English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/79063
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain

AuthorsIñiguez, Miguel Ángel ; Lecea, Luis de; Guadaño-Ferraz, Ana ; Morte, Beatriz ; Bernal, Juan
Issue Date1996
PublisherEndocrine Society
CitationEndocrinology 137(3): 1032-1041 (1996)
AbstractTo identify thyroid hormone-sensitive neuronal populations in the forebrain, we studied the effects of thyroid hormone deficiency and replacement on the expression of RC3 messenger RNA (mRNA) in the rat brain by in situ hybridization. RC3/neurogranin is a brain-specific, calmodulin- binding, protein kinase C substrate that has been implicated in postsynaptic events involving calcium as a second messenger. We have previously shown that RC3 mRNA and protein concentrations are thyroid hormone dependent in developing and adult rats. In normal developing rats, RC3 expression occurs in two phases. Before postnatal day 10 (P10), RC3 mRNA was detected mainly in layers II/III and V of cerebral cortex and the CA fields of the hippocampus. From P10 to P15, it decreased in layer V and increased in layer VI, the retrosplenial cortex, the caudate-putamen nucleus, and the dentate gyrus. Expression in the caudate followed a lateral to medial gradient. Thyroid hormone deficiency interfered with the late phase of RC3 expression, such that developing hypothyroid rats showed lower RC3 expression in layer VI, the retrosplenial cortex, the dentate gyrus, and the caudate, and increased expression in layer V. These changes were reverted by T4 treatment. Adult- onset hypothyroidism also reversibly decreased hybridization in the striatum. In contrast to other molecular targets of thyroid hormone in the brain, such as myelin genes, expression of RC3 was also affected by long term hypothyroidism in the absence of hormone replacement, indicating that thyroid hormone is a required factor for the cell-specific control of RC3 expression. In addition to identifying thyroid hormone-sensitive neurons, our results suggest that one action of thyroid hormone during brain development is the timely coordination of gene expression among phenotypically different, region-specific neuronal populations.
URIhttp://hdl.handle.net/10261/79063
DOI10.1210/en.137.3.1032
Identifiersdoi: 10.1210/en.137.3.1032
issn: 0013-7227
e-issn: 1945-7170
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.