English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/88187
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Benzothiadiazine dioxide dibenzyl derivatives as potent human cytomegalovirus inhibitors: Synthesis and comparative molecular field analysis

AuthorsMartínez, Ana ; Gil, Carmen ; Abasolo, M. Inés; Castro, Ana ; Bruno, Ana M.; Pérez, Concepción; Prieto, Columbiana; Otero, J.
Issue Date2000
PublisherAmerican Chemical Society
CitationJournal of Medicinal Chemistry 43: 3218- 3225 (2000)
AbstractThe benzothiadiazine dioxide (BTD) derivatives are potent nonnucleoside human cytomegalovirus (HCMV) inhibitors. As part of our comprehensive structure-activity relationship study of these compounds, we have now synthesized N,N- and N, O-dibenzyl derivatives with different para-substituents (alkyl, phenyl, electron-donating, electron-withdrawing) in the phenyl ring of the benzyl moieties. The antiviral activity against HCMV (AD-169 strain) was also experimentally measured showing IC50 values between 2.5 and 50 μM. Comparative molecular field analysis (CoMFA) was employed to generate a model, based upon 32 diverse BTD derivatives, to delineate structural and electrostatic features important for enhanced activity against HCMV. The steric (van der Waals) interactions with the receptor majoritary describes the variation in antiviral activity among the inhibitors. Finally, the CoMFA model was used to design two sets of novel BTD derivatives. Synthesis and subsequent anti-HCMV evaluation of these compounds enabled us to maintain the activity of this new kind of HCMV inhibitors.
Identifiersdoi: 10.1021/jm000033p
issn: 0022-2623
e-issn: 1520-4804
Appears in Collections:(IQM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.