Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94494
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Persistence of incomplete mixing in heterogeneous porous media

AutorLeborgne, Tanguy; Dentz, Marco CSIC ORCID ; Davy, Philippe; Bolster, Diogo; Carrera, Jesús CSIC ORCID
Fecha de publicaciónjun-2012
EditorUniversity of Illinois at Urbana-Champaign
CitaciónXIX International Conference on Computational Methods in Water Resources (2012)
ResumenLocal full mixing is often a key assumption that is needed in dispersion and reactive transport models. Complete mixing implies a loss of memory of Lagrangian velocities alon g particle trajectories. Thus, reaching this state is the main condition for Fickian dispersion. The existence of a locally fully mixed scale, which we call here mixing scale, is also required for defining the concept of local concentration and thus for us ing the mass action law for chemical reactions at local scale. The existence of this scale of homogenization can be assumed by invoking diffusive mixing. In this case, the mixing scale is identified to the characteristic diffusion scale. Yet, in heterogene ous velocity fields, where shear may act at all scales, the definition of the scale where elements are fully mixed is not obvious. E xperimental observations of anomalous dispersion and chemical kinetics in heterogeneous porous media suggest that incomplet e mixing at different scales may be at the root of these non classical behaviors. In order to investigate this we define a l ocal mixing scale as the largest volume which can be considered as fully mixed and propose a method for estimating it from particle separation statistics (Le Borgne et al., Phys Rev. E, 2011). In homogeneous media, local mixing is ensured by diffusion and the mixing scale grows like the square root of time. In heterogeneous velocity fields, the growth of hom ogenized areas is limited by the shear action of the velocity field. Hence, for strong heterogeneities, we find that the mixing scale grows subdiffusively, implying the persistence of incomplete mixing over long time scales. As the latter implies a significant correlation of Lagran gian velocities, we show that this subdiffusive scaling of mixing is related to a superdiffusive scaling of plume dispersion. Using different examples, we discuss how the analysis of the dynamics of local mixing can be used for understanding global dispersion and chemical kinetics laws.
DescripciónPonencia presentada en la XIX International Conference on Computational Methods in Water Resources (CMWR 2012), celebrad del 17 al 21 de junio de 2012 en la Universidad de Illinois.
URIhttp://hdl.handle.net/10261/94494
Aparece en las colecciones: (IDAEA) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

200
checked on 22-abr-2024

Download(s)

45
checked on 22-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.