English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/72734
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis

AuthorsMurciano, A.; Zamora, Javier; López-Sánchez, J.; Frade López, José María
Issue Date2002
PublisherAcademic Press
CitationMolecular and Cellular Neurosciences 21: 285-300 (2002)
AbstractDuring the transition from S phase to mitosis, vertebrate neuroepithelial cells displace their nuclei and subsequently migrate from the basal membrane to the apical surface of the neuroepithelium, a phenomenon termed interkinetic nuclear movement (INM). Here we provide evidence that cycling neuroepithelial cells pass through a neurogenic state in which they are situated apically, as defined by the capacity to express Notch1, Delta1, and Neurogenin2 (Ngn2). Based on this scenario, we have developed a mathematical model to analyze the influence of INM on neurogenesis. In the absence of INM, the model predicted an increase in the rate of neurogenesis due to the reduction in the influence of inhibitory signals on cells in the neurogenic state. This exacerbation in neurogenesis led to the diminished growth of the neuroepithelium and a reduction in the later production of neurons. Pharmacological perturbation of the stereotypical distribution of precursors along the orthogonal axis of the neuroepithelium resulted in an excess of neurogenesis, as seen by the expression of Ngn2, and of the neuronal marker RA4 in the retina. These findings suggest that INM might be important for the efficient and continued production of neurons in G0, since it is involved in defining a proneural cluster in the ventricular part of the neuroepithelium that contains precursors at stages of the mitotic cycle compatible with neuronal differentiation.
Identifiersdoi: 10.1006/mcne.2002.1174
issn: 1044-7431
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.