English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/80468
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS

AuthorsPandolfi, Marco ; Martucci, G.; Querol, Xavier ; Alastuey, Andrés ; Wilsenack, F.; Frey, S.; O’Dowd, C. D.; Dall'Osto, Manuel
Issue Date2013
PublisherEuropean Geosciences Union
CitationAtmospheric Chemistry and Physics 13: 4983–4996 (2013)
AbstractContinuous measurements of surface mixed layer (SML), decoupled residual/convective layer (DRCL) and aerosol backscatter coefficient were performed within the Barcelona (Spain) boundary layer from September to October 2010 (30 days) in the framework of the SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies) field campaign. Two near-infrared ceilometers (Jenoptik CHM15K), vertically and horizontally probing (only vertical profiles are herein discussed), were deployed. Ceilometer-based DRCLs (1761 ± 363 m a.g.l.) averaged over the campaign duration were twice as high as the mean SML (904 ± 273 m a.g.l.). Both DRCL and SML showed a marked SML diurnal cycle. Ceilometer data were compared with potential temperature profiles measured by daily radiosounding (twice a day, midnight and midday) to interpret the boundary layer structure in the coastal urban area of Barcelona. The overall agreement (R2 = 0.80) between the ceilometer-retrieved and radiosounding-based SML heights (h) revealed overestimation of the SML by the ceilometer (Δh=145 ± 145 m). After separating the data in accordance with different atmospheric scenarios, the lowest SML (736 ± 183 m) and DRCL (1573 ± 428 m) were recorded during warm North African (NAF) advected air mass. By contrast, higher SML and DRCL were observed during stagnant Regional (REG) (911 ± 234 m and 1769 ± 314 m, respectively) and cold Atlantic (ATL) (965 ± 222 m and 1878 ± 290 m, respectively) air masses. In addition to being the lowest, the SML during the NAF scenario frequently showed a flat upper boundary throughout the day possibly because of the strong winds from the Mediterranean Sea limiting the midday SML convective growth. The mean backscatter coefficients were calculated at two selected heights representative of middle and top SML portions, i.e. β500 = 0.59 ± 0.45 Mm−1 sr−1 and β800 = 0.87 ± 0.68 Mm−1 sr−1 at 500 m and 800 m a.g.l., respectively. The highest backscatter coefficients were observed during NAF (β500 = 0.77 ± 0.57 Mm−1 sr−1) when compared with ATL (β500 = 0.51 ± 0.44 Mm−1 sr−1) and REG (β500 = 0.64 ± 0.39 Mm−1 sr−1). The relationship between the vertical change in backscatter coefficient and atmospheric stability (∂θ/∂z) was investigated in the first 3000 m a.g.l., aiming to study how the unstable, stable or neutral atmospheric conditions of the atmosphere alter the distribution of aerosol backscatter with height over Barcelona. A positive correlation between unstable conditions and enhanced backscatter and viceversa was found.
Publisher version (URL)http://dx.doi.org/10.5194/acp-13-4983-2013
Appears in Collections:(IDAEA) Artículos
Files in This Item:
File Description SizeFormat 
Continous atmospheric boundary layer observations.pdf953 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.