Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/64208
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized x-ray spectroscopy and Seebeck measurements

AutorMagnuson, Martin; Mattesini, Maurizio CSIC ORCID ; Van Nong, Ngo; Eklund, Per; Hultman, Lars
Palabras claveThermoelectric materials
M(n+1) Ax (n) phases
Materials science
Thin films
Growth
Fecha de publicación22-may-2012
EditorAmerican Physical Society
CitaciónMagnuson, M., Mattesini, M., Van Nong, N., Eklund, P., Hultman, L. (2012). Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized x-ray spectroscopy and Seebeck measurements. Physical Review B, 85, 195134. doi: 10.1103/PhysRevB.85.195134
ResumenNanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, with large contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient in nanolaminated Ti3SiC2 single-crystal thin films and trace the origin to anisotropies in element-specific electronic states. In bulk polycrystalline form, Ti3SiC2 has a virtually zero Seebeck coefficient over a wide temperature range. In contrast, we find that the in-plane (basal ab) Seebeck coefficient of Ti3SiC2, measured on single-crystal films, has a substantial and positive value of 4–6 μV/K. Employing a combination of polarized angle-dependent x-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherently nanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states at the Fermi level in the basal ab plane is about 40% higher than along the c axis. The Seebeck coefficient is related to electron and hole-like bands close to the Fermi level, but in contrast to ground state density functional theory modeling, the electronic structure is also influenced by phonons that need to be taken into account. Positive contribution to the Seebeck coefficient of the element-specific electronic occupations in the basal plane is compensated by 73% enhanced Si 3d electronic states across the laminate plane that give rise to a negative Seebeck coefficient in that direction. Strong phonon vibration modes with three to four times higher frequency along the c axis than along the basal ab plane also influence the electronic population and themeasured spectra by the asymmetric average displacements of the Si atoms. These results constitute experimental evidence explaining why the average Seebeck coefficient of Ti3SiC2 in polycrystals is negligible over a wide temperature range. This allows the origin of anisotropy in physical properties of nanolaminated materials to be traced to anisotropies in element-specific electronic states.
Versión del editorhttp://link.aps.org/doi/10.1103/PhysRevB.85.195134
URIhttp://hdl.handle.net/10261/64208
DOI10.1103/PhysRevB.85.195134
ISSN0163-1829
Aparece en las colecciones: (IGEO) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
PRB_2012_85_195134.pdf795,48 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

30
checked on 12-abr-2024

WEB OF SCIENCETM
Citations

30
checked on 25-feb-2024

Page view(s)

279
checked on 22-abr-2024

Download(s)

179
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.