English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/91845
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

CO2 adsorption by activated templated carbons

AuthorsSevilla Solís, Marta ; Fuertes Arias, Antonio Benito
KeywordsCarbon dioxide adsorption
Chemical activation
Templated carbon
Issue DateJan-2012
PublisherElsevier
CitationJournal of Colloid and Interface Science 366(1): 147-154 (2012)
Abstract[EN] Highly porous carbons have been prepared by the chemical activation of two mesoporous carbons obtained by using hexagonal- (SBA-15) and cubic (KIT-6)-ordered mesostructured silica as hard templates. These materials were investigated as sorbents for CO2 capture. The activation process was carried out with KOH at different temperatures in the 600–800 °C range. Textural characterization of these activated carbons shows that they have a dual porosity made up of mesopores derived from the templated carbons and micropores generated during the chemical activation step. As a result of the activation process, there is an increase in the surface area and pore volume from 1020 m2 g−1 and 0.91 cm3 g−1 for the CMK-8 carbon to a maximum of 2660 m2 g−1 and 1.38 cm3 g−1 for a sample activated at 800 °C (KOH/CMK-8 mass ratio of 4). Irrespective of the type of templated carbon used as precursor or the operational conditions used for the synthesis, the activated samples exhibit similar CO2 uptake capacities, of around 3.2 mmol CO2 g−1 at 25 °C. The CO2 capture capacity seems to depend on the presence of narrow micropores (<1 nm) rather than on the surface area or pore volume of activated carbons. Furthermore, it was found that these porous carbons exhibit a high CO2 adsorption rate, a good selectivity for CO2–N2 separation and they can be easily regenerated.
Publisher version (URL)http://dx.doi.org/10.1016/j.jcis.2011.09.038
URIhttp://hdl.handle.net/10261/91845
DOI10.1016/j.jcis.2011.09.038
ISSN0021-9797
E-ISSN1095-7103
Appears in Collections:(INCAR) Artículos
Files in This Item:
File Description SizeFormat 
CO2_Adsorption_Sevilla.pdf1,13 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.