000). Dashed black lines indicate location of the North and South SWIM Lineaments (Zitellini et al., 2009). Inset: Global map including the

major tectonic plates. Abbreviations: AGFZ: Azores–Gibraltar Fault Zone; AP: Abyssal plain; COT: continent–ocean boundary; CPS: Coral patch seamount; GB: Gorringe

bank; GCIW: Gulf of Cadiz imbricated wedge; JS: Josephine Seamount; LN: North SWIM Lineament; LS: South SWIM Lineament.
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The differences between the concurrent models of formation
and evolution of the GB, which are based on potential field data
with MCS constraints of the shallow structure, mainly relate with
the estimates of the amount of shortening along the thrust and
with the nature of the basement at the TAP, GB and HAP. Most
existing interpretations consider that the GB is either a
magmatically-intruded mantle block exhumed by tectonic mantle
denudation (Souriau, 1984; Le Gall et al., 1997; Jiménez-Munt
et al., 2010) or a block made of ‘‘normal’’ oceanic crust similar to
the crust supposedly flooring the TAP and HAP (Purdy, 1975;
Sartori et al., 1994; Tortella et al., 1997; Hayward et al., 1999;
Galindo-Zaldı́var et al., 2003). Alternatively, it has been proposed
these two basins constitute the southernmost segment of the
Continent–Ocean Transition (COT) zone of the western Iberian
margin (Rovere et al., 2004), whose nature and origin remain still
unclear. It could either correspond to exhumed continental
mantle rocks as interpreted at several continent–ocean transi-
tions at magma-poor margins (Boillot et al., 1989; Chian et al.,
1995; Brun and Beslier, 1996; Louden and Chian, 1999;
Whitmarsh et al., 2001) or to lithosphere generated at an ultra-
slow oceanic spreading centre (Whitmarsh et al., 1996; Girardeau
et al., 1998; Srivastava et al., 2000).

The open debate on the nature and origin of the TAP, GB and
HAP is mainly due to the lack of modern, high-quality geophysical
data that allow constraining their deep structure and physical
properties. This type of observations provide key information to

better understand the process of continental extension during the
opening of the North Atlantic until lithospheric breakup, the
formation of the COT and the subsequent geodynamic evolution
from the Miocene convergence to present-day. A better knowl-
edge of the nature of the basement would in turn help to properly
evaluate regional seismic and tsunami risk. With that aim, a
refraction and wide-angle reflection seismic (WAS) line (P1 in
Fig. 1) was acquired in 2008 during the NEAREST-SEIS cruise on
board the Spanish R/V Hespérides. In the following sections, we
present the WAS and gravity modelling results along the north-
western half of this line, which starts at the southern TAP, crosses
the GB and enters �100 km into the HAP. Based on these models,
we first present and discuss the structure and nature of the base-
ment in each of the three domains: TAP, GB and HAP; and then, we
propose a framework for the regional geodynamic evolution during
the North Atlantic opening and later Miocene convergence.

2. Modelling results

2.1. Wide-angle seismic recordings and phase identification

The modelled part of the WAS profile P1 is 205 km-long and
includes recordings at 19 Ocean Bottom Seismometers (OBS),
9 of the L-Cheapo 4�4 model from the Spanish UTM-CSIC pool,
and 10 of the MicrOBS model from the French IFREMER-IUEM

Fig. 2. Recorded seismic sections corresponding to the vertical component of OBS01 (a), OBS03 (b), OBS09 (c), OBS11 (d), OBS13 (e), and OBS16 (f), deployed along P1

(Fig. 1). The vertical axis represents reduced travel time (in seconds), and the vertical axis is offset from OBS position (in km). Band-pass (5–15 Hz) and AGC filtering was

applied to the raw data. Reduction velocity is 7 km/s. The white labels indicate the seismic phases that have been identified and modelled (see text for description).
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pool (Auffret et al., 2004), with a mean separation of �8 km. The
OBS were equipped with a three-component, short period geo-
phone (4.5 Hz) and a hydrophone, and the sampling rate was
200 s�1. The seismic source was an array of seven 1500 LL Bolt
air-guns with a total volume of 3250 c.i. The shooting interval
was 90 s. The corresponding OBS record sections have a good
overall quality (Fig. 2). A total of 3892 picks, including first

arrivals corresponding to phases refracted within the sedi-
ments (Ps) and basement (Pb) and sediment–basement reflec-
tions (PsP) were manually picked. Out from the 19 OBS
recordings, one shows a wide-angle, PmP-like reflection arrival
(SE-side wing of OBS01 in Fig. 2a). Given that no similar arrivals
were identified in the rest of record sections, we believe
that it corresponds to a local feature rather to a well-defined

Fig. 3. 2-D final velocity model obtained by joint refraction and reflection travel-time inversion of the whole data set, constituted by arrival times of Ps, PsP, Pb phases (see

text for definitions). Thick solid black line displays the inverted sediment–basement boundary, whereas the white line corresponds to the horizon interpreted to be the

base of the Mesozoic sediments along MCS profiles AR03-08 (Zitellini et al., 2009). This horizon has been converted to depth using the WAS velocities (Fig. 3). White circles

indicate OBS locations. Inverted black triangles indicate the location of the 1-D P-wave velocity/depth profiles shown in Fig. 5. Velocity units are km/s. Abbreviations: LVZ:

Low-velocity zone; LVB: Low-velocity body/olistostrome.

Fig. 4. (a) Derivative Wight Sum for the 2D velocity model shown in Fig. 3. (b) Velocity uncertainty for the 2D model shown in Fig. 3. It corresponds to the mean deviation

of the 250 solutions obtained in the stochastic Monte Carlo analysis (see text for details). Velocity units are km/s. White circles indicate OBS locations.
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crust–mantle boundary. A possible interpretation is provided in
the discussion section.

Seismic arrivals were picked on unfiltered data where possible
and, when needed, deconvolution whitening, band-pass filtering
(5–15 Hz) and AGC filtering were applied to improve lateral
coherence and increase signal-to-noise ratio. The Pb phases show
an apparent velocity of Z7 km/s in the uppermost part of the
basement of the TAP (Fig. 2), and slightly lower (6.8 km/s) in the
HAP, indicating the presence of a high-velocity basement just
below the sediments. The lower apparent velocity in the HAP
might be related with the SE basement deepening in the HAP seen
in MCS data (Zitellini et al., 2009). A picking uncertainty of a half
of the dominant signal period was assigned to the different picks
to account for picking errors. For Ps and near-offset Pb phases,
the average uncertainty was �50 ms, while it was �70 ms for
far-offset Pb’s and PsP’s.

2.2. Wide-angle seismic data modelling

2.2.1. Joint refraction and reflection travel-time inversion method

and uncertainty analysis

The travel-time picks were inverted to obtain a 2-D P-wave
velocity model and the geometry of the sediment–basement
boundary using a joint refraction and reflection travel-time
tomography code (Korenaga et al., 2000). The method allows
inverting simultaneously travel-times from first arrivals and a
reflected phase, to obtain a velocity model and the geometry of a
floating reflector. Travel-times and ray paths are calculated using
a ray-tracing scheme based on the graph method with a local ray
bending refinement (Moser et al., 1992). Smoothing constraints
for predefined correlation lengths and damping parameters are

used to regularise an iterative linearised inversion. A two-step
layer-stripping procedure was employed, consisting of adding
the data sequentially (Sallar�es et al., 2011), starting with the
sediment phases alone (Ps, PsP) and followed by the basement
ones (Pb). A key advantage of this strategy is that it allows
including sharp velocity contrasts across geological boundaries,
rather than unrealistically smoothed velocity gradients typically
required in travel-time tomography.

The final 2-D velocity model is shown in Fig. 3, whereas the
corresponding travel-time fits and ray paths are presented as
supplementary material. The grid spacing to run the inversion is
Dx¼500 m and Dz¼50–500 m, the damping for velocity and
depth is 15%, and the smoothing correlation lengths are 2–8 km
horizontally and 0.25–2 km vertically. The final root mean square
(rms) residual is 61 ms; giving a chi-squared value of 0.89.
The derivative weight sum (DWS), a column-sum vector of the
velocity kernel that is a measure of ray coverage, is shown in
Fig. 4a.

To estimate the uncertainty of the inverted parameters we
performed a Monte Carlo-type stochastic analysis. The approach
followed consists of generating a set of 250 starting models by
randomly perturbing the reference velocity model (Fig. 3) within
reasonable bounds according to a priori information (70.5 km/s).
Additionally, 250 noisy data sets are generated by adding random
common phase errors (720 ms), common receiver errors
(720 ms), and individual picking errors (720 ms) to the picked
arrival times. The inversion is then repeated for randomly selected
perturbed velocity models-noisy data set pairs. The mean deviation
of the 250 inverted models, which is shown in Fig. 4b, is a statistical
measure of the velocity uncertainty (Tarantola, 1987; Korenaga et al.,
2000; Sallar�es et al., 2003; Sallar�es and Ranero; 2005).

Fig. 5. 1-D P-wave velocity/depth profiles representative of the three morpho-tectonic domains along P1: Tagus Abyssal Plain (35–45 km; orange band); Gorringe Bank

(95–105 km; yellow band) and Horseshoe Abyssal Plain (170–180 km; red band), compared with previous results for: (a) 4140 Ma Atlantic oceanic crust (Fig. 6 of White

et al., 1992) (dark gray area), normal oceanic crust at the Seine Abyssal Plain (at 100–120 km of profile in Fig. 5 of Contrucci et al., 2004) (brown line), thin oceanic

generated at the ultra-slow SWIR ridge axis (figure 16 in Muller et al., 2000; in profile CAM114 of Fig. 7 in Minshull et al., 2006) (dotted and solid black lines), over-

thickened oceanic crust at the Josephine Seamount (at 270 km of profile in Fig. 8 of Peirce and Barton, 1991) (blue line); and (b) exhumed mantle at the IAP (compilation

made by Dean et al., 2000 in figure 11a) (gray area), TAP (at 10–20 km of profile in Fig. 6 of Pinheiro et al., 1992) (solid line), and Newfoundland margin (at 250 km in

SCREECH Line 2 of figure 19 in van Avendonk et al., 2006) (dashed lines). The width of the band in the velocity profiles correspond to the uncertainty bounds. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2.2. Description of the velocity model

The velocity model (Fig. 3) displays a sediment cover of
variable thickness that includes the Mesozoic and Cenozoic
sequences identified in MCS images (Sartori et al., 1994; Tortella
et al., 1997; Martinez-Loriente et al., 2008). The thickest sediment
layer is found under the abyssal plains (3–4 km in the TAP and
4–5 km in the HAP), whereas the top of the GB is almost
sediment-starved. Sediment-like velocities of o3.0 km/s are also
obtained in the shallower levels of the NW flank of the GB, where
the coincident MCS profiles show a thin, disrupted sedimentary
cover (Tortella et al., 1997; Zitellini et al., 2009) and there are
numerous basement outcrops (Lagabrielle and Auzende, 1982;
Girardeau et al., 1998). In general, there is a good correspondence
between the depth of the WAS-derived sediment–basement
boundary, and the depth-converted base of the Mesozoic sedi-
ments in the AR03-08 MCS profiles (Fig. 3), although the fit is
slightly better in the HAP than in the TAP. A large, relatively low-
velocity anomaly is also detected at the foot of the NW flank
(Fig. 3). The velocity of this body is 4–5 km/s, 20–30% slower than
the velocity in the surrounding basement.

The basement below the sedimentary units shows similar
velocity structure in the TAP and the HAP: a strong vertical
velocity gradient of �2.5s�1 in the upper �3 km, where velocity
ranges between 4.0–7.2 km/s, and a 5-fold gentler gradient to
�5 km below (Figs. 3 and 5). The lack of PmP reflections in almost
all the OBS records suggest the absence of a sharp and continuous
crust–mantle boundary along the whole transect. Velocity is
lower than ‘‘normal’’ mantle values (8.0–8.2 km/s) up to
�20 km beneath the GB. The velocity field is more heterogeneous
beneath the GB, where average velocities and velocity gradients

are systematically lower than in the TAP and HAP for the same
depth range (Figs. 3 and 5). The velocity field is highly asymmetric
with a stronger velocity gradient in the SE flank than in the NW
flank. The most prominent feature in the GB is the presence of a
1–2 km thick, SE-dipping low-velocity anomaly, centred
at 6–7 km below the seafloor. It is clearly observed between
�80–120 km in Fig. 3 and in the 1D velocity profile of Fig. 5.

Velocity uncertainty is o0.1 km/s in the sediments, and it is
70.15 km/s up to 10 km below the top of the basement in the
HAP, and up to �20 km depth at the GB, including the shallowest
levels of the NW flank as well as the elongated low-velocity
anomaly described above (Fig. 4b). This uncertainty corresponds
to a decrease of the mean deviation between the initial and final
models of 70–90%, indicating that the final solution depend only
slightly on the initial model chosen so that velocity can be
resolved to within the uncertainty bounds. The largest velocity
uncertainty is found in the upper 3–4 km of the basement under
the TAP, reaching up to 70.35 km/s (mean deviation decrease of
30%). This higher uncertainty is probably a combination of two
effects. On one hand, the TAP and NW flank of the GB are covered
by only 6 OBS, whereas the SE flank and the HAP are covered by
13 OBS, so that the control of velocity and velocity gradient
should be better in the SE half. On the other hand, the poorer WAS
control of the depth and geometry of the rougher sediment–
basement boundary in this area, as indicated by the comparison
between the WAS-derived sediment–basement boundary and the
depth-converted MCS one (Fig. 3). However, it must be noted that,
even in the worst resolved areas such as the top of the basement
in the TAP, the control on velocity and on velocity gradients is
good enough and do not affect the interpretation (Fig. 5).

Fig. 6. (a) Observed free-air gravity anomaly (dotted line) and calculated gravity anomaly for the velocity-derived density model using the serpentinized peridotite model

displayed in panel b (blue line, rms¼4.5 mGal), an oceanic crust model using Carlson and Herrick’s (1990) relationship (red line, rms¼10 mGal) and a continental crust

model using Christensen and Mooney’s (1995) relationship (green line, rms¼22 mGal). Error bars indicate gravity anomaly uncertainty inferred from the Monte Carlo

analysis (Fig. 4b). (b) Velocity-derived density model along P1 transforming the velocity model in Fig. 3, to density (r using Hamilton, 1978) relationship for shale in the

sediments (r¼0.917þ0.747vp–0.08vp
2), and Carlson and Miller’s (2003) relationship for serpentinite (r¼0.196vpþ1.577) in the basement. Density units are g/cm3. White

circles indicate OBS locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.3. Gravity modelling

The seismic tomography results were complemented with
gravity modelling. We employed a code based on Parker’s
(1974) spectral method as modified by Korenaga et al. (2001) to
calculate the gravity anomaly produced by a laterally- and
vertically-variable 2D density model. It was constructed convert-
ing the inverted seismic velocity model (Fig. 3) into density using
different empirical velocity–density relationships for the sedi-
ments and basement. For the sediments we used Hamilton’s
(1978) law for shale, which is based on a global compilation of
measurements from drilling data together with MCS and WAS
sound velocity measurements. For the basement, we tested three
different relationships corresponding to the three possible inter-
pretations for the nature of the basement: continental crust,
oceanic crust or exhumed serpentinized peridotite. For continen-
tal crust we used Christensen and Mooney’s (1995) relationship,
for oceanic crust we employed Carlson and Herrick’s (1990)
which is valid for Layer 2/3 basalts and gabbros, and for the
exhumed mantle rock hypothesis we used Carlson and Miller’s
(2003) relation for low-T serpentinized peridotite. Density and
velocity were corrected from in situ to laboratory conditions and
vice-versa using experimental estimates of pressure (P) and
temperature (T) partial derivatives for oceanic and continental
crust (Korenaga et al., 2001) and for serpentinized peridotite
(Kern and Tubia, 1993). In the three cases, the density of the
uppermost the basement in the top and the NW flank of the GB
have been reduced between 0% at 1.5 km deep, to a maximum of
30% just below the seafloor, to account for the effect of rock
fracturing.

The model that fits the best the satellite-derived free-air
gravity anomaly data (Sandwell and Smith, 2009) is that obtained
with Carlson and Miller’s (2003) relation for serpentinized peri-
dotite. The root mean square (rms) residual is 4.5 mGal (Fig. 6),
whereas the uncertainty of the calculated gravity anomaly is
5–10 mGal. In the case of Carlson and Herrick’s (1990) conversion
for oceanic crustal rocks, the fit is slightly worse, showing an rms
misfit of 10 mGal, whereas for the continental crust the fit is the
worst, with an rms misfit of 22 mGal. In the latter case the fit is
particularly poor around the top of the GB (Fig. 6).

The basement velocity was also transformed to serpentiniza-
tion degree (b) using Carlson and Miller’s (2003) relationship
(Fig. 7), in order to test the potential range of b variation. In the
HAP and TAP, the obtained b value is about 30% at the top of the
basement diminishing to 10% at �3 km below. The b gradient is
smoother below this point, with b values of �5% at 4–5 km inside

the basement. In the GB, the largest b values of 70–80% are
obtained right beneath the sediments, with a serpentinization of
bZ10% up to 12–13 km deep, possibly associated to enhanced
rock fracturing during Neogene deformation, which may have
promoted deeper fluid percolation than under the abyssal plains.
The serpentinization of the GB reflects the same features as the
velocity model, with a highly heterogeneous and asymmetric
field, showing higher values for the same depth in the NW flank
than in the SE flank. The elongated low velocity anomaly located
at 6–7 km below the seafloor is also reflected as a SE-dipping high
serpentinization band (Fig. 7). At deeper levels, there is evidence
for residual serpentinization degree, up to at least 20–22 km
below the GB. The velocity-derived uncertainty of b is o5% in
most of the model excluding the upper 3–4 km of the basement in
the TAP and in the top of the GB, where it is up to �10%. In the
top of the GB the effects of fracturing and alteration are likely to
be substantial, so that the maximum values of 70–80% must be
carefully taken.

3. Discussion

The discussion section is structured in three parts. First, we
interpret the likely basement affinity of the GB, and the adjoining
sectors of the HAP and TAP basins covered by our data, based on
the velocity and density models and geological information.
Second, we contrast our modelling results with previous inter-
pretations regarding the nature of the basement in the study
region, and then, we propose a plausible explanation for the
origin and geodynamic evolution of the south-western Iberian
margin during the early phases of opening of the North Atlantic.
Third, we emphasise the overall implications of our findings in
the frame of the Miocene to present-day convergence between
the Eurasian and African plates responsible of the uplift of the GB.

3.1. Interpretation of the velocity and density structure

The velocity structure of the HAP and TAP segments covered
by our data, showing a strong velocity gradient in the topmost
3–4 km of the basement, a 5-fold smoother gradient below and
with no, or at least no clear crust–mantle boundary, is analogous
to that described in the Zone of Exhumed Continental Mantle
(ZECM) off Western Iberia (Pinheiro et al., 1992; Dean et al.,
2000). It is also similar to that described on its conjugate
Newfoundland margin (Van Avendonk et al., 2006) (Fig. 5a),
whereas it clearly differs from that of ‘‘normal’’ Atlantic oceanic

Fig. 7. Serpentinization degree (b) along the P1 line. The model has been obtained taking the basement velocity from the model in Fig. 3, and converting it to b using

Carlson and Miller’s (2003) linear relationship (b¼�29.8vpþ236.4).b is in %. White circles indicate OBS locations. Abbreviations: HSZ: High serpentinization zone.
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crust older than 140 Myr (White et al., 1992). Thereby, the
velocity gradient of the topmost 3–4 km is twice stronger than
that commonly found in oceanic Layer 2 (L2), whereas the
velocity below this depth level (7.3–7.8 km/s) is higher than
typical oceanic Layer 3 (L3) velocity or magmatically intruded
continental crust (Fig. 5b). These observations, combined with the
excellent fit of the gravity anomaly using a density model derived
from WAS velocities and a conversion law specific for serpenti-
nized peridotite, suggests that the sectors of the HAP and TAP
adjacent to the GB could well have basement constituted by
exhumed mantle rocks similar to those described in the ZECM of
the IAP. In this case, the strong vertical velocity gradient in the
topmost TAP and HAP basement would represent a progressive
decrease in peridotite serpentinization degree with depth due to a
rapid reduction of rock fracturing, alteration and hydrothermal
circulation (Louden and Chian, 1999; Chian et al., 1999; Dean
et al., 2000). The gentle underlying velocity gradient would reflect
a less intense, more homogeneous serpentinization. In the two
basins, velocities are lower than normal mantle velocity (i.e.,
r8.2 km/s) up to �12 km deep (Fig. 3), indicating that there is
residual serpentinization.

An alternative explanation to account for the velocity model of
these TAP and HAP segments could be that there is a thin oceanic
crust generated by ultra-slow oceanic spreading. This model was
first proposed by Srivastava et al. (2000) for the West Iberia COT
based on the analysis of low-amplitude, disrupted magnetic anoma-
lies interpreted as part of the M-sequence in the Iberia Abyssal Plain
(IAP) and Newfoundland conjugate COT. To test this hypothesis we
have compared our results with those of six WAS lines acquired in
the ultra-slow South-West Indian Ridge (SWIR): three at 571E and
three at 661E (Muller et al., 2000; Minshull et al., 2006). In these
segments of the SWIR the half-spreading rate is 5–10 mm/yr, similar
to that inferred for the early opening of the SW Iberian margin. In
the different SWIR lines the crustal thickness varies between 3.5 km
and 4.2 km. All of them show remarkably similar seismic structure,
with a 2–3 km-thick upper layer with velocity of 4.0–6.5 km/s
(L1þL2) and a variable thickness lower layer (0.5–3.0 km) with
velocity of 6.5–7.0 km/s (L3). The velocity gradient in both layers is
similar to that of normal oceanic crust (White et al., 1992; Contrucci
et al., 2004), so weaker than that observed in the TAP and HAP. The
main difference between these oceanic crustal models is the Layer
3 thickness. The crust–mantle boundary is marked by PmP reflec-
tions in most oceanic crust OBS records. In our recordings, only
OBS01 show a wide-angle reflection that could be a PmP arrival
(Fig. 2a). In the velocity model of Fig. 3, this phase would correspond
to a reflector at a depth of �3 km below the sediment–basement
boundary. However, the presence of a single, isolated wide-angle
reflection does not readily mean that it should correspond to a
reflection in a presumed ‘‘magmatic crust’’–mantle boundary. We
rather suggest that it corresponds to a local, sharp variation in the
serpentinization degree in the base of the 3 km-thick, highly
serpentinized layer (Fig. 3).

In the case of the GB, the absolute velocity/density and vertical
velocity gradient is considerably lower than in the TAP and HAP,
and also lower than normal oceanic crust and over-thickened
oceanic crust in other seafloor highs near the study area, such as
the Josephine Seamount (Peirce and Barton, 1991) (Figs. 1 and 5).
In this case, one option to be considered is a possible continental
crust affinity, but the analysis made indicates that the velocity-
derived density model is not compatible with the observed
gravity anomaly (Fig. 6). In the case of the GB, there is additional
data and observations that point in the same direction: dredging
campaigns have revealed that the basement of the GB is com-
posed mainly of peridotites, gabbros, and less abundant extrusive
rocks (Auzende et al., 1984; Girardeau et al., 1998). The surround-
ing seismic stratigraphy and shallow structure are established

from several seismic surveys in the region in combination with
in situ submersible dive observations and ODP Leg 120 sample
analysis (Ryan et al., 1973). The common interpretation is that the
GB is composed of highly serpentinized peridotite enclosing a
�500 m thick gabbro layer, locally cut and partly covered by
tholeiitic rocks (e.g. Girardeau et al., 1998). In summary, there is
no a single geological or geophysical evidence for the presence of
continental rocks in the GB.

Either of the other two options (oceanic crust or exhumed
mantle rocks) can explain the gravity anomaly of the GB within
uncertainty bounds, although in the latter case the fit is better.
Both options have been previously proposed to explain the nature of
the GB (e.g. Sartori et al., 1994; Girardeau et al., 1998; Galindo-
Zaldı́var et al., 2003; Jiménez-Munt et al., 2010). Although gabbro
samples obtained at several sites of ODP Leg 173 (Whitmarsh et al.,
1998) in the Southern IAP and DSDP Leg 120 in the GB (Ryan et al.,
1973) (Fig. 1) evidence that some melting occurred during the
continental extension, it should be noted that only few basalts
appear to be present in the GB (e.g. Cornen et al., 1999), whereas
there are many serpentinite samples (e.g. Ryan et al., 1973;
Lagabrielle and Auzende, 1982; Auzende et al., 1984; Girardeau
et al., 1998).

Depending on whether mantle exhumation occurs prior to or
after the onset of melting during lithospheric extension, the melts
can be either extruded at the surface forming a basaltic crust or
trapped within the mantle in the form of isolated intrusions.
For the West Iberian margin, dynamic melting models show that
the combination of low spreading rates (�10 mm/yr) with a
relatively cold mantle would produce limited amounts of melt
after the exhumation of mantle peridotites (Pérez-Gussinyé et al.,
2006). The hypothesis of a basement made of serpentinized
peridotite with local magmatic intrusions, which was exhumed
from the mantle by tectonic denudation, is the one that best
agrees with our results and with the geological observations. In
this case the lower velocities of the GB as compared with those of
the HAP and TAP would reflect a higher degree of fracturing and/
or serpentinization of originally akin basement rocks. This is the
hypothesis that we explore in the next two sections.

3.2. Mantle exhumation during the Mesozoic extension of the SW

Iberian margin

As stated in the previous section, it has been previously suggested
the presence of oceanic crust in the abyssal plains surrounding the GB
(Souriau, 1984; Sartori et al., 1994; Le Gall et al., 1997; Tortella et al.,
1997; Girardeau et al., 1998; Hayward et al., 1999; Galindo-Zaldı́var
et al., 2003; Jiménez-Munt et al., 2010). This interpretation is mainly
based on Purdy’s (1975) models based on wide-angle recordings
along lines A-AR in the TAP and B-BR in the HAP (Fig. 1). However, it
was already noted at that time that velocity was ‘‘anomalously low
for upper mantle, and that there were no Moho reflections identified
in the record sections. The velocity–depth structure in both A-AR and
B-BR models is in fact closer to that of serpentinized peridotite than
to oceanic crust. Modelling of air-gun shots recorded at land stations
located along the onshore projection of the IAM-3 profile indicated
significant crustal thinning offshore the southwestern tip of the
Iberian Peninsula (González et al., 1996) (Fig. 1) but the models
hardly constrain velocity and velocity gradients and the nature of the
crust. At the northern TAP, Afilhado et al. (2008) found 40–50 km-
wide segment of a highly magnetised and dense ‘‘transitional crust’’
between 101 and 10.51 along the IAM-5 profile, and suggested that it
could also correspond to the ZECM. From this point up to 11.51, PmP
phases indicate the presence of oceanic crust that appear to thin
towards the west. Further west, between 11.51 and 12.01, Pinheiro
et al. (1992) found also evidence of high velocity gradient basement
consistent with the presence of serpentinized peridotite, while west
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of M11 (�121), they identified magnetic anomalies likely to be
related to oceanic seafloor spreading.

In summary, the existing WAS seismic data claimed to justify
the presence of oceanic crust in the TAP and HAP can be also
explained by the tectonic mantle denudation hypothesis. Accord-
ing to this and taking into account the evidences provided by our
models and by the available geological observations we propose
that (1) the GB was originally part of a band of exhumed mantle
rocks that included the southeastern TAP and the northwestern
HAP segments; and (2) this band, which would have been
exhumed during the earliest phase of the North-Atlantic opening,
may constitute the southernmost and oldest section of the West
Iberian margin COT.

40Ar/39Ar dating of hornblende crystallisation indicates that
the age of the GB basement is 143 Myr (Féraud et al., 1986), whereas
the basement rock samples at Site 900 of ODP Leg 149 in the
Southern IAP are136Myr old, and in the Galicia Margin are 122Myr
old (Féraud et al., 1996).These dates indicate an overall northward
progression of the continental rifting and continental mantle denu-
dation along the West Iberian margin during the Early Cretaceous.
However, the southern end of the West Iberia COT, and the location
of the paleo-Iberia–Africa boundary (PIAB) are a matter of debate.
Based on the analysis of seismic and magnetic data, Rovere et al.
(2004) interpreted that the ‘‘anomalous’’ Western Iberia COT zone
could extend up to the central HAP, north of the PIAB (Fig. 1).
Alternatively, it has been proposed that the GB and its neighbouring
basins formed in a transtensional phase along the plate boundary
that separated Iberia–Newfoundland from Africa during the opening
of the Central Atlantic in the Late Jurassic, so earlier than the North
Atlantic opening (Jiménez-Munt et al., 2010). However, this trans-
tensional phase is somewhat older than basement ages from GB. The
interpretation of a ZECM extending into the HAP agrees better with
plate tectonic reconstructions, which show that the earliest opening
of the North-Atlantic initiated at �147 Ma (Late Jurassic), after the
end of the Iberia–Africa transtension (e.g. Schettino and Turco,
2009), whereas the onset of true oceanic spreading in the northern
TAP appears to have occurred not earlier than �133 Ma (M11)
(Pinheiro et al., 1992; Afilhado et al., 2008), and later in the IAP.

According to this interpretation, the exhumation of the band
including the GB and the adjoining sectors of the HAP and TAP
would have occurred during the extensional phase between Iberia
and Newfoundland between �147 Ma and �133 Ma. The mod-
erate peridotite serpentinization in the TAP and HAP sectors
adjacent to the GB may have taken place during the extensional
phase. It has been shown that in extensional environments
related to bending of an oceanic plate into a subduction trench,
vigorous fluid circulation may occur down to 10–15 km into the
mantle (Ranero et al., 2003, Ranero and Sallares, 2004).

3.3. Uplift of the Gorringe Bank during the Miocene convergence

The ZECM/COT, which we propose that included the TAP–GB–
HAP remained tectonically stable after its formation, from the Early
Cretaceous to late Oligocene times. At that time, deformation due to
convergence between Eurasia and Africa, which initially focused in
the north along the Pyrenees, jumped to the southern margin of the
Iberian Peninsula, where plate configuration was similar to present
day (Roest and Srivastava, 1991). MCS seismic stratigraphy (Sartori
et al., 1994; Tortella et al., 1997; Zitellini et al., 2009) calibrated with
ages from DSDP Leg 120 (Ryan et al., 1973) suggest that the GB was
uplifted after a Late Oligocene unconformity. Uplift probably
occurred from Early to Middle Miocene (Torelli et al., 1997;
Tortella et al., 1997), coetaneous with the emplacement of the
Horseshoe Gravitational Unit, a large Upper Miocene gravitational
unit infilling the HAP deposited after the period of maximum
deformation (e.g. Gr�acia et al., 2003; Iribarren et al., 2007). Regard-
ing the uplift mechanism, the MCS data also revealed that the GB
ridge is a compressive structure raised by large-scale thrust of the
northwestern segment of the original HAP on top of the south-
eastern TAP (Fig. 8) (Tortella et al., 1997; Zitellini et al., 2009). Uplift
peaked during the Middle Miocene, and then it slowed down
progressively until the end of Miocene (Tortella et al., 1997).
However, there is no direct evidence for the presence of a reflection
associated to a large-scale thrust fault in any of the MCS profiles or
in our WAS data. Possible explanations for this lack of evidence
could be a low acoustic impedance contrast across the fault or a high

Fig. 8. Schematic interpretation of the present-day structure of the Gorringe Bank region including the neighbouring Horseshoe and Tagus abyssal plains. The limit

between the sediment and basement is taken from the velocity model in Fig. 3. The thin lines represent isocontours of serpentinization degree. The disaggregated rock area

encompasses regions of the basement with velocity lower than 4.3 km/s. The internal structure of the sedimentary layers is taken according to Tortella et al. (1997).
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attenuation related to rock fracturing and alteration around the
fault. An interesting feature that could be related with the presence
of such a fault is the SE-dipping low velocity/high serpentinization
zone described in Section 2.2.2 (Figs. 3, 5 and 7). Motion along the
fault would have caused rock fracturing around the fault plane,
intensifying fluid percolation and, eventually, increasing the local
serpentinization degree.

Most of the basement alteration and serpentinization of the GB
probably concentrated in this phase of convergence, uplift and
deformation. According to these results, there should be a residual
degree of serpentinization up to at least 20–22 km depth. However,
it appears unlikely, and unnecessary to explain the gravity data, that
serpentinization reaches 40 km as previously proposed by Jiménez-
Munt et al. (2010). An important difference of our geodynamic
interpretation with respect to previous ones (e.g. Purdy, 1975;
Sartori et al., 1994; Tortella et al., 1997; Hayward et al., 1999;
Galindo-Zaldı́var et al., 2003; Jiménez-Munt et al., 2010) is that in
our model thrusting occurred within a band of exhumed continental
mantle that was dissected in two blocks, rather than between
oceanic crustal fragments. It has been speculated that the thrust
initiated as a response to NW–SE Africa–Eurasia convergence by
reactivation of a pre-existing tectonic structure or weak zone
(Le Gall et al., 1997), although the nature and origin of this structure
remains unknown. Considering the present-day plate convergence
rate (4–5 mm/yr), assuming that thrusting concentrated during a
period of 10–15 Myr, and including estimations of shortening
between 20 km (Jiménez-Munt et al., 2010; Galindo-Zaldı́var et al.,
2003) and 50 km (Hayward et al., 1999), the original width of the
TAP–GB–HAP band would have been of 150–180 km, of similar
dimensions as the ZECM in the IAP (Whitmarsh et al., 2001;
Srivastava et al., 2000).

3.4. Present-day configuration of the Gorringe Bank

Although it is generally assumed that the GB thrust is currently
inactive (Zitellini et al., 2004, 2009), the seismic activity occurring in
the GB and nearby areas (Grimison and Chen, 1986; Geissler et al.,
2010) (Fig. 1) suggests that there is a significant a tectonic activity
beneath the GB. A plausible explanation for this low-magnitude
seismicity could be the occurrence of severe faulting that accom-
modates the regional transpressive strain (Geissler et al., 2010),
resulting from: (1) compression along the GB thrust system, and
(2) a strike-slip regime expressed by the presence of sub-vertical
dextral shear zones known as the southern and northern SWIM
lineaments, which extend into the HAP and the southern part of the
GB (Zitellini et al., 2009; Bartolome et al., 2012) (Fig. 1). The
interplay between thrust and strike-slip faulting at a regional scale
could have caused a complex strain field at a local scale, favoring the
removal of much of the original sediment cover, the progressive
basement rock fracturing, and the subsequent deep water percola-
tion and peridotite serpentinization. This process could have leaded
eventually to the local disintegration of the overriding plate, as in
the northern flank of the GB (e.g. Lagabrielle and Auzende, 1982).
According to our results, enhanced rock fracturing and alteration in
the GB does not appear to be restricted to the uppermost basement.
The seismic velocity and velocity-derived density is considerably
lower in the GB than in the neighbouring TAP and HAP segments.
We speculate that the pervasive fracturing of the overriding plate is
the tectonic process that controls the present-day evolution of the
GB, and it could accelerate the disintegration and eventual disman-
tlement of the Bank. MCS data show a buried chaotic body pinching
out northward at the northern foot of the GB, which has been
interpreted as a large olistostrome body that was discharged from
the GB in the middle Miocene (Sartori et al., 1994). The low shallow
velocity obtained in the sediment-starved northern flank of the GB
(Fig. 3) is in agreement with the basement rock disaggregation,

whereas the low-velocity body detected at the foot of the GB (Fig. 3)
is also consistent with the presence of an olistostrome body. The
presence of these two features, which are included as an area of
disaggregated rock in Fig. 8, indicates that the northern flank of the
Bank must be near the limit of structural integrity. The combination
of steep slopes and basement rock disaggregation are precondition-
ing factors to generate large slope failures, while earthquakes are a
likely trigger mechanism. An example is the recently discovered
deep-water North Gorringe debris avalanche, a large mass failure of
�80 km3 and 35 km run-out, which could generate tsunamis. Based
on tsunami simulations, the worst-case scenario shows that this
slope failure could have generated a 415m high wave, that would
have hit the south Portuguese coasts in �30 min (Lo Iacono et al., in
press).

4. Conclusions

Combined WAS and gravity modelling provides compelling
geophysical evidence indicating that the basement of the GB
seamount and the adjacent segments of the HAP and TAP are mainly
made of serpentinized peridotite. Comparison with other available
WAS models supports that the seismic structure in the three
domains is analogous to the COT structure of the Iberian abyssal
plain and Newfoundland. Our models and available geological data
suggest that the crust differs from continental crust or oceanic crust
generated at slow/ultra-slow spreading centres in the two-fold
stronger vertical velocity gradient in the upper �4–5 km, the higher
velocity in the underlying 5 km, the absence of crust–mantle
boundary reflections in most record sections, the few basalt and
the absence of continental rock samples. We propose that the GB
and the adjoining sectors of the TAP and HAP were originated by
exhumation of a single, 150–180 km-wide mantle band similar to
the ZECM of the IAP. According to plate tectonic reconstructions and
rock dating the basement was exhumed by tectonic mantle denuda-
tion during the initial phase of the North Atlantic opening in the
Earliest Cretaceous (147–133 Ma). This configuration remained
tectonically stable until the late Oligocene–Early Miocene, when
large-scale thrusting developed within the exhumed mantle rock
band as a response of NW–SE-directed convergence between Eur-
asian and African plates, uplifting the GB. A SE-dipping, low
velocity–high serpentinization zone could be the first indirect
evidence for the presence of such a thrust fault. At present day,
the dominant tectonic process in the GB is the interplay between
thrust-related shortening and strike-slip faulting. This regional
scenario could have promoted pervasive rock fracturing of the
overriding plate, leading eventually to rock disintegration in the
shallow parts of the Bank’s northern flank, and to enhanced water
percolation and peridotite serpentinization at deeper levels.
The combination of a steep slope, shallow rock disaggregation, and
seismicity, are pre-conditioning factors that could explain the
occurrence of rock avalanches and its potential associated risks.
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D.G., Wynn, R.B., Lourenc-o, N., Pinto de Abreu, M., Dañobeitia, J.J., Zitellini, N.
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[1] We present a new classification of the geological domains at the Africa-Eurasia 
plate boundary off SW Iberia, together with a regional geodynamic reconstruction 
spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is 
based on a velocity and density model along a wide-angle seismic transect running from 
the Horseshoe to the Seine Abyssal plains, together with previously available 
geophysical models. The basement velocity structure at the Seine Abyssal Plain 
indicates the presence of a highly heterogeneous, thin oceanic crust (4-6 km-thick), 
similar to that described in slow/ultra-slow spreading centers, with local high-velocity 
anomalies possibly representing serpentinite intrusions. The integration of this model 
with previously existing ones reveals the presence of three oceanic domains offshore 
SW Iberia: (1) the Seine Abyssal plain domain, generated during the first stages of slow 
seafloor spreading of the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz 
domain, made of oceanic crust generated in the Alpine-Tethys spreading system 
between Iberia and Africa; which was coeval with the formation of the Seine Abyssal 
Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); 
and (3) the Gorringe Bank domain, made of exhumed mantle rocks, which formed 
during the first stages of North Atlantic opening. Our models indicate that the Seine 
Abyssal plain and Gulf of Cadiz domains are separated by the Lineament South strike-
slip system; whereas the Gulf of Cadiz and Gorringe Bank domains are limited by a 
deep thrust fault system located at the center of the Horseshoe Abyssal plain. 
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1. Introduction  
[2] The Atlantic segment of the Eurasia-
Africa plate boundary, the so-called 
Azores-Gibraltar fracture zone, shows a 
changing tectonic behavior (i.e. 
extensional, transcurrent and 
compressional) from East to West. On its 
eastern end, at the SW Iberian margin, the 
system is dominated by compression 
related to the NW-SE trending 
convergence (3.8-5.6 mm/yr) [Nocquet 
and Calais, 2004; DeMets et al., 2010] 
between the two plates. This setting is at 
the origin of the moderate magnitude 
seismic activity (Mw < 6.0) that occurs in 
the region [e.g. Stich et al., 2006], and of 
the large magnitude historical and 
instrumental earthquakes, such as the 
1755 Lisbon (estimated Mw � 8.5) [e.g. 
Buforn et al., 2004, Johnston, 1996] or the 
1969 Horseshoe (Mw ~ 8.0) [e.g. Fukao,
1973] earthquakes. In addition, the area is 
characterized by hosting probably one of 
the oldest oceanic lithospheres currently 
preserved on Earth [e.g. Sartori et al., 
1994; Rovere et al., 2004; Sallarès et al., 
2011; Martínez-Loriente et al., 2013], and 
consequently the nature and distribution 
of the basement in SW Iberia has been a 
matter of enduring debate during decades 
[e.g. Purdy, 1975; Sartori et al., 1994; 
Tortella et al., 1997; Hayward et al., 
1999; Jiménez-Munt et al., 2010; Sallarès 
et al., 2013]. Defining and characterizing 
the basement affinity of the crustal 
domains in the SW Iberian Margin is of 
paramount importance as it is directly 
related not only to the initial stages of 
geodynamic evolution of the Central and 
North Atlantic, but also to the generation 
of earthquakes and potential subsequent 
tsunamis in the area. 
[3] The basement of the SW Iberian 
margin results of the complex geodynamic 
history, kinematics and tectonic evolution 
of the area located between the African, 
Eurasian and North-American plates [e.g. 
Srivastava et al., 1990; Tucholke et al., 
2007; Schettino and Turco, 2009]. The 
area has been the site of multiple 

experiments including deep sea drilling 
[e.g. Hayes et al., 1972; Ryan et al., 
1973], dredging [e.g. Malod and 
Mougenot, 1979], deep-sea submersible 
expeditions [e.g. Auzende et al., 1984; 
Girardeau et al., 1998], geophysical 
surveys with seismic data acquisition [e.g. 
Purdy, 1975; Sartori et al., 1994; Banda 
et al., 1995; González et al., 1996; Torelli 
et al., 1997; Gutscher et al., 2002; Gràcia 
et al., 2003a, 2003b; Zitellini et al., 2004; 
Sallarès et al., 2011, 2013; Martínez-
Loriente et al., 2013], and potential field 
data modeling [e.g. Gràcia et al., 2003b; 
Fullea et al., 2010]. With the aim to 
investigate the deep structure of the SW 
Iberian margin, two refraction and wide-
angle reflection seismic (WAS) profiles 
were acquired in 2008 during the 
NEAREST-SEIS cruise (P1 and P2 in 
Figure 1) as part of the FP6-EU-funded 
NEAREST project. Here we present the 
WAS and gravity modeling results along 
the southern half of profile P1, which runs 
from the middle of the Horseshoe Abyssal 
Plain (HAP) to the Seine Abyssal Plain 
(SAP), crossing the Coral Patch Ridge 
(CPR) and the Seine Hills (SH). This 
section of profile P1 connects the area that 
appears to be floored by exhumed 
serpentinized mantle in the northern part 
of the HAP [Sallarès et al., 2013] with the 
thinned oceanic crust that has been 
identified south of the SH [Contrucci et 
al., 2004; Jaffal et al., 2009].  
[4] The overall objective of this work is to 
determine the structure and properties of 
the basement in the external part of the 
Gulf of Cadiz in order to determine which 
is the affinity and possible origin of this 
geological domain. This information, 
which complements that obtained from 
WAS modeling along the rest of 
NEAREST-SEIS profiles [Sallarès et al.,
2011; 2013], is key to properly understand 
the regional geodynamic evolution of the 
area from the Mesozoic to present day. 
We first present the data used and 
methods followed to obtain the velocity 
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and density models along the transect. 
Then, we describe the models and we 
interpret their lithospheric affinity and 
likely geodynamic evolution based on a 
comparison with previous models. This 
information is integrated into two regional 
tectonic and stratigraphic cross-sections 
along the NEAREST-SEIS profiles and 

synthesized in a map showing the 
different geological domains proposed for 
the SW Iberian margin. Finally, we 
suggest a framework for the geodynamic 
evolution from the Pangaea break-up to 
the present-day tectonic plates’ 
configuration. 
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Figure 1. Bathymetric map of the West Iberia and North African margins. The 
multibeam bathymetry merges the SWIM compilation map [Zitellini et al., 2009] and 
GEBCO digital atlas [IOC et al., 2003]. Thick black lines labeled P1 and P2 correspond 
to the WAS profiles acquired during the NEAREST-SEIS survey. Yellow circles 
display OBS along the SE segment of the profile P1 presented in this paper (OBS19 to 
OBS30). Thin black lines correspond to WAS profiles previously acquired in the area, 
from N to S: IAM9 [Dean et al., 2000], IAM5 [Afilhado et al., 2008], D1–D2 [Pinheiro 
et al., 1992], A-AR and B-BR [Purdy, 1975], IAM3 [González et al., 1996], SIS-P16 
[Gutscher et al., 2002], SIS-P4 [Contrucci et al., 2004], SIS-P5, SIS-P8, and SIS-P10 
[Jaffal et al., 2009]. Red stars indicate the location of DSDP sites 120 [Ryan et al., 
1973] and 135 [Hayes et al., 1972]. The estimated continent–ocean boundary (COB) 
defined in Sallarès et al. [2013] is marked as a dashed white line. White circles show 
epicentral locations of earthquakes with Mw�3.5 for the period 1915–2009 [IGN 
catalogue]. The focal mechanism solution corresponds to the Mw=7.9, February 28, 
1969 event [Fukao, 1973]. Purple band displays magnetic anomaly S’ [Sahabi et al., 
2004]. Dashed black lines indicate location of the North and South SWIM Lineaments 
[Zitellini et al., 2009]. Inset: Global map including the major tectonic plates and 
boundaries. Abbreviations: AGFZ: Azores–Gibraltar Fault Zone; AP: Abyssal plain; 
AS: Ampere Seamount; CPR: Coral Patch Ridge; CPS: Coral Patch Seamount; GB: 
Gorringe Bank; GCIW: Gulf of Cadiz Imbricated Wedge; GF: Gloria Fault; GuB: 
Guadalquivir Bank; JS: Josephine Seamount; LN: Lineament North and LS: Lineament 
South [e.g. Zitellini et al., 2009; Bartolome et al., 2012]; PB: Portimao Bank; SFZ: 
SWIM Fault Zone [Zitellini et al., 2009]; SH: Seine Hills [Martínez-Loriente et al., 
2013]. 

2. Geological setting of the SW Iberian 
margin  
[5] The SW Iberian margin has undergone 
a long and complex geodynamic history. 
Its origin and evolution is framed in a 
complex setting starting in the Mesozoic 
with the simultaneous opening of the 
Western Tethyan and the Central Atlantic 
oceans in the Upper Jurassic that was 
followed by the opining of the North 
Atlantic in the Lower Cretaceous [e.g. 
Tucholke et al., 2007; Schettino and 
Turco, 2009]. The subsequent evolution 
was controlled by changes in location, 
geometry and kinematics of the Eurasian-
African plate boundary zone [Srivastava 
et al., 1990]. After the Lower Oligocene 
plate reorganization at chron C13n (33.1 
Ma), convergent motion between Africa 
and Eurasia changed from the North (i.e. 
along Pyrenees) to the South, and it was 
accommodated along the southern margin 
of Iberia. Since then, Iberia has been 
considered as fixed to Eurasia and the 

current plate boundary between North 
Africa and Iberia was established 
[Schettino and Turco, 2009].  
[6] The nature of the basement in this area 
has been a matter of debate, since the first 
WAS data were acquired in the TAP and 
HAP in the mid 70’s [Purdy, 1975]. Those 
data where interpreted as corresponding to 
oceanic crust in the external part of the 
Gulf of Cadiz, whereas the land recording 
of the deep MCS IAM 3 profile where 
used to propose the presence of thinned 
continental crust [González et al., 1996]. 
Other works also dealt with the 
investigation of the nature of the basement 
on the basis of potential field data [Gràcia 
et al., 2003b; Rovere et al., 2004], 
generally interpreted as thinned 
continental crust. More recently, there 
have been two main WAS experiments 
with Ocean Bottom Seismometers (OBS). 
The first was the SISMAR experiment, 
which explored the southern part of the 
Gulf of Cadiz accretionary wedge (profile 
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SIS-P16) [Gutscher et al., 2002], the 
Moroccan Margin and northern Seine 
Abyssal Plain (SIS-P4, SIS-P5, SIS-P8, 
and SIS-P10), revealing the presence of 
oceanic crust with variable crustal 
thickness [Contrucci et al., 2004; Jaffal et 
al., 2009]. The second was the two 
NEAREST-SEIS profiles referred to 
above, which provided strong evidence for 
the presence of oceanic crust of Jurassic 
age in the central Gulf of Cadiz (profile 
P2) [Sallarès et al., 2011] and of 
serpentinized mantle of Early Cretaceous 
age in the Gorringe Bank and under the 
sedimentary sequence infilling the 
southern TAP and northern HAP 
(northern half of P1) [Sallarès et al., 
2013].  
[7] At the present day, the Gulf of Cadiz is 
subjected to a NW-SE compressive 
regime resulting in active deformation 
involving old (Mesozoic) lithosphere [e.g. 
Martínez-Loriente et al., 2013]. Tectonic 
activity has shaped a rough seabed 
morphology characterized by deep abyssal 
plains separated by NE-SW prominent 
highs. In this region, two main types of 
active faults have been recognized: a) NE-
SW trending thrusts, such as the Marquês 
de Pombal, São Vicente, Horseshoe, 
North and South Coral Patch Ridge or 
Seine Hills faults [e.g. Gràcia et al.,
2003a; Zitellini et al., 2004; Martínez-
Loriente et al., 2013]; and b) large 
WNW–ESE trending dextral strike-slip 
faults such as the lineaments North and 
South (LN and LS, respectively) [e.g. 
Terrinha et al., 2009; Zitellini et al., 2009; 

Bartolome et al., 2012; Martínez-Loriente 
et al., 2013] (Figure 1). The above-
mentioned structures are comprised within 
a 600 km-long and 15 km-wide dextral 
strike-slip deformation zone named as the 
SWIM Fault Zone (SFZ), which connects 
the Gorringe Bank with the Moroccan 
shelf. The SFZ has been interpreted to 
represent the present-day plate boundary 
between Africa and Eurasia [Zitellini et 
al., 2009] (Figure 1).  
[8] The seismicity recorded in the study 
area mostly concentrates north of the SFZ 
[Zitellini et al., 2009]. A local network of 
ocean bottom seismometers (OBS) 
deployed in the area in 2007 recorded 
numerous small-to-moderate magnitude 
earthquakes of ML = 2.2-4.8 that 
concentrate at a depth of 40-60 km, with 
only few events nucleating shallower than 
20 km [Geissler et al., 2010]. Moment 
tensor inversions of these earthquakes 
reveal WNW-ESE-trending nodal planes 
with a reverse and right-lateral slip 
[Geissler et al., 2010]. The nucleation of 
earthquakes at these depths, combined 
with the structure and nature of the 
basement in different parts of the Gulf of 
Cadiz based on WAS models [Sallarès et 
al., 2011; 2013], suggests that they occur 
within the upper mantle [e.g. Stich et al.,
2010; Bartolome et al., 2012]. Therefore, 
combining geological and geophysical 
information to infer the nature of the 
basement in each domain is a key aspect 
that needs to be taken properly into 
account to evaluate the regional seismic 
and tsunami hazard. 

3. Modeling results 
3.1. Data acquisition 
[9] The 340 km-long NEAREST profile 
P1 was acquired during fall 2008 onboard 
the Spanish R/V Hesperides. 29 OBS 
were deployed along the profile from the 
TAP at the northwest to the SAP at the 
southeast, crossing the GB, the HAP, the 
CPR and the SH. The northewestern part 
of this profile, from the TAP to the central 
part of the HAP, was modeled and 

interpreted by Sallarès et al. [2013]. In 
this work we start with this velocity model 
and we include the southeastern half of 
the profile, which is 160 km-long and 
includes recordings at 13 OBS, 6 of the 
short period L-Cheapo 4x4 model from 
the Spanish UTM-CSIC pool and 7 of the 
MicroOBS model from the French 
IFREMER-IUEM pool [Auffret et al.,
2004]. The seismic source used in the 
experiment was composed of two arrays 
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with 7 Bolt airguns (model 1500 LL), 
providing a total volume of 4320 c.i. The 
arrays were deployed at a depth of 12 m, 
and the shot interval was set to 90 s (~210 
m) to avoid noise generated by previous 
shots. 
[10] The OBS recorded data have a good 
overall quality (Figure 2), especially in 
what concerns the first arrivals. The water 
wave arrival was used to relocate the 

instruments in the seafloor using an in-
house developed grid search algorithm, 
and clock-drift corrections were also 
calculated. The data pre-processing is the 
same that was applied to the rest of record 
sections along the two profiles and 
included a de-bias, a whitening 
deconvolution (0.5), a butterworth band-
pass filter (4-18 Hz), and an AGC 
filtering. 

Figure 2. Recorded seismic sections corresponding to the vertical component of OBS20 
(a), OBS22 (b), OBS27 (c), OBS28 (d), and OBS30 (e), deployed along P1 (Fig. 1). The 
vertical axis represents reduced travel time (in seconds), and the vertical axis is offset 
from OBS position (in km). Band-pass (5–15 Hz) and AGC filtering was applied to the 
raw data. Reduction velocity is 7 km/s. The white labels indicate the seismic phases that 
have been identified and modeled (see text for description). 

3.2. Phase picking and joint refraction 
and reflection travel-time inversion 
method 
[11] A total of 20.022 picks were 
manually picked including: sedimentary 
(Ps), intra-crustal (Pg) and upper-mantle 
(Pn) refracted phases, and reflections at 
the sediment-basement interface (PsP), at 
the crust-mantle (PmP) boundary in the 

SAP, and at a deeper structure located in 
the middle of the HAP (PtP) (Figure 2). It 
is important to note that PmPs interpreted 
to be reflections at the Moho boundary 
were identified in this southern half of the 
profile that includes the CPR and SAP 
areas, whereas they were lacking in the 
northern half that encompasses the TAP, 
GB and HAP [Sallarès et al., 2013]. A 
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picking uncertainty of the order of half of 
the domain signal period (~10 Hz) was 
assigned to the travel time pickings 
accounting for potential picking errors and 
a possible systematic shift. For Ps, Pg and 
near-offset Pn phases, the average 
uncertainty was ~50 ms, while it was ~70 
ms for far-offset Pn’s, PsP’s, PmP’s, and 
PtP’s. 
[12] The 2-D velocity model was obtained 
using the tomo2d joint refraction and 
reflection travel-time inversion code 
[Korenaga et al., 2000]. This method 
allows the determination of the velocity 
model and the geometry of a floating 
reflector from the simultaneous inversion 
of travel-times from first arrivals and from 
a single reflected phase. Travel-times and 
ray paths are calculated using a hybrid 
ray-tracing scheme based on the graph 
method and a local ray bending 
refinement [Moser et al., 1992]. The 
iterative linearized inversion is regularized 
applying smoothing constrains for 
predefined correlation lengths and 
damping factors for the model parameters 
[Korenaga et al., 2000]. 
[13] A three-step layer-stripping 
procedure was followed consisting of 
adding the data sequentially, starting from 
the shortest offsets/uppermost levels, and 
finishing with the longest offsets/deepest 
levels as described in Sallarès et al.
[2011]. This strategy allows accounting 
for sharp velocity contrast across 
geological interfaces such as the 
sediment-basement or the crust-mantle 
boundary. In the first step we inverted 

travel-times from the sediment phases 
alone (Ps and PsP) to determine the 
velocity field of the sedimentary layer and 
the geometry of the sediment-basement 
interface. In the second step we 
incorporated also the basement phases, 
which in the southeastern half of the 
profile include the Pg and PmP arrivals, 
apart from the Ps, to obtain the crustal 
velocity distribution and Moho geometry. 
In this step we included the inverted 
velocity model of the sediments as initial 
model, with a damping factor of 100 to 1, 
to let the inversion modify the model 
preferably within the crust. The starting 
velocity model below the sediment 
boundary was a 1-D model starting at 5 
km/s and with a constant velocity gradient 
of 0.33 s-1. The initial Moho reflector was 
set at 6 km below the sediment-basement 
boundary. In the last step we incorporated 
the mantle information so that we used the 
Ps, Pg, Pn and PtP phases to obtain the 
upper-mantle velocity distribution and the 
geometry of the deep floating reflector 
located beneath the HAP. In this last step 
the previously obtained model that 
includes sediments and crust was included 
as initial model with an over-damping 
factor of 100 to 1 to let the inversion 
modify preferably the upper-mantle. The 
starting velocity model below the Moho in 
the southern half was a 1-D model starting 
at 7.8 km/s and with a constant velocity 
gradient of 0.02 s-1.  

Figure 3. 2-D final velocity model obtained by joint refraction and reflection travel-
time inversion of the whole data set, constituted by arrival times of Ps, PsP, Pg, PmP, 
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Pn and PtP phases (see text for definitions). The first half of the profile (0-190 km) is 
published by Sallarès et al. [2013]. Thick solid black line displays the inverted 
sediment–basement boundary, the crust-mantle boundary (i.e. Moho), and the deep-
tectonic structure in the HAP (i.e. the HAT). White circles indicate OBS locations. 
Inverted black triangles indicate the location of the 1-D P-wave velocity/depth profiles 
shown in Figure 5. Velocity units are km/s. HVZ: high-velocity zone; LVZ: Low-
velocity zone; LVB: Low-velocity body/olistrostrome. 

[14] The final 2-D velocity model is 
presented in Figure 3, whereas several 
representative examples of travel-time 
picks and fits for various instruments in 
each domain are shown in Figure 2 (the 
corresponding ray paths are presented as 
supplementary material). These record 
sections complement those recorded in the 
northwestern part of the profile that are 
shown in Sallarès et al. [2013]. The final 
root mean square (rms) residual of the 
model is 61 ms; giving a chi-squared 
value of 0.89. The grid spacing to solve 
the forward problem is �x=500 m and 

�z=50 m immediately below the seafloor 
to 500 m in the bottom of the model, the 
damping for velocity and depth is 15%, 
and the smoothing correlation lengths are 
2-8 km, from top to bottom, horizontally, 
and 0.25-2 km, from top to bottom, 
vertically. The derivative weight sum 
(DWS), which is the column-sum vector 
of the velocity kernel [Toomey and 
Foulger, 1989] so it is a measure of ray 
coverage and provides information on the 
linear sensitivity of the inversion, is 
shown in Figure 4a.
.

Figure 4. a) Derivative weight sum for the 2D velocity model shown in Figure 3. b) 
Velocity uncertainty for the 2D model shown in Figure 3. It corresponds to the mean 
deviation of the 300 solutions obtained in the stochastic Monte Carlo analysis (see text 
for details). Velocity units are km/s. White circles indicate OBS locations. GB: 
Gorringe Bank; CPR: Coral Patch Ridge; HAP: Horseshoe Abyssal Plain; SH: Seine 
Hills; TAP: Tagus Abyssal Plain. 
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3.2.1 Uncertainty of the velocity model 
parameters  
[15] In order to estimate the uncertainties 
of our final model (Figure 3) due to a 
combination of the starting model 
selected, the experiment geometry, the 
theoretical approximation made, and data 
picking errors, we performed a Monte 
Carlo-type stochastic error analysis. The 
approach followed [Korenaga et al., 2000; 
Sallarès et al., 2005] consist of randomly 
perturbing the reference velocity model 
and the reflector depth within reasonable 
bounds according to a priori lithological 
information, generating a set of 300 2-D 
starting models and reflectors. In our case, 
velocity nodes have been perturbed by 
±0.7 km/s and the Moho reflector has 
been varied within ±0.5 km. Together 
with the perturbed velocity models we 
used 300 noisy data sets generated by 
adding random common phase errors (±20 
ms), common receiver errors (±20 ms), 
and individual picking errors (±20 ms) to 
the initial data set. Then the inversion is 
repeated for 300 randomly selected 
perturbed velocity models-noisy data set 
pairs, using the inversion parameters 
described in the previous section. The 
mean deviation of all inversions can be 
interpreted as a statistical measure of the 
model parameters uncertainty [Tarantola,
1987]. The mean deviation of the 300 
inverted final models and the error bar of 
all interfaces are shown in Figure 4b 
whereas the result from km 0 to 200 is 
presented in Sallares et al. [2013] 

3.3 Gravity Modeling 
[16] The final velocity model (Figure 3) 
has been complemented with gravity 
modeling. The gravity analysis was done 
converting the WAS-derived seismic 
velocity to density using different 
empirical velocity-density relationships 
for each geological layer assuming a given 
lithological composition. In the case of the 
sedimentary cover, we used the 
Hamilton’s [1978] law for shale. In the 
case of the basement, we tested three 

different empirical relationships according 
to the three possible interpretations for the 
nature of the layer below the sedimentary 
cover (i.e. continental crust, exhumed 
serpentinized peridotite or oceanic crust). 
For continental crust we used Christensen 
and Mooney’s [1995] relationship, for the 
exhumed mantle rock we used Carlson 
and Miller’s [2003] relation for low-T 
serpentinized peridotite, and for oceanic 
crust we employed Carlson and Herrick’s 
[1990] which is valid for Layer 2/3 basalts 
and gabbros. These are the same 
relationships that were previously tested 
in the northwestern part of the profile 
[Sallarès et al., 2011]. Density and 
velocity were corrected from in situ to 
laboratory conditions and vice-versa using 
experimental estimates of pressure (P) and 
temperature (T) partial derivatives for 
oceanic and continental crust [Korenaga 
et al., 2001] and for serpentinized 
peridotite [Kern and Tubia, 1993]. The 
aim is to prove if the density model 
obtained is compatible with the observed 
free-air gravity data [Sandwell and Smith, 
2009]. To calculate the gravity anomaly 
generated by a vertically- and laterally-
heterogeneous 2-D density model we used 
a code based on Parker’s [1974] spectral 
method as implemented by Korenaga et 
al. [2001]. 

4. Results 
4.1. Description of the velocity model 
from the Coral Patch Ridge to the Seine 
Abyssal Plain 
[17] In this section the final velocity 
model of the southeastern part of the 
NEAREST profile P1 (from 180 km to 
340 km) is described, whereas the 
northwestern part is presented in Sallarès 
et al. [2013] (Figure 3). 
[18] The thickness of the sedimentary 
cover obtained after the first inversion 
step using Ps and PsP phases differs 
considerably between the HAP and the 
SAP. In the HAP it reaches a maximum 
thickness of ~5 km, whereas in the CPR 

Annex I: Scientific articles

279

_________________________________________________



and SH areas varies between a minimum 
of 1 km in the top of a basement high and 

Figure 5. 1-D P-wave velocity/depth 
profiles representative of the various 
segments along the thin crust of profile 
P1: thin oceanic crust (240 km and 290 
km, green lines), across high-velocity 
anomalies (280 km and 317km, red lines), 
across low-velocity anomaly (258 km, 
blue line), compared with previous results 
for: >140 Ma Atlantic oceanic crust 
[Figure 6 of White et al., 1992] (blue 
area); thin oceanic crust generated at the 
ridge axis of the ultra-slow SWIR [Figure 
16 in Muller et al., 2000; in profile 
CAM114 of Figure 7 in Minshull et al., 
2006] (black lines); exhumed mantle at 
the HAP (170-180 km along profile P1; 
red band) and at the TAP (35-45 km along 
profile P1; orange band) [Sallarès et al.,
2013]; and non-extended continental crust 
[Christensen and Mooney, 1995] (brown 
area). The width of the band in the 
velocity profiles correspond to the 
uncertainty bounds. HVZ: high-velocity 
zone; LVZ: Low-velocity zone. 

a maximum of 2.5 km in a local basin 
(Figure 3). In this region the sedimentary 
cover is known to be composed by 
Mesozoic and Cenozoic sediments [Hayes 

et al., 1972] and has been largely studied 
and characterized in detail using multi-
channel seismic (MCS) data [e.g. Sartori 
et al., 1994; Tortella et al., 1997; 
Hayward et al., 1999; Zitellini et al.,
2009; Martínez-Loriente et al., 2013]. 
There is a good correspondence between 
the WAS-derived sediment-crust 
boundary and the base of the sediment 
cover in the MCS profiles SW12 and 
SW13 from Martínez-Loriente et al. 
[2013] that intersect the southern half of 
the profile P1. The sedimentary units 
show velocities ranging from ~1.8 km/s 
just below the seafloor to 4.0 km/s at the 
bottom of the layer, although they locally 
reach up to ~5.0 km/s in the deeper part of 
the HAP, corresponding to the 
consolidated Mesozoic sediments (Figure 
3). Below OBS 19 (~210 km along 
profile) the contours of the velocity field 
reflect a negative anomaly that seems 
continue below the sediment-basement 
boundary.  
[19] The crust underlying the sedimentary 
cover in the southeastern half of the 
profile appears to be unusually thin and 
laterally heterogeneous (Figure 3). From 
km 200 to 280 the thickness ranges from 
3.5 km to 5.5 km, while in the 
southernmost part it is slightly thicker 
reaching 5.5-6.0 km. Crustal velocities 
vary from 4.0-5.0 km/s at the top to 7.0-
7.1 km/s at the crust-mantle boundary, 
with a vertical velocity gradient twice 
stronger in the uppermost crust than in the 
lower crust (Figure 3). The presumed 
Moho reflector is locally disrupted as can 
be observed between 270 km and 285 km 
in Figure 3 because PmP phases have not 
been identified in all the corresponding 
record sections, but only in OBS # 9. A 
striking characteristic of the velocity 
model is the highly heterogeneous in the 
SAP, showing low- and high-velocity 
anomalies that are especially marked 
between 230 km and 285 km. The 
irregular character of the velocity contours 
in the sedimentary layer above these 
anomalies and ~3 km down to the Moho 
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indicate that these features are active and 
probably affect the whole crust. Between 
285 km and 340 km the velocity field is 
more uniform, except for a small NW-
dipping high-velocity anomaly centered at 
315-320 km that affects the lower part of 
the crust.  
[20] In the center of the HAP (190-200 
km) there is an abrupt lateral change in the 
basement velocity field. In this place the 
velocity just below the sediment-basement 
boundary abruptly changes from “normal” 
upper crustal velocities ~5 km/s to the 
south to velocities as high as ~7.0 km/s to 
the north, which corresponds to the part of 
the profile in presented by Sallarès et al.
[2013]. The upper mantle is sampled by 
Pn phases up to � 12 km below the Moho 
between 200-280 km, diminishing to the 
SE end of the profile. The mantle velocity 
reaches values as low as �7.5 km/s in the 
shallowest upper mantle, quite low as 
compared with normal upper mantle 
velocities of 8.0-8.2 km/s. 
[21] Uncertainty in the SE part of the 
profile within the sedimentary layer is low 
(�0.1 km/s), increasing to ~0.15 km/s near 
the top of the basement between 180 and 
200 km, where a sharp velocity contrast 
between the sediments and the basement 
occurs. Velocity uncertainty within the 
oceanic crust is also low (�0.1 km/s), 
including the region where the low- and 
high- velocity-anomalies have been 
identified (from 230 km to 285 km). 
Velocity uncertainty in the uppermost 
mantle is also �0.1 km/s, except in the 
southernmost part of the profile where it 
increases to ~0.2 km/s due to the poor ray 
coverage at the end of the profile. The 
generally low velocity uncertainty 
confirms that the velocity field obtained is 
remarkably well constrained by the data. 
The sediment-basement boundary in this 
part of the profile has an average 
uncertainty of ±0.3 km that increases to 
±0.8 km from ~280 km. The interpreted 
Moho has an average uncertainty of ±0.5 
km, while the average uncertainty of the 
HAT geometry is ±0.7 km. 

4.2. Velocity-derived density structure 
[22] The comparison between the 
satellite-derived free-air gravity anomaly 
[Sandwell and Smith, 2009] and the 
calculated gravity anomaly for each of the 
density models generated using the 
velocity-density relationships for the 
different lithologies, allows discerning 
between the different hypotheses. The 
gravity model of the northeastern part of 
the profile was presented by Sallarès et al. 
[2013]. Making a similar analysis, the 
authors concluded that the best fit with the 
satellite-derived free-air anomaly data was 
obtained transforming the basement 
velocity model into density using Carson 
and Miller’s [2003] relation for 
serpentinized peridotite. 
[23] We have integrated both the 
northeastern and southeastern parts of the 
profile to construct a single model of the 
whole transect. In the northwestern half 
we have inserted Sallarès et al.'s [2013] 
model, which was built using Hamilton’s 
[1978] law for sediments, and Carson and 
Miller’s [2003] relation for low-T 
serpentinized peridotite for the basement. 
In the southeastern part we tested three 
different relationships based on the three 
possible interpretations for the nature of 
the basement according to the regional 
geology and previous work (i.e. 
continental crust, exhumed serpentinized 
peridotite or oceanic crust). In the upper 
mantle we have used Carlson and Miller’s 
[2003] relation serpentinite in all three 
cases. 
[24] Figure 6a shows the comparison 
between the calculated gravity anomaly 
for the three resulting density models 
together with and the observed gravity 
anomaly. The model obtained using 
Carlson and Herrick’s [1990] conversion 
for oceanic crust provides the best fit with 
the observed anomaly, with a root mean 
square (rms) misfit of 5.1 mGal. In the 
case of the Carlson and Miller’s [2003] 
relation for low-T serpentinized peridotite, 
the fit obtained is reasonably good with an 
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rms slightly higher than in the previous case (7.2 mGal). The gravity response of 

Figure 6. a) Observed free-air gravity anomaly (dotted line) and calculated gravity 
anomalies for the velocity-derived density model using different empirical relationships 
for the layer beneath the sedimentary cover in the southern half of profile P1: the 
oceanic crust model displayed in panel b (blue line, rms=5.1 mGal) using Carlson and 
Herrick’s [1990] relationship; the Carlson and Miller’s [2003] relationship for 
serpentinized peridotite (purple line, rms=7.2 mGal); and the Christensen and Mooney’s 
[1995] relationship for continental crust model (brown line, rms=15.6 mGal). b) 
Velocity-derived density model along P1 transforming the velocity model in Figure 3, 
to density (�) using Hamilton’s [1978] law for shale in the sediments (� 
=0.917+0.747Vp–0.08Vp

2), Carlson and Miller’s [2003] relationship for serpentinite (� 
=1.577+0.196Vp) in the basement between 0-190 km, and beneath the crust layer 
between 190-340 km, and Carlson and Herrick’s [1990] relationship for oceanic crust (� 
=3.81-6.0/Vp) in the crust layer between 190-340 km. Density units are g/cm3. White 
circles indicate OBS locations. GB: Gorringe Bank; CPR: Coral Patch Ridge; HAP: 
Horseshoe Abyssal Plain; SH: Seine Hills; TAP: Tagus Abyssal Plain. 

the density model obtained using 
Christensen and Mooney’s [1995] relation 
for continental crust shows the poorest 
match with the observed anomaly, giving 
an rms of 15.6 mGal. 

5. Discussion 
[25] The discussion of the velocity and 
density models presented in Figures 3 and 
4 is structured in four parts. First, we 
compare our modeling results with 
previous interpretations regarding the 
nature of the basement rocks in the 
southern half of the profile and we make 
an interpretation of the basement affinity 
based on this comparison. Then, we 

discuss the nature of the transition 
between this area and the northwestern 
part of the profile presented in Sallarès et 
al. [2013]. Next, we propose a plausible 
present-day configuration of crustal 
domains off the SW Iberian margin based 
on the geological interpretation of all the 
WAS data acquired during the 
NEAREST-SEIS survey (profiles P1 and 
P2 in Figure 1), together with other data 
and information available in the region. 
We finally propose a plausible framework 
for the geodynamic evolution of the SW 
Iberian margin since the early phases of 
the Central Atlantic opening to present-
day that integrates all the observations. 
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5.1. Interpretation of the velocity and 
velocity-derived density model 
[26] The final velocity model (Figure 3) 
displays a 1.0-2.5 km-thick sedimentary 
layer in the CPR and SAP areas that 
overlays the basement. Concerning the 
nature of the basement there are three 
possible interpretations: continental crust, 
exhumed mantle or oceanic crust. The 
DSDP Site 135 located on top of the CPR 
(~260 km along profile) did not reach the 
basement [Hayes et al., 1972]. In the 
absence of direct basement samples or 
well-defined magnetic anomalies, the best 
available indicator of the nature of the 
crust is the velocity structure and crustal 
thickness obtained from combined WAS 
and gravity data modeling. 
[27] The differences between the velocity 
structure of the SAP with that 
corresponding to continental crust 
[Christensen and Mooney, 1995] (Figure 
5), are clear concerning both absolute 
velocity and vertical velocity gradients. 
Furthermore, as indicated in the previous 
section, the velocity-derived density 
model obtained using a continental crust 
relationship [Christensen and Mooney, 
1995] does not fit well with the observed 
gravity anomaly along the whole 
southeastern part of the profile (Figure 6). 
The velocity model fits significantly better 
with a reference for the exhumed mantle 
rock basement described in HAP and TAP 
[Sallarès et al., 2013] (Figure 5). 
However, the basement velocities of our 
model are generally slower, and the 
velocity gradients are slightly lower in 
comparison with these reference models 
(Figure 5). The velocity-derived density 
model obtained using the Carlson and 
Miller’s [2003] relation for serpentinized 
peridotite, explains reasonably well the 
observed gravity anomaly (Figure 6). 
Therefore, the combined WAS and gravity 
modeling do not allow to rule out the 
hypothesis of an exhumed mantle rock 
affinity for the basement in the CPR and 
SAP areas, as it has been previously 
proposed for the HAP and the TAP. 

However, an observation that is difficult 
to reconcile with this hypothesis is the 
identification of wide-angle reflections 
consistent with the presence of a well-
developed crust-mantle boundary (PmP) 
in a number of OBS deployed in the CPR 
and SAP (Figure 2), which is not the case 
for the OBS deployed in the HAP, TAP 
and Gorrnge Bank. 
[28] The last option that has been 
analyzed is the oceanic crust hypothesis. 
The thickness of the crust identified in the 
CPR and the SAP areas (3.5-6.0 km-thick) 
is in good agreement with the thin oceanic 
crust imaged in the SISMAR WAS profile 
SIS-P5 (4-6 km-thick), which was 
acquired just south of the SH [Jaffal et al.,
2009] (Figure 1). The crust identified in 
our model displays a 2-3 km-thick upper 
layer with a velocity of 4.0-6.5 km/s that 
according to its velocity and velocity 
gradient could well correspond to oceanic 
layers L1+L2, and a 0.5-3 km-thick lower 
layer with velocity of 6.5-7.0 km/s, which 
could represent oceanic L3. In fact, the 
velocity and velocity gradient of these two 
layers are within the range of velocity 
corresponding to a “normal”, Atlantic-
type, >140 Ma old oceanic crust [White et 
al., 1992]. The main difference between 
our model and a “normal” oceanic crust is 
the thickness of layer L3, which is 
substantially thinner than the 4-5 km that 
is commonly observed [e.g. White et al.,
1992] (Figure 5). This velocity structure 
with a normal thickness L1+L2 but a 
thinner-than-normal oceanic L3 is 
comparable to that described in oceanic 
crust generated at slow- and/or ultra-slow-
spreading centers. Well-known examples 
are the WAS profiles acquired in the ultra-
slow South-West Indian Ridge (SWIR) 
[Muller et al., 2000; Minshull et al., 2006] 
(Figure 5) and at the ultra-slow Arctic 
mid-ocean ridges [Dick et al., 2003]. In 
the studied segment of the SWIR, the half-
spreading rate is 6-12 mm/yr [e.g. Muller 
et al., 2000; Minshull el al., 2006]. 
Minshull et al. [2006] suggests that the 
“crustal” material in these areas would 
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consist at least partly of serpentinized 
mantle rocks. Because the P-wave 
velocities of these rocks can be typical of 
L3 (i.e. 6.5-7.0 km/s) or as low as 4-5 
km/s if the rocks are highly serpentinized 
and strongly altered [e.g. Miller and 
Christensen, 1997], it is difficult to 
distinguish seismically from basaltic and 
gabbroic rocks. In addition, the excellent 
fit of the velocity-derived density model 
obtained with a conversion law specific 
for oceanic crust [Carlson and Herrick, 
1990], which gives the lowest rms also 
supports this argument (Figure 6). 
Nevertheless, the velocity structure is 
highly heterogeneous, with low- and high-
velocity anomalies, and the Moho is not 
continuous but appears to be severely 
disrupted. The local presence of 
serpentinized peridotite could explain the 
high-velocity anomalies identified 
between 270-280 km and 310-320 km 
along the profile. It is noteworthy that 
these two segments coincide with the 
places where PmP reflections have not 
been identified in the record sections 
(Figures 2, 3). 
[29] The SE-dipping low-velocity 
anomalies identified in the crust are 
reflected in the 1-D P-wave velocity/depth 
profiles shown in Figure 5. These 
anomalies may be the tomographic 
expression of fault-related rock fracturing 
that could have promoted rock alteration 
by fluid percolation. The uppermost 
mantle velocity below the crust shows an 
average velocity of �7.5 km/s, >10% 
slower than normal, unaltered pyrolitic 
mantle (8.1-8.2 km/s) (Figure 3). This low 
velocity may be indicative of mantle 
serpentinization at upper mantle levels, 
which would in turn indicate that the 
faults identified might cross the Moho and 
penetrate at least 3-4 km inside the upper 
mantle. Additionally, the location of the 
low-velocity anomalies coincide 
reasonably well with the active structures 
recently described in that area with MCS 
profiles [Martínez-Loriente et al., 2013]. 

5.1.1 Transition between the serpentinized 
peridotite basement in the northwestern 
part of the HAP and the oceanic crust in 
the CPR 
[30] As mentioned above, there is a sharp 
lateral velocity change at the top of the 
basement in the center of the HAP (190-
200 km along profile P1), where the 
uppermost basement velocity increases by 
>25% (Figure 3). According to our 
interpretation, this velocity change 
represents a limit between two different 
geological domains: 1) the oceanic crust 
described and discussed in previous 
sections; and 2) the basement made of 
exhumed mantle rocks identified in the 
northern part of the HAP, the GB and the 
southernmost TAP by Sallarès et al.
[2013]. The presence of a different 
basement affinity north and south of the 
CPR is also consistent with the 
bathymetric data, showing that the 
seafloor is ~400 m deeper in the HAP than 
in the SAP. If we strip the sediments of 
the model the difference is even larger, 
with the top of the basement located ~2 
km deeper in the central HAP than in the 
SH of the SAP [Martínez-Loriente et al.,
2013]. As indicated by the gravity 
analysis, these differences are also in 
agreement with the presence of a denser, 
less buoyant basement in the HAP 
(exhumed mantle) than in the SAP 
(igneous crust). Therefore, a question 
remains concerning the type of transition 
between these two domains. An 
observation that may help to better 
understand this transition is the presence 
of faint, deep reflections in several record 
sections that were identified in the record 
sections of 6 OBS located in the SAP (PtP 
in Figure 7).The PtP traveltime inversion 
shows that these reflections should 
correspond to a deep, SE-dipping feature 
located in the middle of the HAP, just 
beneath the HAP-CPR transition area 
(Figure 3), with a dipping angle of ~30º. 
This feature, which is interpreted to 
separate the two above-mentioned 
domains, will be hereafter referred to as 
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the Horseshoe Abyssal plain Thrust 
(HAT). To estimate the dip uncertainty of 
the HAT we randomly perturbed the dip 
of the initial reflector used in the inversion 
by ± 20º so that the initial dip was 10º-50º, 
whereas the velocity model was that 

shown in Figure 3. The average geometry 
of the HAT obtained from all inversions 
with the corresponding error bar, which 
corresponds to the mean deviation respect 
the average dip and is less than 5º in 
average, are all shown in Figure 7. 

Figure 7. a) Zoom of the recorded seismic sections corresponding to the vertical 
component of OBS22, OBS23, OBS27, OBS28, deployed along P1, illustrating the PtP 
phase. b) Sketch of the initial configuration of the 500 reflectors used in the stochastic 
Monte Carlo analysis performed to analyze the uncertainty of the HAT geometry. c) 
Corresponds to the mean of the 500 solutions obtained in the stochastic Monte Carlo 
analysis with the corresponding error bar (see text for details). CPR: Coral Patch Ridge; 
HAP: Horseshoe Abyssal Plain. 

5.2. Geological provinces off the SW 
Iberian margin 
[31] In this section we merge the 
interpretation of the WAS profile 
presented in this paper with the ones 
presented in previous works [Sallarès et 
al., 2011; 2013] to construct two new 
geological cross-sections integrating 
tectonic and stratigraphic information 
(Figure 8). Then, we combine our WAS 
results with complementary information 
provided by previous WAS models 

[González et al., 1996, 1998; Gutscher et 
al., 2002; Contrucci et al., 2004; Jaffal et 
al., 2009; Palomeras et al., 2009], 
potential field data [e.g. Gràcia et al.,
2003b; Fullea et al., 2010], available 
MCS data [e.g. Sartori et al., 1994; Banda 
et al., 1995; Torelli et al., 1997; Tortella 
et al., 1997; Maldonado et al., 1999; 
Hayward et al., 1999; Gràcia et al., 
2003a,b; Medialdea et al., 2004; Zitellini 
et al., 2004; Iribarren et al., 2007; 
Terrinha et al., 2009; Bartolome et al.,
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2012; Martínez-Loriente et al., 2013], 
geological information from scientific and 
commercial wells [e.g. Hayes et al., 1972; 
Ryan et al., 1973; Lanaja et al., 1987] and 
seafloor rock dredges [e.g. Baldy et al.,
1977; Malod and Mougenot, 1979; Hinz et 
al., 1984] (Figure S2 in Supplementary 
material) to construct the first map of the 
basement domains offshore the SW 
Iberian margin (Figure 9). 

5.2.1. Geological cross-section along 
profile P1: From the Tagus Abyssal Plain 
to the Seine Hills
[32] The basement of the northwestern 
half of the profile, which runs from the 
TAP to the center of the HAP is made of 
partially serpentinized, exhumed mantle 
peridotites [Sallarès et al. 2013] (Figures 
8a, 9), which were originally part of a 
wide band of exhumed mantle rocks 
similar to the Zone of Exhumed 
Continental Mantle (ZECM) of the Iberia 
Abyssal Plain (IAP) [Pinheiro et al.,
1992; Dean et al., 2000; Srivastava et al.,
2000; Whitmarsh et al., 2001]. This band 
was generated by tectonic mantle 
denudation at the beginning of the North-
Atlantic opening (147-133 Ma), therefore, 
it may well constitute the southernmost 
and oldest section of the West Iberian 
margin Continent-Ocean transition (COT) 
[Schettino and Turco, 2009; Sallarès et 
al., 2013]. Later, the Neogene NW-SE 
convergence between Eurasia and Africa 
resulted in the thrusting of the 
southeastern segment of the band over the 
northwestern part; a process that uplifted 
the GB [Sallarès et al., 2013] (Figure 8a). 
The velocity and gravity modeling of this 
part of profile P1 reveal a low-
velocity/high-serpentinization anomaly, 
which possibly related to the presence of a 
main basal detachment thrust fault with 
the secondary thrusts responsible of the 
GB uplift (Figure 8a); and b) low 
velocities in the upper part of the 
basement [Sallarès et al., 2013] (Figure 
3), indicating a high degree of fracturing 
and/or serpentinization in the upper part of 

the GB, leading eventually to rock 
disaggregation (Figure 8a).  
[33] The boundary between the exhumed 
mantle rocks flooring the TAP, GB and 
NW HAP, and the oceanic crust of the 
CPR and SAP occurs towards the center 
of the HAP. We suggest that the transition 
between the two domains is abrupt and the 
HAT appears to be a likely candidate to 
accommodate the boundary between the 
two domains (Figures 7, 8a, 9). The 
oceanic crust basement of the CPR and 
SAP is intensely fractured and highly 
heterogeneous, displaying local anomalies 
that may represent intrusions of 
serpentinized peridotite (Figures 8a, 9). 
Although the basement was not reached 
by drilling of DSDP Site 135, on the basis 
of sediment rates the deduced age of the 
sediments lying directly above the 
basement would be of 180-155 Ma (Early 
to Late Jurassic) [Hayes et al., 1972]. 
Kinematic reconstructions differ in the 
age of the onset of seafloor spreading in 
the Central Atlantic Ocean (CAO). Some 
works propose a late Early Jurassic to 
early Middle Jurassic (185 Ma to 175 
Ma), in particular for the northern part of 
the CAO [Withjack et al., 1998; Roeser et 
al., 2002; Schettino and Turco, 2009], 
whereas other authors proposed an age as 
late as Early Jurassic (195 Ma to 185 Ma) 
[Laville et al., 1995; Olsen, 1997; Le Roy 
and Piqué, 2001; Sahabi et al., 2004; 
Labails et al., 2010]. On the basis of the 
end of salt deposition off the Moroccan 
and Scotian margins, Sahabi et al. [2004] 
proposed an age of Late Sinemurian (190 
Ma) for the first oceanic crust in the CAO. 
This age is in agreement with that of the 
volcanic activity on both sides of the 
Atlantic ocean of the Central Atlantic 
Magmatic Province (CAMP) (200 Ma, 
before the end of salt deposits) [Jourdan 
et al., 2009]. Labails et al. [2010] 
proposed that during the initial breakup 
and the first 20 Ma of seafloor spreading 
(190-170 Ma) ocean accretion was 
extremely slow (8 mm/yr). This spreading 
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Figure 8. a) Regional tectonic and stratigraphic synthetic cross-section along profile P1, 
from the Tagus Abyssal Plain to the Seine Abyssal Plain. DSDP Site 120 [Ryan et al.,
1973] and Site 135 [Hayes et al., 1972] are located. b) Regional tectonic and 
stratigraphic synthetic cross-section along profile P2, from the South Portuguese margin 
to the Seine Abyssal Plain. Abbreviations: COB: Continental-Ocean Boundary; HAT: 
Horseshoe Abyssal plain Thrust; LN: Lineament North; LS: Lineament South; NCP: 
North Coral Patch fault; PF: Portimao Fault; SCP: South Coral Patch fault; SH (2, 3): 
Seine Hills faults. 

rate is within the range of ultra-slow 
spreading, and under these conditions the 
generation of thin oceanic crust with local 
presence of exhumed mantle rock 
intrusions, as suggested for the CPR and 
SH areas, would become possible. In 
addition, Labails et al. [2010] proposed 
that a marked change in the relative plate 
motion direction (from NNW-SSE to 
NW-SE) and in the spreading rate 
(increasing to 17 mm/yr) took place in the 
early Bajocian (170 Ma). Given the 
counterclockwise rotation of Africa and 
Iberia relative to Eurasia since Early 
Cretaceous time, the spreading center 
which would have generated this oceanic 
crust initially would have to be oriented 
~ENE-WSW or E-W (i.e. the relative 
plate motion direction would be ~NNW-
SSE), in agreement with the ~ENE-WSW 
present-day alignment of the oceanic crust 
tilted blocks located in the CPR and SH 
areas [Martinez-Loriente et al., 2013]. 
Considering all these elements, we 
suggest that the oceanic crust present in 
the southeastern half of profile P1 would 
have been generated during the early, 
slow-to-ultra-slow phase of seafloor 
spreading of the northeastern segment of 
the Central-Atlantic ridge (starting 
between 190 and 180 Ma, i.e. Lower 
Jurassic).  
[34] Although not as clear as in profile P2, 
the location of crustal-scale, SE-dipping 
low-velocity anomalies identified in the 
CPR and SAP affecting from the 
sedimentary cover to the first kilometers 
below the Moho, coincide reasonably well 
with the large, active faults recently 
identified in the CPR and SH areas 
[Martínez-Loriente et al., 2013] (Figures 

3, 8a). These major thrust faults affect old, 
cold and brittle oceanic lithosphere and 
probably root in a common detachment 
layer located either at the Moho (~7-8 km 
below the seafloor) or below the 
serpentinized area in the uppermost 
mantle (~12-13 km below the seafloor) 
[Martínez-Loriente et al., 2013] (Figure 
8a). This last hypothesis is the one that 
best agrees with the low velocity of the 
uppermost mantle, which might be 
indicative of serpentinization, possibly 
enhanced by fluid percolation along the 
thrust faults. 
[35] MCS seismic stratigraphy suggests 
that most of the regional uplift occurred 
between the Early and Late Miocene [e.g. 
Hayes et al., 1972; Sartori et al., 1994; 
Tortella et al., 1997], consistent with the 
emplacement of the Horseshoe 
Gravitational Unit (HGU), a large 
allochthonous body that fills the HAP and 
acts as a regional marker [e.g. Sartori et 
al., 1994; Torelli et al., 1997; Iribarren et 
al., 2007; Martínez-Loriente et al., in 
press] (Figure 8a). MCS data also reveal 
active deformation in the sedimentary 
sequence infilling the HAP mainly due to 
WNW-ESE dextral strike-slip faults, 
which correspond to the westward 
continuation of the SWIM Lineaments 
[e.g. Zitellini et al., 2009; Bartolome et 
al., 2012; Martínez-Loriente et al., 2013] 
(Figure 8a). The low-velocity anomaly 
identified in the sedimentary sequence 
beneath OBS 19 (~212 km) (Figure 3) 
spatially coincides with the location of 
Lineament South (LS), the most 
prominent of these strike-slip faults [e.g.
Bartolome et al., 2012; Martínez-Loriente 
et al., 2013].  
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5.2.2. Geological cross-section along 
profile P2: From the South Portuguese 
Margin to the Seine Abyssal Plain
[36] The profile P2, which runs from the 
Portuguese continental shelf to the Seine 
Abyssal Plain (SAP) across the central 
Gulf of Cadiz, reveals the presence of 
three main crustal domains [Sallarès et 
al., 2011]. To the north, we observe the 
section corresponding to the ~30 km-thick 
Variscan continental crust, then a ~60 km-
wide transition zone where most of the 
crustal thinning concentrates, and finally a 
150 km-wide portion with a ~7 km-thick 
of oceanic crust.  
[37] According with the new information 
provided by the profile P1, integrated with 
previous WAS data results [Gutscher et 
al., 2002; Contrucci et al., 2004; Jaffal et 
al., 2009] and taking into account recent 
kinematic reconstructions [e.g. Stamplfi et 
al., 2002; Sahabi et al., 2004; Schettino 
and Turco, 2009; Labails et al., 2010], we 
suggest that the 150 km-long southern part 
of profile P2 may be composed by two 
oceanic crusts generated at different 
spreading centers (Figure 8b). The 
northern part (~80 km-wide, from ~km 
110 to 190) would correspond to the a 
remnant of the western Alpine-Tethys 
crust, generated by oblique seafloor 
spreading trough a large transform fault 
boundary between Iberia and Africa 
during the Jurassic (180-145 Ma) 
[Sallarès et al., 2011]. The southern part 
(~110 km-wide, from ~km 0 to 110) 
would correspond to a crust generated 
during the first stages of seafloor 
spreading of the northeastern segment of 
the Central-Atlantic, in the Early Jurassic. 
This is the same spreading centre that 
formed the oceanic crust of the CPR and 
SAP, as interpreted in profile P1 (Figures 
8, 9). 
[38] The velocity model of profile P2 
shows a number of south-dipping low-
velocity anomalies that have been 
proposed to represent crustal-scale faults 
[Sallarès et al., 2011], as previously 
identified in the area from MCS profiles 

[e.g. Gràcia et al., 2003b; Iribarren et al.,
2007; Terrinha et al., 2009; Zitellini et al., 
2009; Bartolome et al., 2012]. Some of 
them may correspond to a reactivation of 
inherited structures from the Jurassic 
transfer zone [Zitellini et al., 2009; 
Sallarès et al., 2011 Martínez-Loriente et 
al., 2013]. Based on its location, regional 
relevance and geometry, we suggest that 
the largest and bathymetrically most 
prominent of these crustal-scale faults, 
LS, is a likely candidate to represent the 
boundary between both oceanic crustal 
domains (i.e. the Alpine-Tethys and the 
Central Atlantic). In this case, LS could be 
interpreted as the present-day expression 
of the Gibraltar Fault (GiF), a paleo-plate 
boundary located between Iberia and 
Morocco at ~150 Ma [e.g. Schettino and 
Turco, 2009].  
[39] Regarding the sedimentary sequence, 
according to MCS interpretations [e.g.
Tortella et al., 1997; Maldonado et al.,
1999; Iribarren et al., 2007], the lower 
layer corresponds to the well-consolidated 
Mesozoic sequence, whereas the upper 
ones corresponds to the Gulf of Cadiz 
Imbricated Wedge (GCIW) and the Plio-
Quaternary sediments (Figure 8b). 
Towards the north, the Portimao Bank 
sequence consists of Mesozoic to Plio-
Quaternary folded and faulted sediments. 
In between these two domains, the 
Portimao Fault (PF) may correspond to 
the Continental-Ocean Boundary (COB) 
The northernmost 100 km of profile P2, 
the continental crust is overlaid by a thin 
sedimentary layer of Plio-Quaternary age 
(Figures 8b, 9). 

5.2.3. Geological domains of the SW 
Iberian margin
[40] The basement distribution map of 
SW Iberia includes 7 different geological 
domains, four of continental affinity: the 
Iberia, the Atlas, the Gibraltar Arc, and 
the Slope, and three oceanic: the Gulf of 
Cadiz, the Seine Abyssal Plain and the 
Gorringe Bank (Figure 9). 
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[41] The Iberia and Atlas domains are 
formed by Variscan continental crust [e.g. 
Saadi et al., 1985; Frizon de Lamotte et 
al., 2009; Rodríguez-Fernández, 2004]. 
Both continental domains are bounded by 
the Slope domain, a band made of thinned 
continental crust. This transition between 
the Continental and Slope domains is 
clearly displayed in the northern part of 
profile P2, which agrees with the structure 
observed along the on-shore IBERSEIS 
WAS transect [Palomeras et al., 2008]. It 
is also consistent with that of González et 
al. [1996], which is based on land 
recordings of the IAM data (Figure 1). 
The adjoining Gibraltar Arc domain is 
constituted by the Betics and Rif 

cordilleras and the Alboran Basin 
[Rodríguez-Fernandez, 2004]. 
[42] In the Moroccan Margin, the Slope 
domain leads to a salt basin to the west 
[Labails et al., 2010], clearly identifiable 
in the free-air gravity data (Figure 9). The 
S' magnetic anomaly (Figure 1) marks the 
location of the COB in this area. The 
Seine Abyssal Plain domain includes the 
Jurassic oceanic crust generated during 
the Central Atlantic opening, and extends 
through the western HAP, the CPR, the 
SAP and the southern part of the central 
Gulf of Cadiz. Seismic velocities in this 
basement domain are rather heterogeneous 
and oceanic crust is remarkably thin. It 
has been imaged in a number of WAS  

Figure 9. Basement distribution map of the SW Iberian Margin overlaid on the free-air 
anomaly map contours each 100 mGal [Sandwell and Smith, 1997]. Seven geological 
domains, defined on the basis of nature of the basement and age, have been proposed. 
See text for explanation. 
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profiles acquired during different cruises, 
for instance in the western part of 
SISMAR profile SIS-P16 [Gutscher et al.,
2002] and in the southern part of 
NEAREST profile P2 (Figure 1) [Sallarès 
et al., 2011]. Further south, oceanic crust 
was interpreted in two other SISMAR 
profiles (Figure 1) although the crustal 
thickness is rather variable ranging from 
~7 km in Profile SIS-P4, [Contrucci et al.,
2004], 4-6 km in profile SIS-P5 [Jaffal et 
al., 2009] and 3.5-6 km along NEAREST 
profile P1 in the CPR and SH areas 
(Figure 9). The S’ magnetic anomaly, 
which is the northernmost segment of the 
West Africa Coast Magnetic Anomaly, the 
African conjugate of the East Coast 
Magnetic Anomaly [Sahabi et al., 2004], 
coincides with the continental-ocean crust 
transition proposed by Contrucci et al. 
[2004] and Jaffal et al. [2009]. We used 
the position of the S’ magnetic anomaly to 
determine the location of the COB in the 
southern part of the study area (Figure 9). 
[43] In the map of geological domains, the 
major structure LS acts as a boundary 
between Seine Abyssal Plain domain and 
the two domains to the north: the Gulf of 
Cadiz and the Gorringe Bank (Figure 9). 
The Gulf of Cadiz domain is composed by 
the westernmost part -and the only 
remnant- of the Jurassic oceanic crust 
generated during the Alpine-Tethys 
opening [Sallarès et al., 2011]. The 
eastern segment of this band has been 
interpreted as subducted underneath the 
Gibraltar Domain during Miocene times 
[e.g. Lonergan & White, 1997], although 
some authors consider this subduction still 
active [Gutscher et al., 2002]. The ~7 km-
thick oceanic crust of this domain is 
clearly imaged in profile P2 (Figure 8). 
The Gorringe Bank domain extends from 
the northern HAP, the Gorringe Bank and 
the southern TAP. It is underlain by 
Cretaceous exhumed mantle rocks as 
evidenced along the WAS profile P1 
(Figure 8) as well available rock sample 
from the drilling Site DSDP 120 [Ryan et 
al., 1973]. The HAT is the limit between 

the Gulf of Cadiz and Gorringe domains 
(Figure 9). 

5.3. Geodynamic evolution of the SW 
Iberian margin 
[44] In this section we suggest a 
framework for the geodynamic evolution 
of the study area since the break-up of 
Pangaea until the present-day , integrating 
our new data and observations. Thus, 
Figure 10 includes the five most 
representative stages of the geodynamic 
evolution of the SW Iberian margin as 
well as neighboring areas. To accomplish 
this goal we have considered previous 
kinematic reconstructions proposed by 
different authors [e.g. Stamplfi et al.,
2002; Sahabi et al., 2004; Labails et al., 
2010; Schettino and Turco, 2011] that we 
have modified introducing the new 
findings and elements proposed in this 
work. In the kinematic reconstruction we 
focus on the processes that explain the 
evolution of the Atlantic, obviating the 
related processes that have taken place in 
the Mediterranean area because they are 
out of the scope of this work. 
[45] In the Late Triassic the rift systems 
that cut Pangaea from the Caribbean to the 
Tethys were established. These systems 
included rift structures in the eastern 
North America [e.g. Schlische et al.,
2002], south Iberia [e.g. Martin-Rojas et 
al., 2009], northwest Africa [e.g. Le Roy 
and Piqué, 2001], western Morocco [e.g. 
Piqué and Laville, 1995], and the Atlas 
[Schettino and Turco, 2009 and references 
therein]. As stated before, seafloor 
spreading in the CAO started around 190 
Ma with a spreading rate of ~8 mm/yr 
during the first 20 Ma [e.g. Olsen, 1997; 
Le Roy and Piqué, 2001; Sahabi et al.,
2004; Schettino and Turco, 2009; Labails 
et al., 2010]. The rifting in the Atlas 
region continued during this interval, but 
structures at the northern boundary of 
Morocco became more important, 
separating this plate from Iberia and 
Newfoundland. Figure 10a summarizes 
the situation at ~183 Ma, when the first 
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oceanic crust was generated in the CAO 
and in the Ligurian Basin (LB), and the 
activity of the rift structures in the Atlas 
region were close to end [Schettino and 
Turco, 2009]. 

Figure 10. Sketch of the kinematic 
evolution of the African, Iberian, Eurasian 
and American plates at following stages: 
180 Ma (a), 155 Ma (b), 140 Ma (d), 83.5 
Ma (d), and 20 Ma (e). The kinematic 
evolution is based primarily on Schettino 
and Turco [2011], although other works 
[e.g. Stamplfi et al., 2002; Sahabi et al.,
2004; Labails et al., 2010; Schettino and 

Turco, 2009] have also been used to better 
constrain all the observations. 
Abbreviations: E: Eurasia; GiF: Gibraltar 
Fault; Ib: Iberia; LB: Ligurian Basin; M: 
Morocco; NPF: North Pyrenean Fault 
Zone; NA: North America; NWA: 
northwest Africa; (1) areas affected by 
active rifting and thinning; (2) areas with 
thinned crust; (3) exhumed mantle rocks; 
Transform faults are shown in orange. 
White lines are spreading centers. 

[46] Once the extension in the Atlas 
region finished, the Atlantic kinematics 
was transferred to the Tethyan domain 
through the Gibraltar Fault (GiF), a 
preexisting plate boundary between Iberia 
and Morocco. This transform margin later 
evolved into a oblique seafloor spreading 
system that opened a narrow oceanic basin 
separating southern Iberia from NW 
Africa [Stampfli et al., 2002; Schettino 
and Turco, 2009; Sallarès et al., 2011] 
(Figure 10b). At this time the SW Iberian 
margin was underlain by the oceanic 
crusts that now conform the Seine Abyssal 
Plain and the Gulf of Cadiz domains, 
which were generated by two different 
oceanic spreading systems that functioned 
simultaneously: the Central Atlantic and 
the Alpine-Tethys systems (Figure 10b). 
From that moment on, the Moroccan plate 
remained fixed to NW Africa [Schettino 
and Turco, 2009]. 
[47] Between chrons M22 (~150 Ma) and 
M21 (147.7 Ma) took place the northward 
jump of the Atlantic-Tethys transfer zone 
to the North Pyrenean Fault Zone (NPF), 
through where will be transferred the 
Atlantic plate kinematics to the east 
[Schettino and Turco, 2009]. As a result 
of this event, the spreading center of 
Ligurian basin stopped and the rifting 
began between North American and Iberia 
[Tucholke et al., 2007]. During this 
earliest phase of the North-Atlantic 
opening (147-133 Ma) the southernmost 
and older part of the ZECM that conforms 
the Gorringe Bank domain was generated. 
According with the rock samples ages 
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[Féraud et al., 1986, 1996], the 
continental mantle denudation progressed 
northwards along the West Iberian margin 
during the Early Cretaceous (until ~122 
Ma) generating the zone of exhumed 
continental mantle of the Iberia Abyssal 
Plain (Figure 10c).  
[48] At ~120 Ma took place an important 
change of relative plate motions between 
Eurasia, North America, and Africa. The 
North Atlantic rift was just starting and 
took place a counterclockwise rotation of 
Iberia with respect Eurasia and Africa, 
triggering the Bay of Biscay rift [Sibuet et 
al., 2004 and references therein]. At 83.5 
Ma a convergent boundary between 
Eurasia and Iberia was formed, beginning 
the early Pyrenean orogeny [Sibuet et al.,
2004], the disappearance of the Bay of 
Biscay spreading center, and the inactivity 
of the transform boundary between Iberia 
and Morocco [Schettino and Turco, 2009] 
(Figure 10d).  
[49] The rift-drift transition in the Atlantic 
and the slow convergence at Pyrenean 
continued until chron C13n (33.1 Ma). 
The convergence between Africa and 
Eurasia was accommodated along the 
southern and eastern margins of Iberia. 
Then, the Pyrenean belt ceased to be a 
major plate boundary and Iberia remained 
fixed to Eurasia onward [Schettino and 
Turco, 2009]. At the southern margin of 
Iberia was formed a subduction zone that 
began to consume Ligurian oceanic 
lithosphere [Schettino and Turco, 2009]. 
In the Atlantic Ocean was formed a ridge-
ridge-transform triple junction causing 
higher spreading rates of the ridge 
segment facing Morocco. As a result, 
Morocco escaped eastward with respect 
northwest Africa [Schettino and Turco,
2009] and the Triassic-Jurassic rift 
structures of the Atlas were reactivated as 
reverse faults, uplifting the mountain 
range [Beauchamp et al., 1996; Frizon de 
Lamotte et al., 2000; Piqué et al., 2002] 
(Figure 10e). At ~19 Ma (chron C6n, 
Early Burdigalian) the Atlas uplift and the 
western Mediterranean extension finished, 

forming a new plate boundary in North 
Africa. From this moment took place the 
formation of the Alboran backarc basin 
[e.g. Lonergan and White, 1997]. In the 
SW Iberian margin the NW-SE trending 
plate convergence produced the 
reactivation of the WNW-ESE structures 
generated by the Jurassic transfer zone 
and the series of NE-SW thrust structures 
described in Figure 8 developed during 
that time. 

6. Conclusions 
[50] Combined WAS and gravity 
modeling along southern part of 
NEAREST profile P1 reveals the presence 
of a thin oceanic crust beneath the 
sedimentary layer in the CPR and SAP 
areas. The velocity structure is 
characterized by the presence of a thinner-
than-normal oceanic layer L3 (0.5-3 km-
thick), a high lateral variability with low- 
and high- velocity anomalies and a 
discontinuous Moho. The high-velocity 
anomalies coincide with the places where 
PmP reflections were not identified. The 
presence of serpentinized peridotite in the 
thin L3 could explain both the high 
velocities and the lack of PmP’s. This 
velocity structure is comparable to that 
described in oceanic crust generated at 
ultra-slow-spreading centers. The SE-
dipping low-velocity anomalies may be 
the tomographic expression of fault-
related rock fracturing, which may 
favored rock alteration by fluid 
percolation. The uppermost mantle shows 
low velocities that may be indicative of 
mantle serpentinization at upper mantle 
levels, suggesting that the thrust faults 
identified in the MCS profiles cross the 
Moho and reach the upper mantle. 
[51] According with kinematic 
reconstructions, we propose that the 
oceanic crust present in the CPR and SAP 
areas were generated during the early-
slow (~8 mm/yr) stages of seafloor 
spreading of the northeastern segment of 
the Central Atlantic, 190-180 Ma. There is 
evidence in the WAS data for the presence 
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of a sharp limit in the middle of the HAP 
between the above-described oceanic crust 
and the basement made of exhumed 
mantle rocks identified in the northern 
part of the HAP. The transition would take 
place trough the HAT, a deep SE-dipping 
reflector with a dip angle of ~30º. 
[52] After a reassessment of the profile 
P2, which runs from the south Portuguese 
Margin to the Seine Abyssal Plain, and 
considering kinematic reconstructions, we 
propose that the 150 km-wide segment of 
oceanic crust is actually composed of two 
different segments generated by different 
rift systems. The northern part (~80 km-
wide) would correspond to the only 
remnant western Alpine-Tethys generated 
by oblique seafloor spreading trough a 
transform system that developed between 
Iberia and Africa at Early-Late Jurassic 
(180-145 Ma), whereas the southern 
segment would have been generated 
during the first stages of seafloor 
spreading of the Central-Atlantic. These 
two domains are separated by the LS 
strike-slip system, the major of the 
inherited structures from the Jurassic 
transform zone that were reactivated 
during the Neogene convergence. 
[53] According with the new basement 
affinities interpreted based on the 
NEAREST-SEIS profiles and integrating 
previous results from other WAS and 
MCS data, rock basement samples, and 
location of magnetic anomalies, we 
propose that the basement offshore the 
SW Iberian margin is composed of three 
main oceanic domains: (1) the Seine 
Abyssal plain, made of oceanic crust 
generated in the NE Central Atlantic 
during Early Jurassic; (2) the Gulf of 
Cadiz domain, made of oceanic crust 
generated in the Alpine-Tethys system 
and coeval with the formation of the Seine 
Abyssal Plain domain; and (3) the 
Gorringe Bank domain, made of exhumed 
mantle rocks and generated during the 
first stages of North Atlantic opening, just 
after the end of spreading between Iberia 
and Africa. The complex and large 

diversity of types of basement that floors 
the SW Iberian Margin gives a new light 
into the characterization of the 
seismogenic and tsunamigenic sources in 
the region, which form now on will need 
to take into account the geological 
variability between domains (i.e. age, 
lithology, rheology) revealed by our new 
findings. 
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