English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/63459
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

GLIA modulates synaptic transmission

AuthorsPerea, Gertrudis ; Araque, Alfonso
Issue Date2010
PublisherElsevier
CitationBrain Research Reviews 63: 93- 102 (2010)
AbstractThe classical view of glial cells as simple supportive cells for neurons is being replaced by a new vision in which glial cells are active elements involved in the physiology of the nervous system. This new vision is based on the fact that astrocytes, a subtype of glial cells in the CNS, are stimulated by synaptically released neurotransmitters, which increase the astrocyte Ca2+ levels and stimulate the release of gliotransmitters that regulate synaptic efficacy and plasticity. Consequently, our understanding of synaptic function, previously thought to exclusively result from signaling between neurons, has also changed to include the bidirectional signaling between neurons and astrocytes. Hence, astrocytes have been revealed as integral elements involved in the synaptic physiology, therefore contributing to the processing, transfer and storage of information by the nervous system. Reciprocal communication between astrocytes and neurons is therefore part of the intercellular signaling processes involved in brain function. © 2009 Elsevier B.V.
URIhttp://hdl.handle.net/10261/63459
DOI10.1016/j.brainresrev.2009.10.005
Identifiersdoi: 10.1016/j.brainresrev.2009.10.005
issn: 0165-0173
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.