English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/76443
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions

AuthorsMiranda, Soledad ; González-Rodríguez, Águeda; García-Ramírez, Marta; Revuelta-Cervantes, Jesús; Hernández, Cristina; Simó, Rafael; Valverde, Ángela M.
Issue Date2012
PublisherWiley-Blackwell
CitationJournal of Cellular Physiology 227(6): 2352-2362 (2012)
AbstractIn this study, we found an imbalance between stress-mediated and survival signaling and elevated apoptotic markers in retinal pigment epithelium (RPE) from diabetic patients. Since fenofibric acid (FA) treatment reduces the progression of diabetic retinopathy (DR), we investigated the effect of hyperglycemia and hypoxia, two components of the diabetic milieu, on stress, apoptosis, and survival pathways in ARPE-19 cells (immortalized human RPE cell line) and whether FA is able to prevent the deleterious effects induced by these conditions. ARPE-19 cells cultured in high-glucose (HG) medium or under hypoxia (1% oxygen)-induced phosphorylation of the stress-activated kinases JNK and p38 MAPK. This effect was increased by the combination of both conditions. Likewise, hyperglycemia and hypoxia triggered the phosphorylation of the endoplasmic reticulum (ER) stress markers PERK and eIF2α and the induction of the pro-apoptotic transcription factor CHOP. Under these experimental conditions, reactive oxygen species (ROS) were elevated and the integrity of tight junctions was disrupted. Conversely, ARPE-19 cells treated with FA were protected against these deleterious effects induced by hyperglycemia and hypoxia. FA increased insulin-like growth factor I receptor (IGF-IR)-mediated survival signaling in cells cultured under hyperglycemia and hypoxia, thereby suppressing caspase-3 activation and down-regulation of BclxL. Moreover, FA increased LC3-II, an autophagy marker. In conclusion, our results demonstrated that FA elicits a dual protective effect in RPE by down-regulation of stress-mediated signaling and induction of autophagy and survival pathways. These molecular mechanisms could be involved in the beneficial effects of fenofibrate reported in clinical trials. © 2011 Wiley Periodicals, Inc.
URIhttp://hdl.handle.net/10261/76443
DOI10.1002/jcp.22970
Identifiersdoi: 10.1002/jcp.22970
issn: 0021-9541
e-issn: 1097-4652
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.