English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/89882
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Modelos de regresión multi-lineal para la predicción del perfil de ácidos grasos de filetes de dorada en cultivo

AuthorsBallester-Lozano, Gabriel F. ; Benedito-Palos, Laura ; Navarro, Juan Carlos ; Kaushik, Sadasivam; Pérez-Sánchez, Jaume
Issue Date22-Nov-2011
CitationXIII Congreso Nacional de Acuicultura (2011)
AbstractGilthead sea bream were fed with a standard diet from the juvenile stage to male-female sex reversal under natural day-length and temperature conditions. Fish were sampled at regular times for fillet analyses of total lipid levels and fatty acid (FA) composition. This dataset along with unique-point results on market-size fish fed a wide range of experimental diets were combined for multi-linear regression approaches, with the aim of describing strong relationships between fillet FA composition and the two independent variables: dietary FA composition and fillet lipid level. For saturated (14:0, 16:0, 18:0) and monounsaturated (16:1n-7, 18:1n-7, 18:1n-9, 20:1n-9) FAs, the overall variance in fillet FA composition is primarily explained by dietary FA composition and secondly by fillet lipid level. This second independent variable also contributes to explain the variations observed in arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3), but a statistically significant contribution is not found for linoleic acid (18:2n-6), linolenic acid (18:3n-3), eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3).
DescriptionPóster presentado en el XIII Congreso Nacional de Acuicultura celebrado en Barcelona del 21 al 24 de noviembre de 2011.
Appears in Collections:(IATS) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.