English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/95975
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorSerrano, Roque-
dc.contributor.authorNácher-Mestre, Jaime-
dc.contributor.authorPortolés-Nicolau, Tania-
dc.contributor.authorNavarro, Juan Carlos-
dc.contributor.authorVaró, Inmaculada-
dc.contributor.authorAmat, Francisco-
dc.contributor.authorHernández, F.-
dc.identifier.citation9th Iberian and 6th Iberoamerican Congress on Environmental Contamination and Toxicology (2013)-
dc.descriptionPonencia presentada en el 9th Iberian and 6th Iberoamerican Congress on Environmental Contamination and Toxicology "The environmental research: essential for sustainability" celebrado en Valencia del 1 al 3 de julio de 2013-
dc.description.abstractHyphenation of gas chromatography (GC) with mass spectrometry(MS) is widely used for determination of volatile and semi-volatile compounds of low-medium polarity in aquatic ecosystems. Typically, environmental pollution has been monitored making use of target analytical methods, focused on quantification of a limited number of analytes. The development of modern high-resolution time-of-flight (TOF) analyzers opens new perspectives to develop wide-scope screening methodologies, based on full-spectrum acquisition techniques that combine high selectivity and sensitivity. GC coupled to TOF MS is among the most powerful techniques for this purpose, due to its elevated mass resolution that allows accurate mass measurements of the molecular ion (if present in the EI spectrum) and its main fragmentions. In this work, GC¿TOF MS has been applied to characterize the organic pollution pattern of marine waters, brines, salt and Artemia (crustacean Anostraca) samples collected in a hyper-saline aquatic environment from the Spanish Mediterranean coast. The sensitive and reliable qualitative analysis was favored as consequence of the simple ¿universal¿ sample treatment developed, which allowed the pre-concentration of analytes in the extract and collecting the widest range of analytes¿ polarities. GC-TOF MS screening has allowed the detection of contaminants present in the matrices in a non-target way, i.e. without any kind of pre-selection of pollutants to be investigated. After matching sample spectra with the EI GC-MS spectral library, the identity of detected components was supported by the accurate mass measurements of the main ions present in the spectrum, which were justified as possible fragments of the identified compound (low mass errors observed) by using Mass Fragmenter software as a tool. Without using any list of compounds to be investigated, the application of this non-target methodology has allowed the detection and tentative identification of several contaminants of anthropogenic origin, belonging to quite different chemical groups, even without reference standards being available. The unequivocal confirmation was performed in a subsequent step after acquisition of reference standards and their injection in the GC-TOF MS system. Organophosphorus pesticides, plasticizers, organophosphate esters, pharmaceuticals and personal care products and other types of emergent contaminants were the contaminants more frequently detected in brine and salt samples. The antioxidant BHT and 2,6-diisopropylnaphthalene were among the contaminants detected in Artemia samples.-
dc.titleNon-target GC-TOF MS screening of organic contaminants in environmental samples-
dc.typecomunicación de congreso-
dc.description.versionPeer Reviewed-
Appears in Collections:(IATS) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show simple item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.