English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/92941
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Efficient selection of signatures for analog/RF alternate test

AuthorsBarragán, Manuel J. ; Léger, G.
Issue Date2013
PublisherInstitute of Electrical and Electronics Engineers
Citation18th IEEE European Test Symposium: 1-6 (2013)
AbstractThis work proposes a generic methodology for selecting meaningful subsets of indirect measurements (signatures). This allows precise predictions of the DUT performances and/or precise pass/fail classification of the DUT, while minimizing the number of necessary measurements. Two simple figures of merit are provided for ranking sets of signatures a priori, before training any machine learning model. These two figures evaluate the quality of each signature based on its Brownian distance correlation to the target specifications, and on its local distribution in the proximities of the pass/fail decision boundaries. The proposed methodology is illustrated by its direct application to a DC-based alternate test for LNAs.
DescriptionTrabajo presentado al 18th ETS celebrado en Francia del 27 al 30 de mayo de 2013.
Publisher version (URL)http://dx.doi.org/10.1109/ETS.2013.6569362
URIhttp://hdl.handle.net/10261/92941
DOI10.1109/ETS.2013.6569362
ISSN978-1-4673-6376-1
Appears in Collections:(IMSE-CNM) Libros y partes de libros
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.