Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/97500
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae

AutorPerez, Astrid; Poza, Margarita; Aranda, Jesús; Latasa Osta, Cristina CSIC; Medrano, Francisco Javier CSIC ORCID ; Tomás, María; Romero, Antonio CSIC ORCID ; Lasa, Íñigo CSIC ORCID; Bou, Germán
Fecha de publicación24-sep-2012
EditorAmerican Society for Microbiology
CitaciónAntimicrobial Agents and Chemotherapy 58(6): 6256-6266 (2012)
ResumenControl of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae. Copyright © 2012, American Society for Microbiology. All Rights Reserved.
URIhttp://hdl.handle.net/10261/97500
DOI10.1128/AAC.01085-12
Identificadoresdoi: 10.1128/AAC.01085-12
issn: 0066-4804
e-issn: 1098-6596
Aparece en las colecciones: (IDAB) Artículos
(CIB) Artículos

Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

38
checked on 28-mar-2024

SCOPUSTM   
Citations

56
checked on 24-mar-2024

WEB OF SCIENCETM
Citations

54
checked on 23-feb-2024

Page view(s)

363
checked on 27-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.