English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/57657
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Geomicrobiology of La Zarza-Perrunal Acid Mine Effluent (Iberian Pyritic Belt, Spain)

AuthorsGonzález-Toril, Elena ; Aguilera, Ángeles ; Souza-Egipsy, Virginia ; López Pamo, Enrique; Sánchez España, Javier; Amils, Ricardo
Issue Date25-Feb-2011
PublisherAmerican Society for Microbiology
CitationApplied and Environmental Microbiology 77 (8): 2685-2694 (2011)
AbstractEffluent from La Zarza-Perrunal, a mine on the Iberian Pyrite Belt, was chosen to be geomicrobiologically characterized along a 1,200-m stream length. The pH at the origin was 3.1, which decreased to 1.9 at the final downstream sampling site. The total iron concentration showed variations along the effluent, resulting from (i) significant hydrolysis and precipitation of Fe(III) (especially along the first reach of the stream) and (ii) concentration induced by evaporation (mostly in the last reach). A dramatic increase in iron oxidation was observed along the course of the effluent [from Fe(III)/Fetotal = 0.11 in the origin to Fe(III)/Fetotal = 0.99 at the last sampling station]. A change in the O2 content along the effluent, from nearly anoxic at the origin to saturation with oxygen at the last sampling site, was also observed. Prokaryotic and eukaryotic diversity throughout the effluent was determined by microscopy and 16S rRNA gene cloning and sequencing. Sulfate-reducing bacteria (Desulfosporosinus and Syntrophobacter) were detected only near the origin. Some iron-reducing bacteria (Acidiphilium, Acidobacterium, and Acidosphaera) were found throughout the river. Iron-oxidizing microorganisms (Leptospirillum spp., Acidithiobacillus ferrooxidans, and Thermoplasmata) were increasingly detected downstream. Changes in eukaryotic diversity were also remarkable. Algae, especially Chlorella, were present at the origin, forming continuous, green, macroscopic biofilms, subsequently replaced further downstream by sporadic Zygnematales filaments. Taking into consideration the characteristics of this acidic extreme environment and the physiological properties and spatial distribution of the identified microorganisms, a geomicrobiological model of this ecosystem is advanced.
Publisher version (URL)http://dx.doi.org/10.1128/​AEM.02459-10
URIhttp://hdl.handle.net/10261/57657
DOI10.1128/​AEM.02459-10
ISSN0099-2240
E-ISSN1098-5336
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.