Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/81048
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Molecular clues to understand the aerotolerance phenotype of Bifidobacterium animalis subsp. lactis

AutorRuíz García, Lorena CSIC ORCID ; Gueimonde Fernández, Miguel CSIC ORCID ; Ruas-Madiedo, Patricia CSIC ORCID ; Ribbera, Angela; González de los Reyes-Gavilán, Clara CSIC ORCID ; Ventura, Marco; Margolles Barros, Abelardo CSIC ORCID; Sánchez García, Borja CSIC ORCID
Fecha de publicación2012
EditorAmerican Society for Microbiology
CitaciónApplied and Environmental Microbiology 78(3): 644-650 (2012)
ResumenOxygen is one of the abiotic factors negatively affecting the survival of Bifidobacterium strains used as probiotics, mainly due to the induction of lethal oxidative damage. Aerobic conditions are present during the process of manufacture and storage of functional foods, and aerotolerance is a desired trait for bifidobacteria intended for use in industry. In the present study, the molecular response of Bifidobacterium animalis subsp. lactis IPLA4549 to aerobic conditions is presented. Molecular targets affected by oxygen were studied using two-dimensional electrophoresis (2DE) and quantitative reverse transcriptase (qRT) PCR. Globally, oxygen stress induced a shift in the glycolytic pathway toward the production of acetic acid with a concomitant increase in ATP formation. Several changes in the expression of genes coding for enzymes involved in redox reactions were detected, although the redox ratio remained unaltered. Interestingly, cells grown under aerobic conditions were characterized by higher activity of coproporphyrinogen III oxidase, which can directly detoxify molecular oxygen, and by higher NADH oxidase specific activity, which can oxidize NADH using hydrogen peroxide. In turn, this is in agreement with the glycolytic shift toward acetate production, in that more NADH molecules may be available due to the lower level of lactic acid formation. These findings further our ability to elucidate the mechanisms by which B. animalis copes with an oxygen-containing atmosphere. © 2012, American Society for Microbiology.
URIhttp://hdl.handle.net/10261/81048
DOI10.1128/AEM.05455-11
Identificadoresdoi: 10.1128/AEM.05455-11
issn: 0099-2240
e-issn: 1098-5336
Aparece en las colecciones: (IPLA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

15
checked on 20-abr-2024

SCOPUSTM   
Citations

36
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

37
checked on 22-feb-2024

Page view(s)

306
checked on 24-abr-2024

Download(s)

83
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.