Digital.CSIC > Ciencia y Tecnologías Físicas > Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC) > (IFISC) Artículos >




Open Access item Multiplicative noise in the longitudinal mode dynamics of a bulk semiconductor laser

Authors:Pedaci, Francesco
Lepri, Stefano
Balle, Salvador
Giacomelli, Giovanni
Giudici, Massimo
Tredicce, Jorge R.
Keywords:Laser noise, Semiconductor lasers, Stochastic processes, [PACS] Fluctuation phenomena, random processes, noise, and Brownian motion, [PACS] Dynamics of nonlinear optical systems including optical instabilities, optical chaos and complexity, and optical spatio–temporal dynamics, [PACS] Semiconductor lasers; laser diodes
Issue Date:17-Apr-2006
Publisher:American Physical Society
Citation:Physical Review E 73(4): 041101 (2006)
Abstract:We analyze theoretically and experimentally the influence of current noise on the longitudinal mode hopping dynamics of a bulk semiconductor laser. It is shown that the mean residence times on each mode have different sensitivity to external noise added to the bias current. In particular, an increase of the noise level enhances the residence time on the longitudinal mode that dominates at low current, evidencing the multiplicative nature of the stochastic process. A two-mode rate equation model for a semiconductor laser is able to reproduce the experimental findings. Under a suitable separation of the involved time scales, the model can be reduced to a one-dimensional bistable potential system with a multiplicative stochastic term related to the current noise strength. The reduced model clarifies the influence of the different noise sources on the hopping dynamics.
Description:11 pages.-- PACS numbers: 05.40.-a, 42.65.Sf, 42.55.Px.
Publisher version (URL):http://dx.doi.org/10.1103/PhysRevE.73.041101
Appears in Collections:(IFISC) Artículos
(IMEDEA) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.