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Abstract   

The interpretation of the performance of electrochemical capacitors based 

exclusively on the textural features and surface chemistry of carbons can be 

insufficient, or even misleading, in the case of materials prepared at low 

temperatures (typically below 800oC). 

It is suggested that the gradual improvement of the electrochemical performances of 

carbon-based capacitors at high current densities, following heat treatments up to 

900oC, is mainly a consequence of the simultaneous increase in conductivity. This is 

illustrated by a study of carbons based on a mesoporous carbon prepared at 550oC, 

which displays poor electrochemical performances and a low conductivity (4.6 10-6 S 

m-1). A first heat treatment at 700oC leads to major structural, chemical and 

electrochemical changes, due to the collapse of the smaller mesopores and the 

formation of a microporous structure with average pore widths around 1.3 nm. One 

also observes a reduction in the surface oxygen density from 13 to approximately 5 

μmol m-2.  Further heat treatments at 800 and 900oC do not modify significantly these 
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characteristics, nor the surface-related capacitances at low current densities (1 mA 

cm-2)  in the aqueous (2M H2SO4) and organic (1M (C2H5)4NBF4/CH3CN) electrolytes. 

On the other hand, one observes increasingly high rate capabilities which may be 

ascribed to the simultaneous increase in conductivity from 7.3 to 147.8 S m-1 

between 700 and 900oC. 
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1. Introduction 

Electrochemical double-layer capacitors (EDLC) have been an important 

development in the field of electric energy storage [1,2].  There are many industrial 

fields that can benefit from the unique combination of high reliability, power and 

energy provided by EDLC technology. Several applications have drawn considerable 

attention, including regenerative braking in hybrid vehicles, cold engine starting, ride-

through backup power systems and digital electronic devices [1,2]. 

In view of the high potentiality of porous carbons for electrodes in EDLC, research 

efforts are presently being devoted to identify the key physico-chemical properties of 

these materials for high capacitance and high voltage devices [3,4]. Most studies 

focus on the effect of the textural features of carbons, such as specific surface area 

and pores size distribution, on their ability for energy storage and power release [3-

6]. Additionally, the influence of surface functionalities on the electrochemical 

performance has also been analyzed [3,4,6]. Indeed, all these characteristics 

determine the behavior of carbon-based capacitors. It has been shown that for the 

aqueous H2SO4 electrolyte the specific capacitance of carbons at low current 

densities consists of a contribution from the electrochemical double layer formed at 

the accessible surface area and of an additional pseudo-capacitance arising from 

certain surface functional groups, such as oxygen- [7] and nitrogen-containing 

complexes [8]. The pseudo-capacitive effects in the aprotic electrolyte (C2H5)4NBF4 in 

acetonitrile seem to be much weaker than in the aqueous medium and the 

performance of the corresponding capacitors results basically from the double-layer 

mechanism [9].  
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Furthermore, it appears that the variation of the specific capacitance at high current 

densities in both aqueous and aprotic electrolytes is controlled by the average 

micropore width and the amount of CO2 generating surface groups [7,9]. 

This study goes one step further by illustrating that the interpretation of the 

performance of EDLCs based exclusively on the textural and chemical features of 

carbons can be insufficient and other factors must be taken into account to get 

reliable conclusions. The systematic analysis of a series of carbons, based on the 

same precursor, with similar porosity and surface chemistry clearly shows that the 

complementary role of the electric conductivity of materials has to be added to the 

processes in the solution side of the double layer. 

This work also illustrates that the poor suitability of a mesoporous activated carbon 

obtained at 550ºC is overcome by heating in N2 at temperatures between 700 and 

900ºC. This simple process allowed the preparation of interesting microporous 

carbon with high capacitances, as well as increasingly high rate capabilities in 

aqueous (2M H2SO4) and organic (1M (C2H5)4NBF4/CH3CN) electrolytes. Such 

information can be further extended to the design of high performance 

electrochemical capacitors. 

2. Experimental 

2.1. Carbon materials 

A commercial activated carbon, Norit® C-Granular (hereafter labelled C) was heat 

treated under N2 at 700, 800 and 900ºC for 2 hours. This leads to carbons C700, 

C800 and C900, respectively. 

2.2. Characterization of carbons 

The solids have been characterized by N2 adsorption at 77 K (Micromeritics ASAP 
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2010) and by immersion calorimetry at 293 K (Tian-Calvet-type calorimeter). These 

techniques have been described in detail elsewhere [10]. 

The microporosity characterization was based on Dubinin´s theory, where the 

linearization of the Dubinin-Radushkevich (DR) equation leads to the micropore 

volume Wo, the average width Lo of the locally slit-shaped micropores and the 

surface area of the micropore walls Smi [10,11]. On the other hand, the classical 

comparison plot based on the N2 adsorption on a non-porous reference (Vulcan 3G) 

provided the total pore volume Vp and the external surface area Se of the carbons 

[11]. The combination of both approaches provided the total surface area based on 

the DR approach, StotDR = Smi + Se. As summarized in Table 1, SDR is in good 

agreement with the total surface area obtained from the analysis of N2 isotherm by 

other methods such as the comparison plot (Scomp) and the Density Functional 

Theory (SDFT) [11]. These areas and their averages Sav = (StotDR+Scomp +SDFT)/3 are 

listed in Table 1. 

The pore size distributions (PSD) of the mesopores were obtained by applying the 

Kruk-Jaroniec-Sayari (KJS) method to the adsorption branch [12]. 

The density of surface oxygenated functionalities has been estimated by the 

enthalpies of immersion into water and into benzene [13]. 

2.3.Supercapacitor performance of carbons 

Two-electrode capacitors were assembled in a Swagelok® system with pellets of 8 

mm in diameter and a thickness of ca. 300 μm. The electrode (∼10 mg) was 

composed of 75 wt.% of carbon, 20 wt.% of polivinylidene fluoride and 5wt.% of 

carbon black. 2M H2SO4 aqueous solution and 1M (C2H5)4NBF4 in acetonitrile were 

used as electrolytes. A glassy fibrous material played the role of separator. The 
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electrochemical measurements involved cyclic voltammetry at scan rates from 1 to 

50 mV s-1 and galvanostatic charging-discharging cycles at current densities between 

1 and 70 mA cm-2 (potentiostat-galvanostat Autolab-Ecochimie PGSTAT 30). The cell 

voltage ranged from 0 to 0.8 V for the aqueous medium and between 0 and 2 V for 

the aprotic electrolyte. 

The electrical conductivity of the carbons was measured at room temperature using a 

rig composed by a hollow glass cylinder and two brass pistons, as described in a 

previous work [14]. The sample was compressed at 2 MPa (Shimadzu AG-IS) and, 

simultaneously, the electrical resistance was determined by the four-probe method of 

impedance spectroscopy in the frequency range 0.1 Hz -1 MHz (Solartron 

1296/1255B). 

3. Results and discussion 

Following Vinke et al. [15], the initial carbon C corresponds to a highly disorganized 

material with a large content of aliphatic hydrocarbon fragments and rather limited 

conjugated ring structures [15,16]. The value of Eo around 16 kJ mol-1 obtained from 

the analysis of the N2 isotherm by the Dubinin equation [10], as well as the pore size 

distribution (PSD) derived by the KJS method [12], practically exclude the presence 

of classical micropores. This means that C is a mesoporous carbon with a broad 

porosity between 2 and 30 nm (Fig. 1). The analysis based on the nitrogen 

comparison plot leads to a total surface area Scomp of 739 m2g-1, in good agreement 

with the value of 715 m2g-1 obtained by the DFT method. Therefore, the average area 

(Sav) of carbon C is 727 m2g-1.  

The comparison of the enthalpies of immersion into water and into benzene [13] 

indicates a surface oxygen density of 9.6 mmol g-1 or 13.2 μmol m-2, in agreement 
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with the significant presence of carboxylic acid groups reported by Vinke et al. [15]. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 100

Pore width (nm)

P
S

D
 (c

m
3 

g-1
 n

m
-1
) 

 

Figure 1. Pore size distributions for carbons: C (+), C 700 (○), C800 (□) and C900 (Δ) above 
2 nm, following the KJS method. 

 

The structural and chemical characteristics on their own (Table 1) suggest a 

potentiality for the use of carbon C and similar carbons as electrodes in 

electrochemical capacitors. Its relatively high-surface-area (727 m2 g-1) should allow 

a high energy density storage, whereas its porosity, consisting essentially of 

mesopores, should provide a high power density [3,4,9]. However, these 

expectations, based exclusively on textural properties, contrast with the poor 

performance displayed by the capacitor prepared with carbon C. Fig. 2 illustrates 

collapsed cyclic voltammograms in both aqueous and aprotic media. If, by contrast, 

one takes into account the low conductivity of the material this result is not surprising. 

Carbon C, prepared by chemical activation of wood with phosphoric acid at a 

relatively low temperature (550oC), has a large content of aliphatic hydrocarbon 
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fragments and carbon atoms with sp3 configuration [15,16]. As a consequence, the 

electron mobility is highly limited [15-17] and only 4.6 10-6 S m-1 is obtained at 2 MPa. 

The importance of electric conductivity has been reflected in several studies based 

on carbon electrodes modified by the addition of carbon nanotubes [6]. 
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Figure 2. Cyclic voltammograms for carbon C at 5 mV s-1 in 2M H2SO4 (dotted line) and 
(C2H5)4NBF4/CH3CN (solid line)  

 

The success of a heat treatment under inert atmosphere near 1000ºC to enhance the 

suitability of porous carbons prepared at a high temperature (typically above 800ºC) 

has been noted in previous studies. For example, Ruiz et al. [18,19] reported that the 

heating in N2 at 1000ºC of a mesophase-derived activated carbon induced changes 

in the texture and the surface chemistry. It was suggested that the reduction in 

specific capacitance in H2SO4 and KOH and the enhancement of life-cycle of the 

supercapacitor were due mainly to the elimination of surface functionalities. On the 

H2SO4 (C2H5)4NBF4/CH3CN 
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other hand, templated mesoporous carbons obtained at 800°C required treatment at 

1000 ° C for 11 h to be suitable as electrodes for aqueous supercapacitors [20]. Such 

a treatment did not change significantly the pore structure of carbons (modifications 

in surface chemistry were not analyzed), but the conductivity of the electrode 

prepared with the treated samples is about one order of magnitude higher than that 

of the as-synthesized carbons. Obviously, the effect of heat treatment on the 

electrochemical performance depends largely on the temperature at which the 

material has been prepared as well as the textural and chemical properties of the 

resulting carbon. For example, Table 2 shows the relatively small modification in 

C(j)/Co of sample derived by post-heating at 1000ºC of the pitch-based 

superactivated carbon microbeads M30 (Osaka Gas Chemicals Co., Ltd.). It has 

probably been prepared around 850ºC, like many pitch-based carbons. 

In the case of carbon C obtained at 550oC, the subsequent heat treatments between 

700º and 900ºC lead to an interesting pattern. Firstly, as illustrated by Table 1 and 

Fig.1, heating at 700ºC is a major step which induces a significant change in the 

porous structure. One observes a shift from the smaller mesopores towards a 

microporous stucture with average pore widths Lo of 1.38 nm. The further treatments 

at 800 and 900oC reduce only slightly the micropore volume Wo and Lo, and the total 

surface areas are practically the same as observed for the initial carbon (727 m2 g-1). 

This clearly indicates a collapse in the structure around 700oC. Simultaneously, it 

appears that the treatment at 700oC leads to a strong reduction in the content of 

surface oxygenated-functionalities from 13.2 μmol m-2 to approximately 5 μmol m-2  

for carbons C700 to C900 (Table 1). 

Secondly, as seen in Figure 3, the capacitors based on carbons C700-C900 also 

show regular box-like voltammograms, with a steep current change at the switching 
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potential and characteristic for the behavior of an ideal capacitor. The rectangular 

shape is well preserved over a wide range of scan rates (1 to 50 mV s-1), which 

indicates a quick charge propagation. Moreover, high gravimetric capacitances are 

obtained from galvanostatic charge-discharge cycling at 1 mA cm-2 (Co, in Fg-1). 

Table 2 reports values, expressed per carbon mass in a single electrode, ranging 

from 124 to 173 Fg-1 in the aqueous H2SO4 electrolyte and around 74-80 F g-1 in the 

aprotic medium. For both electrolytes, the surface related capacitances Co/Sav  

compare well with the values observed for typical activated carbons prepared at 800 

to 900oC [7,9].  
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Figure 3. Cyclic voltammograms for carbons C700 (solid line), C800 (dotted line) and C900 
(dashed line) at 5 mV s-1 in 2M H2SO4 and (C2H5)4NBF4/ CH3CN. 
 

Carbons C700 to C900 show structural and chemical similarities and their surface-

related capacitances Co/Sav at j = 1 mA cm-2 in both electrolytes are similar, with one 

exception (C900 in 2 M H2SO4). However, in spite of the presence of carbon black in 
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the electrode, differences in their capacitance retention are found. As shown in Table 

2, the decreases in the normalized capacitance C(j)/Co with increasing current 

density j show different profiles. For example, at 70 mA cm-2 C900 still delivers 

around 73% of the capacitance achieved at 1 mA cm-2 in both electrolytes, as 

opposed to only 37 % in the case of C700. It appears that the heat treatment has a 

retarding effect on the decrease of C(j)/Co. Furthermore, the cyclic voltammogramms 

of Fig. 3 show differences in the steep current change at the switching potential. 

In the absence of significant changes in porous and chemical characteristics, these 

differences must be related to another factor, likely to be the electric conductivity of 

the carbons [3,21,22]. As reported in Table 1, the heat treatment produces major 

changes in the electrical conductivity, characterized by an important jump between 

550 (4.6 10-6 S m-1) and 700oC (7.3 S m-1), and followed by a further increase up to 

900oC (147.8 S m-1). Earlier investigations [23-25] reported that a transition between 

an insulating and a conducting state usually occurs when carbon materials are 

heated around 600-700ºC. The removal of strong electron-withdrawing heteroatoms 

(primarily acidic functionalities) from the carbon surface favours the electron 

delocalization and the electrical conductivity is notably enhanced. In the case of 

carbon C, the conductivity rapidly increases by at least six orders of magnitude by 

heating at 700ºC. This increment coincides with a drop in the content of surface 

oxygenated-functionalities [O] from 9.6 to 3.3 mmol g-1 (Table 1). Above 700ºC, the 

much slower increase of the electrical conductivity is probably related to the 

enhancement in the structural order by thermal annealing of the pseudo-graphitic 

carbonaceous layers [23-25] rather than to the loss of further surface groups.  

The increase in carbon conductivity is associated with a significant reduction in the 

equivalent series resistance (ESR) of the corresponding capacitor. In H2SO4, ESR of 
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the cell with electrodes made of carbon C700 is 11 Ω (1 mA cm-2). It drops to 5 Ω for 

the capacitor with carbon C900 as electrodes. For the aprotic electrolyte, the device 

based on C900 displays an ESR of 18 Ω against 36 Ω for C700.  

Figure 4 confirms that the textural and chemical characteristics are not the only 

factors controlling the performance of the electrochemical capacitor and the 

electronic properties of carbons have a prime importance, especially for achieving 

high power delivery. As illustrated by Figure 4 for aqueous and aprotic electrolytes, 

the increase in the carbon conductivity by heat treatment at 900ºC has a limited 

effect on the capacitor capacity for energy storage but results in power density 

almost 4 times higher than that of the device based on C700. 
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Figure 4. Energy density vs Power density for the supercapacitors based on carbons: C700 
(○, ●), C800 (□, ■) and C900 (Δ, ▲). The data corresponds to the unit mass of carbon in the 
capacitor. 
Open symbols for 2M H2SO4 aqueous solution. 
Closed symbols for 1M (C2H5)4NBF4/CH3CN. 
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4. Conclusions   

Heat treatment in N2 at 700, 800 and 900oC notably improves the poor 

electrochemical performance of a mesoporous carbon prepared at 550oC. The major 

step occurs around 700oC, which corresponds to a collapse in the porous structure 

and the removal of oxygen-containing surface complexes. The structural and the 

chemical properties the three carbons are similar, as well as their surface-related 

capacitances at low current density (1 mA cm-2) in aqueous (2M H2SO4) and in 

organic (1M (C2H5)4NBF4/CH3CN) electrolytes. On the other hand, it appears that the 

performance at higher current densities (5 to 70 mA cm-2) increases considerably 

with the temperature of treatment. The ratio C(j)/Co and the energy storage 

performances (in particular for the aprotic electrolyte, which is independent of the 

surface oxygen) improve between C700 and C900. At the same time, the power 

density is multiplied by a factor of four. These improvements, observed in both 

electrolytes, are directly related to the increase in electric conductivity between 700 

and 900oC. This is an additional factor leading to the optimization of carbons for 

electrochemical capacitors.  

The performance of carbons in electrochemical capacitors should not be based 

exclusively on the suitability of pore structure for electrolyte wetting and rapid ionic 

motion.  In order to get reliable conclusions from comparison of carbons with different 

origins, electric properties of materials have to be also considered.  
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Table 1. Main physico-chemical characteristics of the carbons. 

 

 

 

Carbon Vp 
(cm3 g-1) 

Wo 
(cm3 g-1) 

Eo 
(kJ mol-1) 

Lo 
(nm) 

Smi 
(m2 g-1)

Se 
(m2 g-1)

Surface area 
(m2 g-1) 

-∆iH[C6H6] 
(J g-1) 

-∆iH[H2O] 
(J g-1) 

[O] 
(mmol g-1) 

[O] 
(μmol m-2) 

Electric 
Conductivity 

(Sm-1) 

C 0.86 0.50 16.4 ∼ 2.3 - - 
StotDR          - 
Scomp     739 
SDFT      715 
 
Sav       727 

144.4 126.1 9.6 13.2 4.6 10-6 

C700 0.67 0.40 19.2 1.38 580 162 
StotDR    742 
Scomp    700 
SDFT     771 
 
Sav       738 

113.2 56.4 3.3 4.5 7.3 

C800 0.58 0.34 19.8 1.28 531 142 
StotDR    673 
Scomp    700 
SDFT     647 
 
Sav       673 

123.1 63.6 3.8 5.6 29.3 

C900 0.64 0.38 20.1 1.25 608 122 
StotDR   730 
Scomp    681 
SDFT     734 
 
Sav       715 

121.2 61.4 3.6 5.0 147.8 
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Table 2. Electrochemical properties of the heat-treated carbons C700 to C900.  For comparison purposes, data for the pitch-based 

activated carbon M-30 and after heat treatment at 1000oC are also included. 

 

 

2 M H2SO4 electrolyte 1 M (C2H5)4NBF4/CH3CN electrolyte 

Co Co/Sav  
Normalised capacitance 

for current densities of  5 to 70 mA cm-2 
Co Co/Sav 

Normalised capacitance 

for current densities of  5 to 70 mA cm-2 
Carbon 

(Fg-1) (Fm-2)  C5/Co C10/Co C30/Co C50/Co C70/Co (Fg-1) (Fm-2) C5/Co C10/Co C30/Co C50/Co C70/Co 

C700 173 0.23  0.89 0.82 0.58 0.44 0.38 80 0.11 0.90 0.78 0.46 0.35 0.22 

C800 148 0.22  0.93 0.90 0.82 0.74 0.67 78 0.11 0.96 0.92 0.80 0.72 0.63 

C900 124 0.17  0.91 0.88 0.82 0.79 0.75 74 0.10 0.96 0.93 0.84 0.77 0.72 

                

M30 201 0.18  0.93 0.90 0.84 0.81 0.78 121 0.11 0.97 0.94 0.90 0.88 0.82 

M30-1000 131 0.14  0.98 0.96 0.94 0.92 0.90 102 0.11 0.97 0.95 0.94 0.92 0.92 

 

 


