Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/7459
Share/Impact:
Título : Approach to predictability via anticipated ynchronization
Autor : Ciszak, Marzena, Gutiérrez, Jose M., Cofiño, A. S., Mirasso, Claudio R., Toral, Raúl, Pesquera, Luis, Ortín, S.
Palabras clave : Synchronisation
Chaos
Nonlinear dynamical systems
Neural nets
Physics computing
Fecha de publicación : 25-Oct-2005
Editor: American Physical Society
Citación : Physical Review E 72(1-8): 046218 2005)
Resumen: Predictability of chaotic systems is limited, besides the precision of the knowledge of the initial conditions, by the error of the models used to extract the nonlinear dynamics from the time series. In this paper we analyze the predictions obtained from the anticipated synchronization scheme using a chain of slave neural network approximate replicas of the master system. We compare the maximum prediction horizons obtained with those attainable using standard prediction techniques.
Descripción : 8 pages.-- PACS nrs.: 05.45.Xt, 95.10.Fh, 87.18.Sn.
Versión del editor: http://dx.doi.org/10.1103/PhysRevE.72.046218
URI : http://hdl.handle.net/10261/7459
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.72.046218
Appears in Collections:(IFCA) Artículos

Files in This Item:
File Description SizeFormat 
predictability via anticipated.pdf517,77 kBAdobe PDFView/Open
Show full item record
 
CSIC SFX LinksSFX Query


Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.