Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/86790
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean

AutorLucea, Anna; Duarte, Carlos M. CSIC ORCID; Agustí, Susana CSIC ORCID; Sondergaard, Morten
Fecha de publicación2003
EditorElsevier
CitaciónJournal of Sea Research 49(3): 157-170 (2003)
ResumenThe distribution of nutrients and carbon in the different pools present in the three functional layers (the upper, biogenic layer, the thermocline layer, and the deeper, biolythic layer) of the stratified NW Mediterranean Sea was examined. The stoichiometry between dissolved inorganic nutrients, which had low concentrations in the surface waters, indicated a deficiency in nitrogen, relative to phosphorus, and an excess nitrogen relative to phosphorus within the thermocline, as well as a general silicate deficiency relative to both N and P, even extending to the biolythic layer. The dissolved organic matter was highly depleted in N and, particularly, in P relative to C, with average DOC/DON ratios >60 and DOC/DOP ratios >1500 in all three layers. The particulate pool was also depleted in N and P relative to C, particularly in the biolythic layer. The concentration of biogenic silica was low relative to C, N and P, indicating that diatoms were unlikely to contribute a significant fraction of the seston biomass. Most (>80%) of the organic carbon was present as dissolved organic carbon. Total organic N and P comprised 50-80% of the N and P pool in the biogenic layer, and decreased with depth to represent 10-25% of these nutrient pools in the biolythic layer. The high total N:P ratios in all three depth layers (N/P ratio >20) indicated an overall phosphorus deficiency in the system. The high P depletion of the dissolved organic matter must derive from a very rapid recycling of the P-rich molecules within DOM, and the increasing C/N ratio of DOM with depth indicates that N is also recycled faster than C in the DOM. Because of the uniform depth distribution of the total dissolved nitrogen concentration, the increase in the percent inorganic N and the decline in the percent dissolved organic N with depth indicates that there must be biological transformations between these pools, with a dominance of DON production in surface waters and remineralisation in the underlying layers, from which dissolved inorganic nitrogen is supplied back to the biogenic layer. Downward fluxes of DON and DOC were estimated at 200-250 μmol N m-2 d-1 and 1.4-2.1 mmol C m-2 d-1, respectively, while there should be little or no export of P as dissolved organic matter. The downward DON flux exceeded the diffusive DIN supply of about 145 μmol N m-2 d-1 to the biogenic layer, suggesting that allochthonous N inputs must be important in the region. © 2003 Elsevier Science B.V. All rights reserved.
URIhttp://hdl.handle.net/10261/86790
DOI10.1016/S1385-1101(03)00005-4
Identificadoresdoi: 10.1016/S1385-1101(03)00005-4
issn: 1385-1101
Aparece en las colecciones: (IMEDEA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

23
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

24
checked on 21-feb-2024

Page view(s)

280
checked on 23-abr-2024

Download(s)

128
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.