Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7459
Share/Impact:
Title: Approach to predictability via anticipated ynchronization
Authors: Ciszak, Marzena, Gutiérrez, Jose M., Cofiño, A. S., Mirasso, Claudio R., Toral, Raúl, Pesquera, Luis, Ortín, S.
Keywords: Synchronisation
Chaos
Nonlinear dynamical systems
Neural nets
Physics computing
Issue Date: 25-Oct-2005
Publisher: American Physical Society
Abstract: Predictability of chaotic systems is limited, besides the precision of the knowledge of the initial conditions, by the error of the models used to extract the nonlinear dynamics from the time series. In this paper we analyze the predictions obtained from the anticipated synchronization scheme using a chain of slave neural network approximate replicas of the master system. We compare the maximum prediction horizons obtained with those attainable using standard prediction techniques.
Description: 8 pages.-- PACS nrs.: 05.45.Xt, 95.10.Fh, 87.18.Sn.
Publisher version (URL): http://dx.doi.org/10.1103/PhysRevE.72.046218
URI: http://hdl.handle.net/10261/7459
ISSN: 1539-3755
???metadata.dc.identifier.doi???: 10.1103/PhysRevE.72.046218
Citation: Physical Review E 72(1-8): 046218 2005)
Appears in Collections:(IFCA) Artículos

Files in This Item:
File Description SizeFormat 
predictability via anticipated.pdf517,77 kBAdobe PDFView/Open
Show full item record
 
CSIC SFX LinksSFX Query


Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.