English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/60904
Title: Real-Time Object Segmentation Using a Bag of Features Approach
Authors: Aldavert, David; Ramisa, Arnau; Lopez de Mantaras, Ramon; Toledo, Ricardo
Issue Date: 2010
Abstract: In this paper, we propose an object segmentation framework, based on the popular bag of features (BoF), which can process several images per second while achieving a good segmentation accuracy assigning an object category to every pixel of the image. We propose an efficient color descriptor to complement the information obtained by a typical gradient-based local descriptor. Results show that color proves to be a useful cue to increase the segmentation accuracy, specially in large homogeneous regions. Then, we extend the Hierarchical K-Means codebook using the recently proposed Vector of Locally Aggregated Descriptors method. Finally, we show that the BoF method can be easily parallelized since it is applied locally, thus the time necessary to process an image is further reduced. The performance of the proposed method is evaluated in the standard PASCAL 2007 Segmentation Challenge object segmentation dataset.
URI: http://hdl.handle.net/10261/60904
Identifiers: isbn: 9781607506423
Appears in Collections:(IIIA) Libros y partes de libros
Files in This Item:
File Description SizeFormat 
ACIA 2010_FAIA 220 (321-329).pdf1,6 MBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.