English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96357
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 0 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Numerical treatment of the resistance term in upwind schemes in debris flow runout modeling

AutorSánchez Burillo, Guillermo ; Beguería, Santiago ; Latorre Garcés, Borja ; Burguete Tolosa, Javier
Palabras claveDebris flow
Shallow water
Voellmy rheology
Upwind scheme
Strong slope
Numerical friction treatment
Well-balanced scheme
Depth-averaged model
Friction physical limitation
Numerical resistance treatment
Fecha de publicaciónmay-2014
EditorAmerican Society of Civil Engineers
CitaciónSánchez Burillo G, Beguería S, Latorre B, Burguete J. Numerical treatment of the resistance term in upwind schemes in debris flow runout modeling. Journal of Hydraulic Engineering 140 (5): 04014009 (2014)
ResumenFast flows and avalanches of rock and debris are among the most dangerous of all landslide processes. Understanding and predicting postfailure motion (runout) of this kind of flowlike landslides is thus key for risk assessment, justifying the development of numerical models able to simulate their dynamics. In this paper a numerical method for the resolution of the depth-averaged debris flow model is presented. This set of nonlinear differential equations is formed by a variation of the shallow water equations, including strong bed slope, and a rheology resistance term. This paper focus on the numerical discretization of the resistance term, exploring three different approximations: pointwise, implicit, and unified. Well balance between numerical flux and source terms is only achieved using the unified discretization. In order to avoid nonphysical values of the water depth and discharge, a limitation of the unified resistance term is also needed. This correction is made following three conditions that identify the physical boundaries of the resistance term in the debris flow. This technique does not affect the computational efficiency of the method, keeping the original time step. Furthermore, proposed analytical test cases show that the three resistance limitations do not significantly perturb the numerical solution. The properties of the resulting numerical scheme are studied using a set of numerical experiments that include steady and transient flows. The results show the convenience of the unified discretization and the need of the three-condition limitation in order to avoid unphysical solutions.
Descripción53 Pags.- 16 Figs. The definitive version is available at: http://ascelibrary.org/journal/jhend8
Versión del editorhttp://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000865
URIhttp://hdl.handle.net/10261/96357
DOI10.1061/(ASCE)HY.1943-7900.0000865
ISSN0733-9429
E-ISSN1943-7900
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BegueriaS_JHydraulEngineer_2014.pdf361,86 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.