DSpace

Digital.CSIC > Biología y Biomedicina > Centro de Investigaciones Biológicas (CIB) > (CIB) Artículos >

Share

EndNote

Impact

Closed Access item Apo-Hsp90 coexists in two open conformational states in solution

Authors:Bron, P.
Giudice, E.
Rolland, J.P.
Martínez Buey, Rubén
Barbier, Pascale
Díaz, José Fernando
Peyrot, Vincent
Thomas, D.
Garnier, C.
Keywords:Chaperone, cryo-electron microscopy (cryo-EM), intrinsic flexibility, 90 kDa heat-shock protein (Hsp90), small-angle X-ray scattering (SAXS), structure
Issue Date:Jul-2008
Publisher:Wiley-Blackwell
Citation:Biology of the Cell, 100 (7) : 413-425 (2008)
Abstract:Background information. Hsp90 (90 kDa heat-shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide-binding-dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue). Results and discussion. Here, we present the first nucleotide-free structures of the entire eukaryotic Hsp90 (apo-Hsp90) obtained by small-angle X-ray scattering and single-particle cryo-EM (cryo-electron microscopy). We show that, in solution, apo-Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo-EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo-forms require large movements of the NTD (N-terminal domain) and MD (middle domain) around two flexible hinge regions. Conclusions. The present study shows, for the first time, the structure of the entire eukaryotic apo-Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle
Description:13 páginas, 8 figuras -- PAGS nros. 413-425
Publisher version (URL):http://dx.doi.org/10.1042/BC20070149
URI:http://hdl.handle.net/10261/56802
ISSN:0248-4900
E-ISSNmetadata.dc.identifier.doi = DOI:1768-322X
???metadata.dc.identifier.doi???:10.1042/BC20070149
Appears in Collections:(CIB) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.