Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/85350
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorDíaz-Calleja, Ricardo-
dc.contributor.authorSanchis, M. J.-
dc.contributor.authorRiande, Evaristo-
dc.date.accessioned2013-10-30T10:47:38Z-
dc.date.available2013-10-30T10:47:38Z-
dc.date.issued2009-
dc.identifierdoi: 10.1016/j.elstat.2009.01.002-
dc.identifierissn: 0304-3886-
dc.identifier.citationJournal of Electrostatics 67: 158- 166 (2009)-
dc.identifier.urihttp://hdl.handle.net/10261/85350-
dc.description.abstractWell above their glass transition temperatures, polymers behave like rubber materials. In the rubbery state, the elastic modulus is low enough to allow large deformations. Rubbery materials also deform under the application of an electric field. Rubbers can be referred as electromechanically active elastomers (EMAE) or lightweight materials that convert electrical into mechanical energy and vice versa [H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q.M. Zang, G. Kavarnos, Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlrotrifluoroethylene) terpolymer, Appl. Phys. Lett. 78 (2001) 2360-2362]. Possible applications include biomedical prostheses, actuators, energy harvesters and robots [R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Actuators, A 64 (1998) 77-85; G. Kofod, W. Wirges, Energy minimization for self-organized structure formation and actuation, Appl. Phys. Lett., 90 (2007) 81916-81918; J.S. Plante, S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators, Int. J. Solids Struct. 43 (2006) 7727-7751]. However, although the engineering applications of EMAE are quite recent, the theoretical foundations of continua under simultaneous electrical and mechanical force fields date back the 1960s. In this paper we present the basis of the nonlinear electroelasticity according to the formulation by Dorfmann and Ogden [A. Dorfmann, R.W. Ogden, Nonlinear Electroelastic Deformations, J. Elasticity 82 (2006) 99-127; A. Dorfmann, R.W. Ogden, Nonlinear electroelasticity, Acta Mechanica 174 (2005) 167-183] and discuss the influence of an electrical field on the bifurcation phenomena appearing in some cases of electromechanical deformation in rubber materials. © 2009 Elsevier B.V. All rights reserved.-
dc.language.isoeng-
dc.publisherElsevier-
dc.rightsclosedAccess-
dc.titleEffect of an electric field on the deformation of incompressible rubbers: Bifurcation phenomena-
dc.typeartículo-
dc.identifier.doi10.1016/j.elstat.2009.01.002-
dc.date.updated2013-10-30T10:47:38Z-
dc.description.versionPeer Reviewed-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (ICTP) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

26
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

20
checked on 23-feb-2024

Page view(s)

346
checked on 23-abr-2024

Download(s)

109
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.