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SUMMARY 

A numerical model for overland water and solute flow is presented. The 

proposed model is applied to the simulation and management of surface fertigation 

systems. The model successfully simulates the results of field experiments and proves 

its advantage over previous surface fertigation models based exclusively on solute 

advection. 
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ABSTRACT 

 A model of solute transport in overland flow is developed and applied to the 

simulation of surface fertigation. Water flow is simulated using the depth-averaged, 

one-dimensional shallow water equations. Solute flow is represented by an advection-

diffusion model. The resulting set of three partial differential equations is sequentially 

solved at each time step. First, water flow is computed using the explicit two-step 

McCormack method. Based on the obtained velocity field, solute transport is explicitly 

determined from the advection-diffusion equation using the operator split technique. 

Four field experiments involving fertigation events on an impervious free-draining 

border were performed to validate the proposed model and to obtain estimates of Kx, the 

longitudinal dispersion coefficient. A value of Kx = 0.075 m2s-1 satisfactorily 

reproduces the field experiments. The model is also applied to the simulation of a 

fertigation event on a pervious border. A sensitivity analysis is performed to assess the 

dependence of fertilizer distribution uniformity on the value of Kx. Finally, the 

proposed model is compared to a previous model based on pure advection.  

 

INTRODUCTION 

Fertigation is an interesting alternative for the fertilization of surface irrigated 

crops. The limitations to the use of surface fertigation stem from the alleged low 

uniformity and efficiency of surface irrigation systems. Hanson et al. (1995) reported 

that the performance of typical surface irrigation systems in California cannot be 

statistically distinguished from that of pressurized irrigation systems. Clemmens and 

Dedrick (1994) arrived at a similar conclusion when discussing the potential application 

efficiency of different irrigation systems. Recent developments in the design and 
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management of surface irrigation have led to new perspectives of an ancient irrigation 

system that has reached the 21st century with a dominant position over the new 

pressurized systems. 

 

The simulation of surface fertigation has been attempted as a means to evaluate 

its potential and to substitute intense, resource-consuming field experimentation. Boldt 

et al. (1994) presented a simulation model for surged furrow irrigation based on pure 

advection. Playán and Faci (1997) presented an advection model for border irrigation. In 

this case, the model was applied to the simulation of border strips, including level 

basins as a particular case. In the reference, ten field experiments were reported, 

involving analyses of water and soil samples. The model was first used to reproduce the 

experimental results. The performance index used for fertilizer application was the 

distribution uniformity as presented by Merriam and Keller (1978). The model was able 

to explain 44% of the experimental variability in distribution uniformity. Finally, the 

model was applied to the simulation of different fertigation cases differing in field 

slope, infiltration and downstream boundary condition. In each case, fertigation 

strategies were assessed by simulating all possibilities of starting and ending times of 

fertilizer application. A contour line map was used to represent distribution uniformity 

for all possible combinations of the starting and ending times. 

 

The physical process of solute transport in overland flow is referred to as 

hydrodynamic dispersion (Cunge et al. 1980).  It represents the interaction between 

advection and turbulent diffusion, both depending on the flow velocity field. Therefore, 

advective transport is a strong simplification of the actual phenomenon. Some of the 
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limitations of fertigation models based on advection were pointed out by Playán and 

Faci (1997) when comparing experimental data with model predictions.  

 

Taylor (1921) established the basis of diffusion modeling in turbulent flows. 

Holly (1975) presented the basic Fickian equations for mass transport in two 

dimensional overland flows. In the last decades, applications of this theory to several 

disciplines related to water quality in coastal and inland waters have been presented 

(Falconer 1992).  Recent works in advection-diffusion simulation in free-surface water 

bodies (Karpik and Crockett 1997; Komatsu et al. 1997) have been based on the 

separate numerical treatment of the two distinct transport processes: advection by the 

mean flow and diffusion by turbulent eddies. In order to obtain an accurate simulation 

of the advective part of the dispersion process, a non-diffusive numerical scheme is 

required. To satisfy this requirement, other authors have used semi-Lagrangian schemes 

(Cheng et al. 1984; Islam and Chaudhry 1997). An alternative to the semi-Lagrangian 

approach would be to use an Eulerian upwind scheme of the appropriate order.  

 

In the present work, a hydrodynamic model of overland flow including solute 

transport is formulated and applied to surface fertigation. The resulting model is 

validated using four ad-hoc field experiments and one of the experiments reported by 

Playán and Faci (1997). Simulation of the experimental results is used to issue 

recommendations about the model parameters related to solute transport. Model 

validation is completed with a sensitivity analysis to the dispersion coefficient, and 

finally a comparison of the proposed model with an advection model is presented. 
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MATHEMATICAL MODEL 

The dynamics of the flow system have been described with the help of a system 

of three partial differential equations that, essentially, express mass and momentum 

balance for the liquid and mass balance for the solute. The liquid is actually a two-phase 

mixture but the concentrations are low enough to justify a model similar to those 

customarily used for pure water. The low solute concentration implies that water flow 

determines the solute fate. The contrary is not true. 

 

The mathematical model presented is depth-averaged so that all properties are 

assumed uniform in the vertical and the pressure is considered to follow a hydrostatic 

distribution at each section. Hence, the water flow description follows a shallow water 

model with extra infiltration terms.  The mass balance for the solute is a depth-averaged 

advection-diffusion equation. 

 

The nature of the system of equations is such that a sequential resolution is 

possible. Therefore, the procedure applied to each time step has been to solve first for 

the water flow equations and then, given the flow depth and velocity, to integrate the 

solute concentration evolution. 

 

Water Flow 

The one-dimensional shallow water flow equations are a simplified model that 

can be written in cartesian coordinates and vectorial form for a unit width rectangular 

channel as: 

 

 





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6

 

For a descriptive deduction see Cunge et al. (1980). In that system, U  ( , )h uh T  

represents the vector of conserved variables (wetted cross section and discharge per unit 

width), where h and u are the depth and the velocities in the x direction respectively. 

The flux in the second term of the equations is, 

 

 
F = uh u h

gh
T

, 2
2

2










   (2) 

The right hand side of the system contains the sources and sinks of momentum arising 

from the bed slopes, the friction losses along the flow direction and the effects due to 

the loss of water through infiltration to the soil. 

 

 
  G =   i gh S S Df i

T
, 0  (3)    

The bed and friction slopes are, 
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2

4 3/  (4) 

 

 where z is the bottom elevation and n is the Manning roughness coefficient. The 

infiltration rate, i, can be computed using the empirical Kostiakov-Lewis equation, 

0
1a fkai    where  is the opportunity time measured in minutes and k, a and f0 are 

empirical parameters. The momentum transfer is estimated as: 
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ui

i  2
 (5) 

 

Solute Flow 

The amount of substance in the fluid is specified by the concentration, C, that is 

the mass of substance per unit volume of fluid. The transport of this substance is 

assumed to take place by means of two mechanisms, advection and diffusion. 

Advection-diffusion equations are very common in fluid dynamic problems in general 

and in hydraulic engineering in particular. Advection represents the pure transport of the 

unchanged concentration along the pathlines of the fluid particles. Diffusion, according 

to Fick’s law, states that the transport of concentration in a motionless fluid is 

proportional to the negative of the concentration gradient. Fick’s law is based on 

molecular transport in which the constant of proportionality, the diffusion coefficient, 

depends on both the fluid and the solute properties. Actual processes are mostly 

governed by the influence of turbulence in the flow. Usually, this effect is included in 

the equations as an extra diffusion term that, in practical situations, is the most relevant 

and is formulated as Fick´s law with a turbulent diffusion coefficient. This is in general 

a three dimensional phenomenon that can be described by  
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 (6) 

 

In (6), Einstein´s summation rule has been applied, ui corresponds to the i-component of 

a three-dimensional velocity vector and xi represents the turbulent diffusion coefficient 

in direction xi.  
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Equation (6) is too general for the interest of our work. In the context of a depth 

averaged model, the depth averaged concentration is of primary interest and it has been 

shown that, under special conditions, eq. (6) leads to a much simpler advection-

diffusion model (Holly 1975): 
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In (7), u and C are the depth-averaged velocity and concentration, and Kx is an empirical 

longitudinal dispersion coefficient that should not be confused with the turbulent 

diffusivity. In general, Kx incorporates dispersion due to differential advection as well as 

turbulent diffusion (Cunge et al. 1980).  

 

NUMERICAL MODEL 

Water Flow 

In recent years there has been a significant amount of work published in 

reference to numerical techniques applied to the shallow water equations. Some of this 

work has been developed in the specific application of overland flow for irrigation 

purposes.  The numerical scheme used in the present paper for discretizing system (1) is 

the explicit McCormack in two steps predictor-corrector (McCormack 1971). It is a 

shock-capturing extended technique of proved efficiency for unsteady free surface flow 

modeling. It allows the simulation of hydraulic flows involving shocks traveling along a 

fixed grid (no shock tracking is necessary). For details about this method see Fennema 

and Chaudhry (1986) and García-Navarro and Savirón (1992). Being second order 

accurate in space and time, it offers good resolution and has great conceptual simplicity. 
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The simulation requires initial conditions. In the present application these were the 

values representing a dry border, that is, h(x,0) = 10-5 m; u(x,0) = 0 m s-1. As any other 

linear second order method, it may suffer from oscillatory behavior near discontinuities 

(the advancing front, in this case) and may render anomalous results near critical points 

(Froude = 1).  

 

Subcritical wave propagation over a dry bed did not involve shock fronts. 

Instead, numerical instabilities arose from the presence of important source terms at the 

advancing front. A pointwise semi-implicit discretization proved efficient in reducing 

this kind of instabilities (Playán and García-Navarro 1997). 

 

Boundary Conditions 

Having used an explicit scheme for the interior points, the theory of 

characteristics has to be applied to specify conditions at the border boundaries. A 

detailed description of the principles of this method may be found in several references 

(Cunge et al. 1980). The flow regime at the upstream and downstream ends determines 

the number of required boundary conditions. The application to a prismatic one-

dimensional channel is well described in García-Navarro and Savirón (1992). The 

application to border irrigation was presented in Playán and García-Navarro (1997). 

 

Solute Flow 

For the numerical solution of eq. (7), a splitting technique was adopted. It is 

based on two steps as suggested by Karpik and Crockett (1997). First, the advection-

diffusion equation is written as: 
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Then, for every time step t = tn+1 - tn, the equation is solved in a sequence 

 

1.   

C

t
L C C C t t t Cn n n    

1
10( ) , * 

 (9) 

2.   

C

t
L C C C t t t Cn n n     

2
1 10( ) ,*  

 

that provides the value of the concentration at the new time. The procedure followed is 

outlined next. 

 

Step1: Advection 

The advective part of equation (7) can be algebraically manipulated so that  
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This form represents clearly the invariance of a scalar C along a trajectory 

 

 
DC

Dt

dx

dt
u 0 along  (11) 

 

In order to obtain a good approximation of the function C(x,t) at all the points xi of a 

fixed discrete grid, assuming that C and u are known everywhere in the grid at an earlier 
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time, the departure point x0 of the trajectory arriving in xi must be determined first. This 

position will not coincide in general with a grid point. Then, a way of calculating C(x0) 

must be established, that is, an adequate interpolation technique is necessary. And 

finally 

 

 C x t C x ti
n n( , ) ( , ) 1

0  (12) 

 

The above summarizes the semi-Lagrangian method for the solution of a scalar 

problem. The actual implementation for the present problem is based on a cubic 

interpolation since it is more accurate than a linear interpolation and less oscillatory 

than a quadratic interpolation. Hermite cubic polynomials have been chosen for their 

simplicity, accuracy and the important advantage of allowing the calculation of the 

derivatives from the solution itself. To provide the interpolated value of a function f(x) 

defined in a discrete mesh at a point xp, x x xi p i  1: 

 

      f x c x x c x x c x x cp p i p i p i( )       1

3

2

2

3 4 (13) 

 

where the coefficients are 
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the discrete slopes are defined as 

 



 

 

12

  i
i i

i i

f f

x x









1

1

 (15) 

 

and the space derivatives at the nodes are estimated in the case of an interior point by  

 

 di

i i i i

        2 1 17 7

12
 (16) 

 

Slightly different formulae are used for the points that do not have two neighbors 

on both sides. The monotonicity of this cubic interpolant is enforced by first imposing 

some conditions and limits on the values of the derivatives. For more details see 

Williamson and Rasch (1989), for other applications see García-Navarro and Priestley 

(1994) and for another Hermite cubic based method see Holly and Preissmann (1977). 

 

Step2: Diffusion 

For the numerical solution of the parabolic equation representing the diffusion 

process 
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A standard central difference scheme has been applied 
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where the values C* represent those calculated from the advection step. 



 

 

13

 

Boundary conditions for this part are applied at both ends of the domain, fixing 

the value of the concentration upstream and that of its spatial derivative downstream. 

During fertilizer application the value of concentration was set to the normalized value 

of one. A value of zero was used otherwise. The spatial derivative of fertilizer 

concentration at the downstream end of the border was set to zero. 

 

The amount of fertilizer infiltrated at node i during a time step t can be 

computed as: 

 
2

CC
itFert

1n
i

n
i

ii


  (19) 

As time progresses, this quantity is accumulated. The uniformity of the infiltrated 

fertilizer is used as an index of the quality of the fertigation event. For this matter, the 

fertilizer distribution uniformity of the low quarter DULQF (Merriam and Keller 1978) 

has been used: 

 

 100
napplicatiofertilizerAverage

napplicatiofertilizerquarterlowAverage
DULQF   (20) 

 

MODEL VALIDATION AND TESTING 

Validation of the model was accomplished using five field experiments. Four of 

them were performed during the course of this research, and the fifth one was 

reproduced from the literature. When planning the field experiments, attention was paid 

to the fact that the solute transport module introduces a new parameter in the model: the 

longitudinal dispersion coefficient Kx. Under these conditions, there are four parameters 

in the model that can not be readily measured: n, k, a and Kx. The roughness parameter 
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is often estimated from a visual appreciation of the state of the soil surface. Infiltration 

can be measured in borders and basins using a variety of field techniques (Merriam and 

Keller 1978). These techniques are based on measurements on a small portion of soil, 

and the resulting estimates of the infiltration parameters are often not representative of 

the average field conditions. Numerical techniques have been developed in the last 

decades to estimate infiltration and/or roughness from the advance and recession curves 

of an irrigation event (Katopodes et al. 1990). The usefulness of these algorithms is 

inversely related to the number of unknown parameters. When consideration was given 

to the problems related to parameter estimation, we decided to run the field experiments 

on an impervious border. In this way, only two parameters would be left in the model: n 

and Kx. The experimental procedure would involve estimation of n from the hydraulics 

of the experiment, and estimation of Kx from the movement of the solute in the 

irrigation water. The practical implementation of the no-infiltration experiments 

required covering the experimental field with a PVC film. To increase the hydraulic 

roughness of PVC and make it similar to that of a commercial border, a fine layer of 

subcentimetric gravel was evenly spread over the film. The impervious border  

represents an approximation to the soil surface conditions commonly found in border 

irrigation. 

 

The experiments on the impervious borders were used for model validation and 

for the estimation of an appropriate value for Kx. Such experiments are not subjected to 

the spatial variability of infiltration (due to the impervious bed) and roughness (due to 

the manufactured nature of the bed). An additional experiment involving standard 

irrigation conditions was obtained form the literature. The bromide experiment 

described by Playán and Faci (1997) was used for the purpose of assessing the validity 
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of the estimated value of Kx in real irrigation conditions (with infiltration and with a 

natural soil surface). 

 

The proposed model was used to reproduce the experimental results. Linear and 

cubic interpolations were used in the model runs. A zero value of Kx was used in both 

cases for testing purposes. In the case of cubic interpolation, a value was determined 

based on best fit to the experimental results on part of the data set. The proposed value 

of Kx (0.075 m2s-1) was verified on the rest of the experiments.  

 

Experiments on an Impervious Border 

A free-draining border was constructed at the research facilities of the SIA in 

Zaragoza, Spain with the following characteristics: the border was 200 m long and 2.00 

m wide, with a slope of 0.000671 m m-1. The area where the border was constructed had 

just been laser leveled, as indicated by the fact that the standard deviation of the 

elevation residuals with respect to the elevation regression line was 14 mm. The water 

was supplied from a low pressure pipe. A volumetric water meter was installed at the 

supply pipe upstream from a sliding gate used for flow regulation to predetermined 

values. Two types of experiments were run on the impervious border. In the steady 

cases a fixed inflow was applied to the border until uniform flow conditions were  

reached. At this time, a fertilizer application was made. In the unsteady cases, the 

discharge was applied over the dry border bed and the fertilizer was applied when the 

advancing front had covered approximately 25% of the border area. The steady state 

experiments were used to estimate a value for Kx that was validated using the unsteady 

experiments. 
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 The fertilizer used in this experiment was granulated ammonium nitrate. The 

total mass of fertilizer was divided in weighed containers that were applied at the 

upstream end of the border every 5 s. To accelerate the solution process, the irrigation 

stream was mechanically stirred at the fertigation point. Three stations were marked on 

the border at distances 50, 100 and 150 m from the inlet. At each station water samples 

were collected at 30 to 60 s intervals during the passage of the fertilizer plume. The 

correlation between fertilizer concentration and electrical conductivity (EC), described 

by Playán and Faci (1997), was used to characterize the solute concentration. A field 

EC-meter was used to determine at each station the start and end of the sampling 

operation. A laboratory test was performed to determine the regression line of fertilizer 

concentration corresponding to the fertilizer and irrigation water used in the 

experiments. The resulting equation was: 

 

 996.0R527.1EC790.0C 2   (21) 

 

where C is expressed in g L-1 and EC is expressed in dS m-1. The electrical conductivity 

of the irrigation water was 1.69 dS m-1. In each experiment, the initial fertilizer 

concentration was determined as the ratio of total fertilizer mass to the volume of 

fertilized water, computed as the irrigation discharge times the fertilizer application 

time. The relative fertilizer concentration was computed as the ratio of actual fertilizer 

concentration to initial fertilizer concentration. Sample processing at each station 

provided a history of relative concentration. 
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Steady Cases 

Two experiments were performed on a steady flow (Q) of 5.0 L s-1 m-1. Both 

experiments were based on an initial fertilizer concentration of 7.78 g L-1. The 

experiments differed in the fertilizer application time (Ta), with values of 180 and 

360 s. One way to estimate Manning n is to measure uniform flow depth and use 

Manning equation. We found two practical problems of measuring flow depth: First, the 

use of gravel over the PVC film made it difficult to measure flow depth, since the 

channel bed could be considered to be at the PVC film level or at the top of the gravel 

layer. Second, field surface undulations led to visually appreciable differences in flow 

depth. Therefore, a large number of field elevation observations would have been 

required to obtain an adequate estimate of n. Therefore, we decided to estimate 

Manning n from the solute concentration history at the stations. The hypothesis is that 

the peak value of relative concentration at each station corresponds to the same fluid 

particle. 

 

Velocity estimates were obtained for each experiment between stations 50 and 

100 m and between 100 and 150 m, respectively. The average velocity was 0.101 m s-1, 

and the coefficient of variation was 9.5%. A value of n = 0.04 was obtained from 

Manning equation and used to simulate both experiments. Holly (1986) used Elder’s 

theory of turbulent flow (based on Taylor’s analysis) to present equations that lead to 

the computation of Kx based on hydraulic parameters. The theoretical value of Kx for 

this experiment was 0.006 m2s-1.  

 

The experimental data (Fig.1) shows concentration histories for both 

experiments and for the three stations. The curves show some skew to the right, 
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indicating that the fertilizer recession front was not as abrupt as the advancing front. For 

Ta = 180 s, the peak values of relative concentration at the three stations show a 

continuous decay in time. In the case of Ta = 360 s, the peak values are similar at 

stations 50 and 100 m, and some decay is observed at 150 m. These differences between 

experiments are attributed to the longer application time in the second experiment. 

Simulation results reproduce the experimental results with variable accuracy. In the 

three simulated cases it can be observed some anticipation of the simulation results with 

respect to the observed data. This time lag, evaluated in 100 s, is attributed to the time 

required for the dissolution of the fertilizer. Linear interpolation with Kx = 0 m2s-1 

results in strong numerical dispersion. The results are always similar to those obtained 

with cubic interpolation and Kx = 0.075 m2s-1. When cubic interpolation was used with 

Kx = 0 m2s-1, the results were similar to the expected rectangular wave with unit relative 

concentration. This is particularly true for the long application time. Cubic interpolation 

with a Kx value of 0.075 m2s-1 showed satisfactory agreement with most of the six 

concentration histories. The simulated results reproduce the observed skew of the 

relative concentration. The theoretical value of Kx resulted too small and did not 

produce satisfactory agreement with the experimental values. 

 

Unsteady Cases 

The unsteady cases consisted of complete free-draining border irrigation events. 

Two experiments were performed differing on the inflow discharge and the application 

time. The first experiment was characterized by Q = 2.4 L s-1m-1 and Ta = 180 s. The 

initial fertilizer concentration was 8.22 g L-1. The irrigation time was 2,698 s, with 

fertilizer application starting at 1,033 s. The observed time of advance was 4,476 s.  In 

the second experiment the inflow was set to 5.9 L s-1m-1 and Ta = 360 s. The initial 
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fertilizer concentration was 6.64 g L-1. The irrigation time was 2,265 s, with fertilizer 

application starting at 500 s. The observed time of advance was 2,760 s.  

 

The estimation of Manning n was based on reproducing the advance curve using 

simulation. The overland flow routines described in this work were applied to the 

simulation of advance in both experiments using different tentative values of n. In both 

cases, a value of 0.09 provided the best fit to the experimental data. It has to be noted 

that steady state experiments on the same border using similar inflows resulted in a 

much smaller estimate of Manning n. Nevertheless, agreement was found between the 

two steady experiments and between the two unsteady experiments. At the same time, 

simulations with the respective values of Manning n satisfactorily reproduced the 

experimental data in each case. The Manning equation was originally formulated for 

steady flows, although it is often extrapolated to estimate friction head losses in 

unsteady flows. Chow (1959) identified a series of factors affecting the numerical value 

of the friction parameter, stressing the fact that surface roughness should not be 

considered to be the only one. The theoretical values of Kx for the first and second 

experiments were 0.007 and 0.015 m2s-1, respectively. 

 

The experimental results show lower peak values than in the steady cases, 

although the initial concentrations are similar (Fig. 2). In coincidence with the steady 

experiments, there is a time lag between simulations and observations. In this case, the 

lag is inversely proportional to the inflow and initial fertilizer concentration. This trend 

is to be expected if the dissolution of the fertilizer granules is considered as the cause of 

the lag. 
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Cubic interpolation with Kx = 0 m2s-1 resulted in the highest peak values of 

relative concentration, although in this experiment, dispersion was strong even in this 

case. The results of the cubic interpolation with Kx = 0.075 m2s-1 are often confounded 

with those for the linear interpolation with Kx = 0 m2s-1, particularly in the case with 

Q = 5.9 L s-1m-1. The simulation results for Kx = 0.075 m2s-1 show a satisfactory 

agreement with the experimental observations, indicating that this value of the 

dispersion coefficient can be used to simulate surface fertigation for a range of inflows. 

In coincidence with the steady cases, the experimental value of the dispersion 

coefficient is higher than the theoretical values.  

 

Experiment on a Pervious Border 

The bromide experiment presented by Playán and Faci (1997) was characterized 

by the application of pulverized potassium bromide to the irrigation stream of a 

blocked-end border. The border length was 255 m, and Q = 4.53 L s-1m-1. The field was 

laser leveled to a slope of 0.0010 m m-1. The infiltration coefficients were: k = 0.00656 

m min-a, a = 0.4347 and f0 = 0.00000. Manning n was estimated as 0.03. The irrigation 

time was 2,640 s, with fertilizer application starting at 1080 s, with Ta = 420 s. The time 

of advance was 3,720 s. The initial concentration of Br - was 1.535 g L-1. 

 

Simulation of Relative Concentration 

Figure 3 presents the experimental data, together with the simulation results. In 

this case, the differences between the three simulations are small in comparison with the 

previous experiments. The agreement between the experimental data and the cubic 

interpolation with Kx = 0.075 m2s-1 is satisfactory, and adds to the representativity of 

the proposed value for the dispersion coefficient in surface irrigation. It is worth noting 
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that the time lag observed in the previous experiments between experimental and 

computational data is not apparent in this case. In our opinion, the difference is due to 

the physical presentation of the fertilizer: pulverized instead of granulated. In the last 

two stations model simulations seem to be delayed from the experimental data. This 

circumstance can be attributed to the spatial variability of infiltration or soil surface 

elevation. Flow in this area of the border should be very sensible to these effects, since 

by the time of fertilizer advance to both stations the inflow had already been cut off. 

 

Sensitivity Analysis to Kx 

One of the objectives of this research is to recommend a value for the dispersion 

coefficient in border fertigation. Up to this point, the use of Kx = 0.075 m2s-1 has 

resulted in satisfactory simulation of five field experiments. This value is higher than 

the theoretical values corresponding to each experiment by a factor of between 5 and 

12. This discrepancy should be addressed by future research works based on the 

comparison of field experiments and computer simulations. 

 

The purpose of this section is to assess the effect on irrigation uniformity of an 

error in the estimation of Kx. The sensitivity analysis was based on four fertigation 

strategies applied to the bromide experiment. The  cases were named S1 to S4. In all 

cases fertilizer application started at 377 s. The application ended at times 754, 1,131, 

1,250 and 1,886 s for cases S1, S2, S3 and S4, respectively. In each case, simulation 

was performed with cubic interpolation and eleven values of Kx ranging from 0.000 to 

0.125 m2s-1.  
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Simulation results (Fig. 4) indicate that when the DULQF is extremely low (as in 

S1) Kx has little effect on DULQF, with a trend to increase with it. When the values of 

DULQF are intermediate (as in S2 and S3), the DULQF can increase 15 points in the 

considered range of Kx. Finally, for high values of DULQF the effect can be the 

contrary, resulting on a moderate decrease in the fertigation uniformity as Kx increases.  

 

The relevance of Kx on DULQF indicates that further research should be devoted 

to establish the validity of the proposed value for the dispersion parameter. Cases 

exploring a wide variety of hydraulic conditions should be experimentally analyzed to 

obtain better sustained estimates of the dispersion coefficient. The different experiments 

reported in this work were compatible with values of Kx in the range of 0.05 to 0.10 

m2s-1. In this range, the variation of DULQF is restricted to ±  3 points, a value that can 

be considered moderate. 

 

Comparison with an Advection Model 

The proposed model has proven its capability to reproduce the solute 

concentration histories at different points down a fertigated border. This represents a 

significant improvement over advection models, and can lead to better estimates of 

fertigation uniformity. In order to establish the validity of the advection model 

presented by Playán and Faci (1997), a comparison between both models was prepared 

based on the simulation of the bromide experiment. The methodology consisted of the 

elaboration of contour line maps of DULQF using as variables the starting and ending 

times for fertilizer application. The irrigation time was divided into intervals of 377 s. 

The choice of this interval was dictated by its similarity to the experimental application 

time (the shortest simulated application time will be similar to that used in the field 
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experiment) and the evenness of the division. To cover all possible application 

strategies, 28 simulations were required.  

 

The results of both models (Fig. 5) show some similarity, particularly with 

respect to the poor performance of short applications starting too early or too late. The 

area of high performance is not particularly coincident, with the proposed model 

locating good prospects for short applications applied between one-third and one-half of 

the irrigation time, a rule commonly applied by farmers using surface fertigation. Both 

models coincide in that the best practice is to apply the fertilizer uniformly with 

irrigation water during the whole event, a common practice when liquid fertilizers are 

used and relevant runoff or percolation losses are not expected.  

 

In Fig. 6 model estimations of DULQF are compared using a scatter plot. The 

differences between both models can be analyzed referring to the sensitivity analysis for 

Kx. In fact,  Kx = 0 m2s-1 implies advective transport, although in this case numerical 

diffusion has a clear effect on the simulation results. In coincidence with Fig. 4, when 

the uniformity is moderate, the advective model severely underestimates DULQF. On 

the other hand, when uniformity is high, a moderate overestimation of DULQF results. 

In this particular case, the average uniformities (for the 28 simulations) for both models 

are practically identical. 

 

SUMMARY AND CONCLUSIONS 

 The solute transport routine of the proposed model has proved to be an adequate 

tool to reproduce the evolution of solute concentration with time at different points of 

an irrigated border following a pulsed fertigation event. The experiments on an 
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impervious border led to the selection of adequate simulation parameters, since 

preventing infiltration reduced the number of parameters to two. The hydraulics of the 

irrigation event was used to estimate Manning n. The value of this parameter for the 

steady state experiments resulted less than half of the corresponding value for the 

unsteady experiments. Similarly, a value of the longitudinal dispersion coefficient (Kx) 

was selected seeking agreement between the observed and model simulated relative 

concentration histories. The steady state experiments were used for the estimation of Kx, 

and the unsteady experiments served the purpose of model validation. 

 

In all simulations, linear interpolation resulted in high numerical diffusion. As 

expected, cubic interpolation proved effective in reducing numerical diffusion, and the 

choice Kx = 0 m2s-1 resulted in peak values of fertilizer relative concentration close to 1 

in the steady state experiments. In the unsteady experiments, use of cubic interpolation 

without longitudinal dispersion did not prove so effective: the peak values of relative 

concentration fell well below 1 in most cases. The recommended value for the 

longitudinal dispersion coefficient, Kx = 0.075 m2s-1, satisfactorily reproduced the 

observed time evolution of relative fertilizer concentration in both the steady and 

unsteady experiments. The simulation of an experiment on a pervious border taken from 

the literature confirmed the applicability of the model to the simulation of border 

fertigation and added to the validity of the estimate of Kx. 

 

The fact that a unique value of Kx has resulted in satisfactory simulation of the 

different experiments (differing in flow conditions, infiltration and discharge values) 

does not imply endorsement of this value for all surface fertigation applications. If no 

additional information is available, the proposed value could be tentatively used. The 
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sensitivity analysis showed that only moderate changes in fertilizer distribution 

uniformity (±  3 points) should be expected if Kx ranges between 0.05 and 0.10 m2s-1.  

 

 The comparison between the proposed model and a previous model based on  

pure advection revealed significant differences in the estimated fertilizer distribution 

uniformity. Both models were coincident in that short fertilizer applications towards the 

beginning or the end of the irrigation event should be avoided. The proposed model 

identified an area of high uniformity located at the center of Figure 5. This area did not 

show in the contour line map when the advective model was used. A scatter plot of the 

DULQF estimated by both models revealed that the advection model strongly 

underestimated uniformity when uniformity was low (below 40% as estimated with the 

proposed model), and overestimated uniformity in the rest of the cases. To avoid these 

errors in the estimation of fertilizer uniformity, the use of a model based on the 

advection-diffusion equation is strongly recommended. Further research should be 

devoted to compare both types of models with field experiments under a wide range of 

experimental conditions. 

 

 We believe that the proposed model can be used as a tool to optimize fertilizer 

management in surface irrigated areas. Application of a fertigation model can result in 

lower deep percolation and runoff losses of fertilizers. Optimizing the use of 

agricultural inputs and adopting environment-friendly farming practices are the key to 

the sustainability of irrigated agriculture. 
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APPENDIX II. NOTATION 

 

The following symbols were used in this paper: 

 

a  Exponent of the Kostiakov infiltration equation; 

C  Fertilizer concentration (M L-3); 

Di  Infiltration momentum transfer; 

DULQF Fertilizer uniformity distribution of the low quarter (%); 

Fert  Mass of fertilizer infiltrated during a time step (M L-2) 

f0  Parameter of the Kostiakov infiltration equation (LT-1); 

h  Water depth (L); 

i   Infiltration rate (LT-1); 

Kx  Longitudinal dispersion coefficient (L2T-1); 

k  Parameter of the Kostiakov infiltration equation (T-a); 

n  Manning roughness coefficient; 

Q  Unit irrigation discharge (L2T-1); 

S0  Bed slope; 

Sf  Energy grade slope; 

Ta  Starting time of fertilizer application (T); 

u  Depth averaged water velocity (LT-1); and 

ui  i-component of velocity vector (LT-1).   

i  Turbulent diffusion coefficient in i-direction (L2T-1); 

 

 



 

 

32

APENDIX III. FIGURES 

 

Figure 1. Fertilizer concentration histories at 50, 100 and 150 m down the border for 

the two steady state experiments. Observed and simulated data are presented. 

Simulations include linear and cubic interpolations with different values of the 

longitudinal dispersion coefficient (expressed in m2s-1). 

 

Figure 2. Fertilizer concentration histories at 50, 100 and 150 m down the border for 

the two unsteady state experiments. Observed and simulated data are presented. 

Simulations include linear and cubic interpolations with different values of the 

longitudinal dispersion coefficient (expressed in m2s-1). 

 

Figure 3. Fertilizer concentration histories at several distances down the border for the 

bromide experiment reported by Playán and Faci (1997). Observed and simulated 

data are presented. Simulations include linear and cubic interpolations with different 

values of the longitudinal dispersion coefficient (expressed in m2s-1). 

 

Figure 4 .Sensitivity analysis of DULQF to the value of Kx. Four cases are presented. In 

all of them fertilizer application starts at time 377 s. The application ended at times 

754, 1,131, 1,250 and 1,886 s for cases S1, S2, S3 and S4, respectively. 

 

Figure 5. Contour line map of DULQF for different values of the fertilizer starting and 

ending time for the bromide experiment reported by Playán and Faci (1997). Results 

are presented for the advection model presented by Playán and Faci (1997) and the 

proposed model (using Kx = 0.075 m2s-1). 
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Figure 6. Scatter plot of the DULQF obtained with an advection model and the 

proposed model. The data corresponds to the simulation of the Bromide experiment 

reported by Playán and Faci (1997) using a variety of starting and ending fertilizer 

application times. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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