English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/81404
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Protein kinase D intracellular localization and activity control kinase D-interacting substrate of 220-kDa traffic through a postsynaptic density-95/discs large/zonula occludens-1-binding motif

AuthorsSánchez-Ruiloba, Lucía; Cabrera, Noemí ; Rodríguez-Martínez, María ; López-Menéndez, Celia ; Higuero, Alonso M. ; Martín Jean-Mairet, Roberto; Iglesias, Teresa
Issue Date2006
PublisherAmerican Society for Biochemistry and Molecular Biology
CitationJournal of Biological Chemistry 281(27): 18888-18900 (2006)
AbstractProtein kinase D (PKD) controls protein traffic from the trans-Golgi network (TGN) to the plasma membrane of epithelial cells in an isoform-specific manner. However, whether the different PKD isoforms could be selectively regulating the traffic of their specific substrates remains unexplored. We identified the C terminus of the different PKDs that constitutes a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif in PKD1 and PKD2, but not in PKD3, to be responsible for the differential control of kinase D-interacting substrate of 220-kDa (Kidins220) surface localization, a neural membrane protein identified as the first substrate of PKD1. A kinase-inactive mutant of PKD3 is only able to alter the localization of Kidins220 at the plasma membrane when its C terminus has been substituted by the PDZ-binding motif of PKD1 or PKD2. This isoform-specific regulation of Kidins220 transport might not be due to differences among kinase activity or substrate selectivity of the PKD isoenzymes but more to the adaptors bound to their unique C terminus. Furthermore, by mutating the autophosphorylation site Ser916, located at the critical position -2 of the PDZ-binding domain within PKD1, or by phorbol ester stimulation, we demonstrate that the phosphorylation of this residue is crucial for Kidins220-regulated transport. We also discovered that Ser916 trans-phosphorylation takes place among PKD1 molecules. Finally, we demonstrate that PKD1 association to intracellular membranes is critical to control Kidins220 traffic. Our findings reveal the molecular mechanism by which PKD localization and activity control the traffic of Kidins220, most likely by modulating the recruitment of PDZ proteins in an isoform-specific and phosphorylation-dependent manner. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
Identifiersdoi: 10.1074/jbc.M603044200
issn: 0021-9258
e-issn: 1083-351X
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.