Please use this identifier to cite or link to this item:
Título : Modeling non-linear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora
Autor : Sintes, Tomàs, Marbà, Núria, Duarte, Carlos M.
Palabras clave : Aquatic environment
Brackish water environment
Sea grass
Fecha de publicación : 1-Feb-2006
Editor: Estuarine Research Federation
Resumen: The clonal growth of 9 seagrass species was modeled using a simulation model based on observed clonal growth rules (i.e., spacer length, rhizome elongation rates, branching rates, branching angle) and shoot mortality rates for seagrass species. The results of the model confirmed the occurrence of complex, nonlinear growth of seagrass clones derived from internal dynamics of space occupation. The modeled clones progressed from a diffuse-limited aggregation (DLA), dendritic growth, identified with a guerrilla strategy of space occupation, to a compact (Eden) growth, comparable to the phalanx strategy of space occupation, once internal recolonization of gaps, left by dead shoots within the clone, begins. The time at which seagrass clones shifted from diffuse limited to compact growth was predictable from the branching angle and frequency of the species and varied from 1 yr to several decades among species. As a consequence the growth behavior and the apparent growth strategy of the species changes with the development of the clones. The results of the model demonstrate that the emergent complexity of seagrass clonal growth is contained within the simple set of growth rules that can be used to represent clonal growth.
Descripción : 9 pages.-- Final full-text version of the paper available at:
ISSN: 1559-2723 (Print)
1559-2731 (Online)
DOI: 10.1007/BF02784700
Citación : Estuaries and Coasts 29, 72-80 (2006)
Appears in Collections:(IFISC) Artículos
(IMEDEA) Artículos

Files in This Item:
File SizeFormat 
Modellingacrosslfora.pdf301,47 kBAdobe PDFView/Open
Show full item record

Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.