English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/97962
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture

AuthorsDel Río, E. ; Acién, Francisco G.; García-Malea, María del Carmen; Rivas, Joaquín; Molina-Grima, Emilio; Guerrero, Miguel G.
KeywordsChemostat
Specific nitrate input
Secondary metabolism
Nitrogen limitation
Nitrate uptake
Astaxanthin
Carotenoid
Continuous culture
Haematococcus
Irradiance
Nitrate
Issue Date2005
PublisherWiley-VCH
CitationBiotechnology and Bioengineering 91: 808- 815 (2005)
AbstractThe performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 μE/m2 · s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L · d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L · d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells. © 2005 Wiley Periodicals, Inc.
URIhttp://hdl.handle.net/10261/97962
DOI10.1002/bit.20547
Identifiersdoi: 10.1002/bit.20547
issn: 0006-3592
Appears in Collections:(IBVF) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.