English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/72051
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: Role of its metabolites, oestradiol and dihydrotestosterone

AuthorsBarreto, George E.; Veiga, Sergio; Azcoitia, I.; García-Segura, Luis M. ; García-Ovejero, D.
Issue Date2007
PublisherBlackwell Publishing
CitationEuropean Journal of Neuroscience 25: 3039-3046 (2007)
AbstractPrevious studies have shown that the neuroprotective hormone, testosterone, administered immediately after neural injury, reduces reactive astrogliosis. In this study we have assessed the effect of early and late therapy with testosterone or its metabolites, oestradiol and dihydrotestosterone, on reactive astroglia and reactive microglia after a stab wound brain injury in orchidectomized Wistar rats. Animals received daily s.c. injections of testosterone, oestradiol or dihydrotestosterone on days 0-2 or on days 5-7 after injury. The number of vimentin immunoreactive astrocytes and the volume fraction of major histocompatibility complex-II (MHC-II) immunoreactive microglia were estimated in the hippocampus in the lateral border of the wound. Both early and delayed administration of testosterone or oestradiol, but not dihydrotestosterone, resulted in a significant decrease in the number of vimentin-immunoreactive astrocytes. The volume fraction of MHC-II immunoreactive microglia was significantly decreased in the animals that received testosterone or oestradiol in both early and delayed treatments and in animals that received early dihydrotestosterone administration. Thus, both early and delayed administration of testosterone reduces reactive astroglia and reactive microglia and these effects may be at least in part mediated by oestradiol, while dihydrotestosterone may mediate part of the early effects of testosterone on reactive microglia. In conclusion, testosterone controls reactive gliosis and its metabolites, oestradiol and dihydrotestosterone, may be involved in this hormonal effect. The regulation of gliosis may be part of the neuroprotective mechanism of testosterone. © The Authors (2007).
Identifiersdoi: 10.1111/j.1460-9568.2007.05563.x
issn: 0953-816X
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.